The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

Group A Lecture 1: The Self-Reducibility Technique

Adam Scrivener, Haofu Liao, Nabil Hossain, Shupeng Gui, Thomas Lindstorm-Vautrin

Department of Computer Science University of Rochester

November 2, 2015

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Table of Contents

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

1 Tree Pruning Technique

- Theorem 1.2
- Theorem 1.4

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

Theorem 1.2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem 1.2

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

Tally Set

A set T is a tally set exactly if $T \subseteq 1^*$

Theorem 1.2

If there is a tally set that is \leq_{m}^{p} -hard for NP, then P=NP.

Corollary 1.3

If there is a tally set that is NP-complete, then P = NP.

- Let T be a tally set that is \leq_m^p -hard. Then the NP-complete set $SAT \leq_m^p T$.
- Goal: We want to use $SAT \leq_m^p T$ to proof that SAT can be decided in polynomial time. Thus, $SAT \in P$, then P = NP

Tree Pruning For SAT Problem

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

- F[*v_i*=True] denotes the resulting boolean formula when we assign True to variable *v_i*
- Boolean formula F is satisfiable if and only if F[v₁=True] is satisfiable or F[v₁=False] is satisfiable.
- Find the satisfiable assignment by traversing the tree. If the traverse can be done in polynomial time, then SAT ∈ P.

Tree Pruning For SAT Problem

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

- Traverse is done layer by layer. The number of nodes in *ith* layer is 2^{*i*}.
- If during the traverse we can ignore some redundant nodes (tree pruning) so that for each layer we only traverse polynomial number of nodes, then the entire traverse is polynomial.

Example: Tree Pruning For SAT Problem

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

- (Rabbit says) What nodes/formulas are redundant?
- If a formula is not satisfiable, then all of its descendants are not satisfiable. Thus, this formula is redundant.
- If a formula is "identical" to another formula, then it is redundant.
- If f_1 is satisfiable if and only if f_2 is satisfiable, then f_1 and f_2 is identical.

(Rabbit says) How do we identify the redundancy?

Tree Pruning For SAT Problem

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Identify Redundancy

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2

- Let g be the deterministic polynomial-time function such that $\forall f \in SAT$ if and only if $g(f) \in T$, where T is the \leq_{m}^{p} -hard Tally set.
- Recall that $T \subseteq 1^*$. If $g(f) \notin 1^*$, then f is not satisfiable.
- For any two boolean formula $f \neq h$, and g(f) = g(h), $f \in SAT \iff h \in SAT$.

$$f \in SAT \iff g(f) \in T$$
$$\parallel$$
$$h \in SAT \iff g(h) \in T$$

(Rabbit says) How do we make sure the number of remaining nodes/formulas in each layer is polynomial?

Polynomial Bound

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

- The length of the output of a polynomial-time function is bounded by some polynomial
- Let g(x) be a a polynomial-time function, there exists a integer k such that ∀x, |g(x)| ≤ |x|^k + k
- If g(x) ∈ 1*, then the longest possible output is 1^{|x|^k+k}. Thus, the total number of possible outputs of g(x) is |x|^k + k + 1.

Example

Given that $|g(x)| \le |x|^k + k$ and $g(x) \in 1^*$, what are the possible outputs of g(x)?

$$\epsilon, 1, 11, 111, 1111, 11111, \ldots, \underbrace{11 \dots 111}_{|\mathbf{x}|^k + k}$$

Polynomial Bound

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

- Recall that for any two boolean formula f, h, if g(f) = g(h), then f and g are "identical". Similarly, if $g(f) \neq g(h)$, we say f and g are "distinct".
- Recall that the total number of possible outputs of g(x) is $|x|^k + k + 1$.
- Let n be the size of formulas on the ith layer. Thus, among the 2ⁱ formulas in this layer, at most n^k + k + 1 of them are "distinct".

Proof Sketch

F[^v1=False, F[^v1=False, v₂=False, v₂=False, v₂=False, v_m=False]

F[v1=False,

v_{2=False]}

F[v1=False,

v₂₌True]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

Proof Sketch

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

- The input of layer *i* are the output formulas from layer i 1.
- Expand each formula by assigning *True* and *False* value to v_i (Get the corresponding formulas in layer i).
- For each expanded formula f in layer i, calculate g(f). If g(f) ∉ 1*, remove f. If f ∈ 1* but exists expanded formula h ≠ f such that g(f) = g(h), remove f.
- Output the resulting formulas in layer *i*.

Proof

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

Stage 0

Outputs C=F where F is the original formula

Stage i

Input $C = \{F_1, \dots, F_l\}$ Step 1: Replace v_i by True or False to get

$$C = \{F_1[v_i = True], F_2[v_i = True], \dots, F_I[v_i = True], F_1[v_i = False], F_2[v_i = False], \dots, F_I[v_i = False]\}$$

Step 2: $C' = \emptyset$ **Step 3:** For each f in C do **1** Compute g(f) **2** If $g(f) \in 1^*$ and for no formula $h \in C'$ does g(f) = g(h), then add f to C'. Output of stage i : C = C'

Stage m+1

Input is C which is now a variable-free formula collection. F is satisfiable if an element in C is true.

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

Theorem 1.4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problem

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

Theorem 1.4

If there is a sparse set that is \leq_m^p -hard for coNP, then P=NP.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary 1.5

If there is a sparse coNP-complete set, then P=NP.

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

Theorem 1.4

If there is a sparse set that is \leq_m^p -hard for coNP, then P=NP.

Definition

A set S is **sparse** if it contains at most polynomially many elements at each length, i.e.,

 $(\exists \text{ polynomial } p)(\forall n)[||\{x|x \in S \land |x| = n\}|| \le p(n)].$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A language A is **coNP-hard**, if $\forall L \in coNP, L \leq_m^p A$.

Idea

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4 Utilize **Tree-pruning** trick and the definition of **coNP-hard** to construct a polynomial-time algorithm for SAT. (SAT is NP-complete)

Explanation

- $\forall L \in NP, L \leq_m^p SAT$
- SAT solved in polynomial-time by deterministic Turing machine (DTM).
- \Leftrightarrow All NP problems solved in polynomial-time by DTM.

 $\bullet \Leftrightarrow P = NP.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

S.

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

Corollary

$$\| (n, \| S^{\leq n} \| \leq p_d(n)) \|$$

Proof.

β

- S is sparse $\Rightarrow ||\{x|x \in S \land |x| = n\}|| \le p(n)$
- We can obtain the upper bound p_{max} = max_n p(n), where p_{max} is bounded by polynomial.
- $||S^{\leq n}|| = \sum_{i=0}^{n} p(i) \leq \sum_{i=0}^{n} p_{max} = (n+1)p_{max}$, which is bounded by polynomial.

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4 $SAT \in NP \Rightarrow \overline{SAT} \in coNP$ and $\overline{SAT} \in coNP \Rightarrow \overline{SAT} \leq_m^p S$, since $S \in coNP$ -hard.

Let *g* denote the reduction function $\overline{SAT} \leq_m^p S$.

Corollary

Recall

 $\forall x, |g(x)| \leq p_k(|x|).$

Proof.

- Function g is computed by a DTM
- a DTM outputs at most 1 symbol in one step

 \Rightarrow |g(x)| is bounded by polynomial length, named $p_k(|x|)$.

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

Corollary

Since $\forall n$, $\|S^{\leq n}\| \leq p_d(n)$ and $\forall x, |g(x)| \leq p_k(|x|)$, given g and S, $\|S^{\leq |g(x)|}\| \leq p_d(p_k(|x|)).$

Rabbit: Interesting! $S^{\leq |g(x)|}$ is a set with a polynomial number of elements.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

Input

Boolean formula $F[v_1, v_2, ..., v_m]$, w.l.o.g, $m \ge 1$.

Stage 0

Collection of boolean formulas, C' = {F}
Pass C' to Stage 1.

Rabbit: That's pretty easy. I can do it.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4 A collection of formulas: Hi, we are from Stage i-1.

Stage i

Step 1: $C = \{F_1[v_i = True], F_2[v_i = True], ..., F_\ell[v_i = True], F_1[v_i = False], F_2[v_i = False], ..., F_\ell[v_i = False]\}.$ **Step 2**: Set $C' = \emptyset$.

Rabbit: lol, I can do it but where is my carrot?

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

Stage i

- **Step 3**: For each formula f in C do:
 - 1 Compute g(f).
 - 2 If for no formula $h \in \mathcal{C}'$ does g(f) = g(h), then add f to \mathcal{C}'

The Self-Reducibility Technique

Stage i

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

Stage i

Step 4: If C' contains at least $p_d(p_k(|F|)) + 1$ elements, stop and immediately declare that $F \in SAT$.

Explanation

- Only $p_d(p_k(|F|))$ strings are in $S^{\leq p_k(|F|)}$.
- There is at least one formula named H maps to a string in \overline{S} , i.e., $g(H) \notin S$.
- Since g is the reduction function from SAT to S, H is satisfiable. It imply that F is satisfiable.

End Stage i: C' is the collection that gets passed on to Stage i + 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

Stage m+1

If some member of the formula collection output by Stage *m* evaluates to being true, $F \in SAT$, and otherwise $F \notin SAT$.

Rabbit: Oh, my carrot! The proof is done here. Wait, rabbit!

Discuss

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

Comment

Obviously, this algorithm is computed by deterministic Turing machine.

Step 4 never met

Upper bound number of strings $p_{max} = \max p_d(p_k(|F|))$. \Rightarrow time for whole algorithm $t \le mp_{max}$

Step 4 invoked

This algorithm stops early before Stage m+1.

 \Rightarrow The algorithm is polynomial-time.

We construct a deterministic polynomial-time algorithm for SAT.

Rabbit: If I find a carrot like this set S, I will buy a million carrots (plus 9 millions).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Self-Reducibility Technique

Group A

Tree Pruning Technique Theorem 1.2 Theorem 1.4

Thank You!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Group A Lecture 2: Mahaney's Theorem

Adam Scrivener, Haofu Liao, Nabil Hossain, Shupeng Gui, Thomas Lindstorm-Vautrin

Why Study Sparseness?

• Closely related to the p-isomorphism conjecture:

Lemma 5.1 Let L_1 and L_2 be two p-ismorphic languages. Then two polynomials p_1 and p_2 exist such that, for any n,

 $c_{L_1}(n) \le c_{L_2}(p_1(n))$ and $c_{L_2}(n) \le c_{L_1}(p_2(n)).$

- In other words, the census functions are polynomially related.
- Since the census function for SAT is known to be exponential (Bov-Cre p. 83), if a sparse NP-complete language L is found, then the census function for L cannot be polynomially related to the census function for SAT. So, the p-isomorphism conjecture falls.

(日) (四) (문) (문) (문)

Difficulty of Finding a Sparse NP-C Language

• Due to a result by Mahaney:

Theorem 5.7 If a sparse NP-complete language exists, then P = NP.

• And thus, finding such an NP-complete language means proving that P=NP, which is widely believed to be false.

<ロト <四ト <注入 <注下 <注下 <

• But why does Theorem 5.7 hold?
• Theorem 5.6

- O Complement of S is in NP
- Satisfiability tree pruning
- O SAT is in P

• Theorem 5.7 (Mahaney's Theorem)

- O PC(S)
- Constructing a good pruning function
- $\bigcirc \quad A \text{ set of pruning functions}$
- $\bigcirc \quad \text{Properties of the correct pruning function} \\$

(日) (四) (코) (코) (코) (코)

Theorem 5.6

Theorem 5.6 If an NP-complete sparse language exists such that its census function is computable in polynomial time, then P = NP. (A census function c_L is said to be computable in polynomial time if a Turing transducer T exists which reads 0^n as input and computes $c_L(n)$ in polynomial time.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Theorem 5.6

- Complement of S is in NP
- Satisfiability tree pruning
- O SAT is in P

• Theorem 5.7 (Mahaney's Theorem)

- O PC(S)
- Constructing a good pruning function
- $\bigcirc \quad A \text{ set of pruning functions}$
- $\bigcirc \quad \text{Properties of the correct pruning function} \\$

(日) (四) (코) (코) (코) (코)

Complement of S is in NP

 $\begin{array}{l} \mathbf{begin} \ \{ \mathrm{input:} \ x \} \\ n := |x|; \\ k := c_S(n); \\ \mathbf{guess} \ y_1, \ldots, y_k \ \mathbf{in} \ \mathrm{set} \ \mathrm{of} \ k\text{-tuples} \ \mathrm{of} \ \mathrm{distinct} \ \mathrm{words} \\ \mathrm{each} \ \mathrm{of} \ \mathrm{which} \ \mathrm{has} \ \mathrm{length}, \ \mathrm{at} \ \mathrm{most}, \ n; \\ \{ \mathrm{check} \ \mathrm{whether} \ \mathrm{the} \ \mathrm{guessed} \ k\text{-tuple} \ \mathrm{coincides} \ \mathrm{with} \ S_{\leq n} \} \\ \mathbf{for} \ i = 1 \ \mathbf{to} \ k \ \mathbf{do} \\ \mathbf{if} \ y_i = x \ \mathbf{then} \ \mathrm{reject}; \\ \mathbf{check} \ \mathrm{if} \ x \in S_{\leq n} \} \\ \mathbf{for} \ i = 1 \ \mathbf{to} \ k \ \mathbf{do} \\ \mathbf{if} \ y_i = x \ \mathbf{then} \ \mathrm{reject}; \\ \mathbf{accept}; \\ \mathbf{end.} \end{array}$

Further, the complement of SAT reduces to S.

◆□▶ ◆舂▶ ★注≯ ★注≯ 注目

• Theorem 5.6

- Complement of S is in NP
- Satisfiability tree pruning
- O SAT is in P
- Theorem 5.7 (Mahaney's Theorem)
 - O PC(S)
 - Constructing a good pruning function
 - $\bigcirc \quad A \text{ set of pruning functions}$
 - \bigcirc \quad Properties of the correct pruning function

(日) (四) (코) (코) (코) (코)

Satisfiability Trees and Tree Pruning

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

Satisfiability Trees and Tree Pruning

- Since the complement of SAT reduces to S by some function f, we can use f as a pruning function.
- If y is a node in the satisfiability tree and f(y) is in S, then we know that y is not satisfiable, and we can ignore y's children in the tree.
- It is difficult to determine if f(y) is in S directly since S is NP-C.
- To solve this, we build a list of elements in S as our tree pruning algorithm runs, which we can query.

(日) (四) (코) (코) (코) (코)

• Theorem 5.6

- O Complement of S is in NP
- Satisfiability tree pruning
- SAT is in P
- Theorem 5.7 (Mahaney's Theorem)
 - O PC(S)
 - Constructing a good pruning function
 - $\bigcirc \quad A \text{ set of pruning functions}$
 - \bigcirc \quad Properties of the correct pruning function

(日) (四) (문) (문) (문)

SAT is in P

begin {input: x} {main program} list := {f(false)}; if sat(x) then accept else reject; end. function sat(y): Boolean; begin if y =true then sat :=true; if $f(y) \in list$ then sat := false else begin derive y_0 and y_1 from y; if $\neg sat(y_0) \land \neg sat(y_1)$ then begin {if both y_0 and y_1 are not satisfiable then y is not satisfiable} $list := list \cup \{f(y)\};$ sat := false: end else sat := true; end: end:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Mahaney's Theorem

Theorem 5.7 If a sparse NP-complete language exists, then P = NP.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Theorem 5.6

- O Complement of S is in NP
- Satisfiability tree pruning
- O SAT is in P

• Theorem 5.7 (Mahaney's Theorem)

- PC(S)
- Constructing a good pruning function
- $\bigcirc \quad A \text{ set of pruning functions}$
- \bigcirc \quad Properties of the correct pruning function

(日) (四) (문) (문) (문)

Mahaney's Theorem

- We have shown that we can prove P = NP if the sparse NP-C set has a poly-time computable census function.
- Can we still do it if we don't have this assumption?
- Yes, and it will require "guessing" the correct value of the census function.

(日) (四) (문) (문) (문)

Pseudo-complement of S: (PC(S))

Define PC(S) as the set of triples $\langle x,k,0^n \rangle$ accepted by this machine:

```
begin {input: x, k, 0^n}

if |x| > n \lor k > p(n) then reject;

guess y_1, \ldots, y_k in set of k-tuples of distinct words

each of which is of length, at most, n;

for i = 1 to k do

if NT(y_i) rejects then reject;

for i = 1 to k do

if y_i = x then reject;

accept;

end.
```

Note that if $|x| \ll n$ and $k = c_s(n)$, then $\langle x, k, 0^n \rangle$ is in the set if and only if x is in S complement.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣……

• Theorem 5.6

- O Complement of S is in NP
- Satisfiability tree pruning
- O SAT is in P

• Theorem 5.7 (Mahaney's Theorem)

- O PC(S)
- Constructing a good pruning function
- $\bigcirc \quad A \text{ set of pruning functions}$
- \bigcirc Properties of the correct pruning function

(日) (四) (문) (문) (문)

Constructing a good pruning function

- Before, we used a reduction from the complement of SAT to S. This time we do the exact same thing, with a new reduction.
- First, let h be a reduction from SAT to S, and g be a reduction from PC(S) to S.
- Let p_h and p_g limit the length of h and g.
- Now, suppose that x, the string we want to determine is satisfiable or not, is of length n.

▲口> ▲圖> ▲理> ▲理> 三理 ---

- Define $F^*(y) = g(h(y), c_s(p_h(n)), 0^{p_h(n)})$
- Claim: $F^*(y)$ is a reduction from the complement of SAT to S.

• Theorem 5.6

- O Complement of S is in NP
- Satisfiability tree pruning
- O SAT is in P

• Theorem 5.7 (Mahaney's Theorem)

- O PC(S)
- Constructing a good pruning function
- A set of pruning functions
- \bigcirc \quad Properties of the correct pruning function

(日) (四) (문) (문) (문)

A set of pruning functions

- For each n and for each $k <= p(p_h(n)),$ where p is a polynomial bounding the census function for S:
- Define $f_{n,k}(y) = g(h(y), k, 0^{p_h(n)}).$
- These are all poly-time computable when $\left|y\right|<=n$
- Note that $F^*(y) = g(h(y), c_s(p_h(n)), 0^{p_h(n)}) = f_{n, c_s(p_h(n))}(y)$
- So, F* is among this set of functions, and it is a poly-time reduction from the complement of SAT to S, thus it is a valid pruning function.
- The problem: we do not know the census function, so we cannot compute $F^*(y)$.

(日) (四) (문) (문) (문)

A set of pruning functions

- Observation: $c_s(p_h(n)) \le p(p_h(n))$
- Solution idea: On input x of size n, for all values of k from 0 to $p(p_h(n))$, try the tree-pruning algorithm with pruning function $f_{n,k}$
- One of these k's will work.
- Problem: we are not guaranteed that the tree-pruning algorithm will run in poly time with every choice of pruning function.

◆□▶ ◆舂▶ ★注≯ ★注≯ 注目

• Theorem 5.6

- O Complement of S is in NP
- Satisfiability tree pruning
- O SAT is in P

• Theorem 5.7 (Mahaney's Theorem)

- O PC(S)
- Constructing a good pruning function
- $\bigcirc \quad A \text{ set of pruning functions}$
- Properties of the correct pruning function

(日) (四) (문) (문) (문)

Properties of the correct pruning function F*

• Observation: if
$$\mathbf{k} = \mathbf{c}_{-\mathbf{s}}(\mathbf{p}_{-\mathbf{h}}(n))$$
, we have that
$$|\langle h(y), k, 0^{p_{h}(n)} \rangle| = 2p_{h}(n) + O[log(p(p_{h}(n)))]$$

• Thus, there is an n_0 such that for all $n \ge n_0$,

$$\left|\left\langle h(y), k, 0^{p_h(n)}\right\rangle\right| \le 2p_h(n) + p(p_h(n))$$

• This means that the list created by the tree-pruning algorithm will be at most p(p, [2p, (p)] + p(p, (p))]

$$p(p_g[2p_h(n) + p(p_h(n))])$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Properties of the correct pruning function F*

• So, we know from the poly-bound proof of the tree-pruning function, that the algorithm visits at most

$$2[|x|p(p_g[2p_h(n) + p(p_h(n))]) + |x| - 1]$$

Nodes, which is polynomial in |x|.

• Further, if the amount of nodes explored exceeds this value, we know we have chosen the wrong k.

<ロト <四ト <注入 <注下 <注下 <

• Theorem 5.6

- O Complement of S is in NP
- Satisfiability tree pruning
- O SAT is in P

• Theorem 5.7 (Mahaney's Theorem)

- O PC(S)
- Constructing a good pruning function
- $\bigcirc \quad A \text{ set of pruning functions}$
- \bigcirc Properties of the correct pruning function

(日) (四) (문) (문) (문)

SAT is in P

```
begin {input: x}
for k = 0 to p(p_h(|x|)) do
begin
execute the tree-visiting algorithm described in the
proof of Theorem 5.6 using f_{|x|,k} as a pruning function
and visiting, at most, 2[[x]p(p_g[2p_h(n) + p(p_h(n))]) + |x| - 1] inner nodes;
if the algorithm accepts then accept;
end;
reject;
end.
```

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のなぐ

Group A Lecture 3: Sparse Sets and Turing Reductions

Introduction

Polynomial Hierarchy PH Collapse

Topics

Theorem 1.14 Restricted Query Classes Proof Step 1 Step 2

Group A Lecture 3: Sparse Sets and Turing Reductions

Adam Scrivener, Haofu Liao, Nabil Hossain, Shupeng Gui, Thomas Lindstrom-Vautrin

> Department of Computer Science University of Rochester

> > November 9, 2015

1日日本海壁を使用されます。 第二の8条

Introduction

Group A Lecture 3: Sparse Sets and Turing Reductions

Introduction

Polynomial Hierarchy PH Collapse

Topics

Theorem 1.14 Restricted Query Classes Proof Step 1 Step 2

- We've seen: if a sparse set is NP-hard or NP-complete w.r.t many-one reductions, then P = NP
- Today we investigate whether any sparse set can be NP-hard or NP-complete w.r.t. Turing reductions
 - weaker assumption (compared to many-one reductions)
- Open Question: do these Turing reduction based hypotheses imply that P = NP?
- We can show that the Polynomial Hierarchy collapses, given these assumptions hold
- Intuitively, PH collapses when all polynomial classes above a certain order are shown to be equal

The Polynomial Hierarchy

Group A Lecture 3: Sparse Sets and Turing Reductions

Introduction

Polynomial Hierarchy PH Collapse

Topics

Theorem 1.14 Restricted Query Classes Proof Step 1 Step 2

Polynomial Hierarchy Collapse

Group A Lecture 3: Sparse Sets and Turing Reductions $PH = \bigcup_{i} \Sigma_{i}^{p}$ $= P \cup NP \cup NP^{NP} \cup NP^{NP^{NP}} \cup NP^{NP^{NP}} \cup \dots$

Introduction

Polynomial Hierarchy PH Collapse

Topics

Theorem 1.14 Restricted Query Classes Proof Step 1 Step 2

Theorem (Gold) ¹

If
$$\Sigma_i^p = \prod_i^p$$
, then $PH = \Sigma_i^p$

Example

- if NP = coNP, then PH = NP
 - An implication: any problem, that can be solved using an NP machine with access to an NP oracle, can also be solved with a non-det poly-time TM with no access to oracle

 $^{^{1}} http://www.cs.cornell.edu/courses/cs6810/2009sp/scribe/lecture5.pdf_{\&\&\&}$

Topics

Group A Lecture 3: Sparse Sets and Turing Reductions

Introduction

Polynomial Hierarchy PH Collapse

Topics

Theorem 1.14 Restricted Query Classes Proof Step 1 Step 2 Can sparse sets be NP-complete or NP-hard w.r.t Turing reductions? What are the implications?

Theorem 1.14 [Hemaspaandra-Ogihara]

If NP has sparse Turing-complete sets, then the Polynomial Hierarchy collapses to $P^{NP}[\log n]$

Theorem 1.15 [Hem-Ogi] (also called Karp-Lipton Thm)

If NP has sparse Turing-hard sets, then the Polynomial Hierarchy collapses to NP^{NP}

· 러 문 N 하루 N (목) / 국내 이 등 · · · 영상(장

Bounded/restricted query classes²

Group A Lecture 3: Sparse Sets and Turing Reductions

Introduction

Polynomial Hierarchy PH Collapse

Topics

Theorem 1.14

Restricted Query Classes Proof Step 1 Step 2 Motivation: add new classes to PH to capture problems that can be solved by restricting the number of queries made to oracle to O(log n) (instead of polynomial)

E.g. Odd colorability in graphs

- it is in P^{NP} and is NP-hard, but not known whether it is in NP
- but it can be solved in P^{NP}[log n] by using a P^{NP} machine making only O(log n) (rather than polynomially many) queries to an NP oracle.

²Wagner, Klaus W. "Bounded query classes." SIAM Journal on Computing 19.5 (1990): 833-846.

Theorem 1.14

Group A Lecture 3: Sparse Sets and Turing Reductions

Introduction

Polynomial Hierarchy PH Collapse

Topics

Theorem 1.14 Restricted Query Classes Proof Step 1 Step 2

Theorem 1.14

If NP has sparse NP $\leq^{p}_{T}\text{-complete sets, then}$

 $PH = P^{NP}[\log n]$

Proof Strategy

- proof uses "census" approach
- For a sparse set, the census approach is to first obtain the exact number of elements in the set up to some given length, and then exploit that information.

Proof of Theorem 1.14

Group A Lecture 3: Sparse Sets and Turing Reductions

Introductior

Polynomial Hierarchy PH Collapse

Topics

Theorem 1.14 Restricted Query Classes Proof Step 1 Step 2

- 1) Let S be a sparse set s.t. S is $\leq_T^p -complete$ for NP
- 2) For any ℓ , let $p_\ell(n) = n^\ell + \ell$
- 3) Let j be s.t. $(\forall n)[|S^{\leq n}| \leq p_j(n)]$
- 4) Let *M* be deterministic poly-time TM s.t. SAT = L(M^S)
 M exists since *S* is Turing-hard for NP
- 5) Let k be s.t. $p_k(n)$ bounds runtime of M regardless of M's oracle
- 6) Let L be an arbitrary set in Σ_2^p (i.e. NP^{NP})
 - Since SAT is NP-complete, we have $\Sigma_2^p = NP^{SAT}$

1日日本海壁を使用されます。 第二の8条

- 7) \exists non-det poly-time TM N s.t. $L = \mathcal{L}(N^{SAT})$
- 8) Let ℓ be s.t. $p_{\ell}(n)$ bounds non-det runtime of N for all oracles
- 9) Note that $L = \mathcal{L}(N^{\mathcal{L}(M^S)})$

Proof of Theorem 1.14 (Continued)

Group A Lecture 3: Sparse Sets and Turing Reductions

Introductio

Polynomial Hierarchy PH Collapse

Topics

Theorem 1.14 Restricted Query Classes Proof Step 1 Step 2

$$V = \{0\#1^{n}\#1^{q} | |S^{\leq n}| \geq q\}$$

$$\bigcup$$

$$\{1\#x\#1^{n}\#1^{q} | (\exists Z \subseteq S^{\leq n}) [|Z| = q; \land x \in \mathcal{L}(N^{\mathcal{L}(M^{Z})})]\}$$

1日日本海壁を使用されます。 第二の8条

•
$$V \in NP$$
 since $S \in NP$

• 1st set (census): will be exploited to compute $|S^{\leq n}|$

• 2nd set: will be used to check whether $x \in L$

Proof of Theorem 1.14 (Continued)

Group A Lecture 3: Sparse Sets and Turing Reductions

Introduction

Polynomial Hierarchy PH Collapse

Topics

Theorem 1.14 Restricted Query Classes Proof **Step 1** Step 2 The following P^{NP}[log n] algorithm accepts L by making O(log n) calls to the NP oracle V, for each input string y

Step 1

- In $O(\log |y|)$ sequential queries to V, compute $|S^{\leq p_k(p_\ell(|y|))}|$
 - queries of the form $0\#1^{p_k(p_\ell(|y|))}\#1^z$
 - vary z as in binary search until we find $|S^{\leq p_k(p_\ell(|y|))}|$
- Since |S^{≤p_k(p_ℓ(|y|))}| is bounded by p_j(p_k(p_ℓ(|y|))), thus O(log |y|) queries are sufficient to find census value
- Let the census value obtained be r

Proof of Theorem 1.14 (Continued)

Group A Lecture 3: Sparse Sets and Turing Reductions

Step 2

Introduction

Polynomial Hierarchy PH Collapse

Topics

Theorem 1.14 Restricted Query Classes Proof Step 1 Step 2 Ask V the query $1 \# y \# 1^{p_k(p_\ell(|y|))} \# 1^r$, and accept if and only if this query $\in V$

- Clearly this is a P^{NP}[log n] algorithm
- Algorithm accepts L
- Since $L \in \Sigma_2^p$ (= NP^{NP}), we have $\Sigma_2^p = P^{NP}[\log n]$.
- Since $P^{NP}[\log n]$ is closed under complementation, we have $\Sigma_2^p = \Pi_2^p$
- Therefore by Theorem (Gold), $PH = \Sigma_2^p = P^{NP}[\log n]$

マヨ 白マ神母 アイボント 手 めめの

THE KARP-LIPTON THEOREM Is there is a sparse NP-Turing-Hard set (3 SESPARSE VTENP TETS) the polynomial hierarchy collapses to NPNP (PH=NPNP) (also congratulations if you did the reading, it is almost impossible)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへの

A LITTE REVIEW The polynomial hierarchy (PH): PH=PUNPUNPNPUNPNPUNPNPUNPNPUNP Note: NPP=NP PENPENP^{NP}ENP^{NP}NP C...

4

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

6 LINESOF INQUIRY How do we show a polynomial hierarchy collapse to NPNP? Notice if we show NPNP=NPNPNP. , all other. inductively higher order polynomial classes will collapse recursively: ... SNPNP = NPNP = NPNP = NPNPNP so NANS=NAND is all we need to show

AVAILABLETOOLS Remember we need to use our sparse set S and the fact that any language in NP Turing reduces to S. Since SAT is in NP, SATEPS So we have a machine M such that SAT = L(M^S) IMPORTANT: Misadeterministic Turing machine that musicippolynomial time Inother words this machine M given an oracle for S is a machine For SAT.

Т

Pause to Ponder 1.15 Show why this "without loss of generality claim" holds.

(Answer sketch for Pause to Ponder 1.15: Given a machine M, let the machines M_1, M_2, \ldots , be as follows. $M_i^A(x)$ will simulate the action of exactly $p_i(|x|)$ steps of the action of $M^A(x)$, and then will halt in an accepting state if $M^A(x)$ halted and accepted within $p_i(|x|)$ steps, and otherwise will reject. Note that since the overhead involved in simulating one step of machine is at most polynomial, for each *i*, there will exist an \widehat{i} such that for every A it holds that M_i^A runs in time at most $p_i(n)$. Furthermore, in each relativized world A in which M^A runs in time at most p_i , it will hold that $L(M^A) = L(M_i^A)$. Relatedly, in our proof, given the machine M such that SAT = $L(M^3)$, we will in light of whatever polynomial-time bound M^S obeys similarly replace M with an appropriate M_j from the list of machines just described.)

▲日 > ▲ ● > ▲ ● > ▲ ● >

11

12 HOW TO POLYNOMIAL ROUNDS WORK? Consider Mix. It's runtime is bounded by PK(14). At each step M can print at most one character/letter. So the largest query M can make to A is one in which it uses all its steps to form the query and submits it offlelast step. So query size is bounded by PK(M).

.

Since M is deterministic and polynomical and SEPACINO, being finite is in P \rightarrow $M^{S^{c}P_{k}(M)} \in P^{P} = P$

Now that we have the main 6 insights, I will walk you through the meat of the formal proof.

Define

8

 $\begin{array}{l} V_0 = \{0\#1^n\#S' \mid (\exists z \in (\Sigma^{\bullet})^{\leq n}) | (\mathrm{a}) \ z \ \text{is not a well-formed formula} \\ \mathrm{and} \ M^{S'}(z) \ \mathrm{accepts}; \ \mathrm{or} \ (\mathrm{b}) \ z \ \text{is a well-formed formula free} \\ \mathrm{variables} \ \mathrm{and} \ \mathrm{either} \ (\mathrm{b}1) \ M^{S'}(z) \ \mathrm{accepts} \ \mathrm{and} \ z \ \not\in \mathrm{SAT} \ \mathrm{or} \\ \mathrm{(b2)} \ M^{S'}(z) \ \mathrm{rejects} \ \mathrm{and} \ z \ \in \mathrm{SAT}; \ \mathrm{or} \ (\mathrm{c}) \ z \ \mathrm{is a well-formed} \\ \mathrm{formula} \ \mathrm{variables} \ z_1, z_2, \ldots \ \mathrm{and} \ \mathrm{it \ is \ not \ the \ case \ that:} \ M^{S'}(z) \\ \mathrm{accepts} \ \mathrm{if \ and \ only \ if} \end{array}$

 $(M^{S'}(z[z_1 = \text{True}]) \text{ accepts } \vee M^{S'}(z[z_1 = \text{False}]) \text{ accepts})]\},$

where, as defined earlier in this chapter, z[...] denotes z with the indicated variables assigned as noted.

・ロト ・母 ・ ・ キャ ・ キャ ・ やくぐ

$$V_1 = \{1 \# S' \# z \mid z \in L(N_2^{L(M^{S'})})\}.$$

$$V = V_0 \bigcup V_1.$$

Step 1 Nondeterministically guess a set $S' \subseteq (\Sigma^{\bullet})^{\leq p_k(p_\ell(p_\ell(|y|)))}$ satisfying $||S'|| \leq p_j(p_\ell(p_\ell(|q|(y|))))$. If $0 \# 1^{p_k(p_\ell(p_\ell(|y|)))} \# S' \in V$ then reject. Otherwise, go to Step 2.

IT

Step 2 Simulate the action of $N_1(y)$ except that, each time $N_1(y)$ makes a query z to its $L(N_2^{SAT})$ oracle, ask instead the query 1#S'#z to V.