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The Self-
Reducibility

_ Tally Set
Technique
Group/A A set T is a tally set exactly if T C 1*

Theorem 1.2

If there is a tally set that is <%,-hard for NP, then P=NP.

Corollary 1.3

If there is a tally set that is NP-complete, then P = NP.

Theorem 1.2

m Let T be a tally set that is <h,-hard. Then the
NP-complete set SAT <h T.

m Goal: We want to use SAT <k, T to proof that SAT can
be decided in polynomial time. Thus, SAT € P, then P =
NP



Tree Pruning For SAT Problem
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Layer 1 F[Vi=True] F[vi=False]

SN N

Layer 2 F[Vi=True, F[Vi=True, F[Vi=False, F[vi=False,
Va=True] Va=False] Va=True]  va=False]

NV

m F[v;=True| denotes the resulting boolean formula when we
assign True to variable v;

Group A

Theorem 1.2

m Boolean formula F is satisfiable if and only if F[v;=True]
is satisfiable or F[v;=False] is satisfiable.

m Find the satisfiable assignment by traversing the tree. If
the traverse can be done in polynomial time, then
SAT € P.



Tree Pruning For SAT Problem
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Layer 1 F[V1=True] F[Vi=False]

SN N

Layer 2 F[vi=True, F[Vi=True, F[vi=False, F[Vi=False,
va=True] V2=False] Va=True]  va=False]

STRNATE

m Traverse is done layer by layer. The number of nodes in it
layer is 2.

Theorem 1.2

m If during the traverse we can ignore some redundant nodes
(tree pruning) so that for each layer we only traverse
polynomial number of nodes, then the entire traverse is
polynomial.



Example: Tree Pruning For SAT Problem
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Group A

(Rabbit says) What nodes/formulas are redundant?

If a formula is not satisfiable, then all of its descendants
are not satisfiable. Thus, this formula is redundant.

Theorem 1.2

m If a formula is “identical” to another formula, then it is
redundant.

m If fi is satisfiable if and only if £ is satisfiable, then f; and
f> is identical.

(Rabbit says) How do we identify the redundancy?
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\
F[vi=False,
va=False]

F[vVi=False,
V2=True]

y
Layer 2 F[vVi=True, : .
Vo= True]
F[vi=False,

\
F[Vi=False,
Ve=False,

Theorem 1.2

/ \
/ \
/ \
/ \
4 !
Layerm F[Vi=True F[Vi=True,
va=True, Va=True, Va2=False,
Vm=False] Vm=True] Vm=False]

\'m:True]



|dentify Redundancy

The Self-
Reducibility
Technique

Let g be the deterministic polynomial-time function such

S that Vf € SAT if and only if g(f) € T, where T is the
<k -hard Tally set.
Theorem 1.2 m Recall that T C 1%, If g(f) ¢ 1%, then f is not satisfiable.

m For any two boolean formula f # h, and g(f) = g(h),
f € SAT <= hec SAT.

feSAT < g(f)e T

I
he SAT < g(h)e T

m (Rabbit says) How do we make sure the number of
remaining nodes/formulas in each layer is polynomial?



Polynomial Bound

Rzgjcisbeilliy m The length of the output of a polynomial-time function is

Technique .
b bounded by some polynomial

m Let g(x) be a a polynomial-time function, there exists a
integer k such that Vx, |g(x)| < |x|* + k

m If g(x) € 1%, then the longest possible output is 1Ixl k.
Thus, the total number of possible outputs of g(x) is
x|k + k +1.

Given that |g(x)| < |x|¥ 4+ k and g(x) € 1*, what are the
possible outputs of g(x)?

Group A

Theorem 1.2

€,1,11,111,1111,11111,...,11...111
—_—
Ix|k+k



Polynomial Bound
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Group A

m Recall that for any two boolean formula f, h, if

Theorem 1.2 g(f) = g(h), then f and g are “identical”. Similarly, if
g(f) # g(h), we say f and g are “distinct”.

m Recall that the total number of possible outputs of g(x) is
Ix|% + k + 1.

m Let n be the size of formulas on the it" layer. Thus,
among the 2/ formulas in this layer, at most n* + k + 1 of
them are “distinct”.
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Theorem 1.2
Layer 2
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/ \
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Layerm F[Vi=True,  F[Vi=True, F[vi=False, F[Vi=False,
va=True, Va=True, va=False, va=False,
Vm=False] Vm=True] Vm=False]

Vm=True]
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Group A Layer i-1 I - h / \

Fy Fs Fu F

Fiyt v Fal
14 A 14 Al 4 Al 14 Al
Layeri  F[v; = True] Fifu: = False] Fyy>®Qe| Falvi = False Fi[Tue] Filvi = False] Fiialvi = True] Fry[B>eEalse]
Theorem 1.2
g(Fi[vi = True) g(Fi[v; = False]) g(Falv; = True]) g(Fy[v; = False]) g(Fi[vi = True]) g(Filv; = False]) g(Fis1[vi = True]) g(Fyi1[vi = False])

m The input of layer i are the output formulas from layer
i—1.

m Expand each formula by assigning True and False value to
v; (Get the corresponding formulas in layer 7).

m For each expanded formula f in layer i, calculate g(f). If
g(f) ¢ 1*, remove f. If f € 1* but exists expanded
formula h # f such that g(f) = g(h), remove f.

m Output the resulting formulas in layer i.

-

Fa
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Group A

Input C = {Fl, e, F/}
Step 1: Replace v; by True or False to get

Theorem 1.2

C = {Filvi = True], Fo[v; = Truel, ..., Fi[vi = True],
Fi[v; = False], F2[v; = False], ..., Fj[v; = False]}
Step2: C' =0
Step 3: For each f in C do

Compute g(f)
If g(f) € 1* and for no formula h € C’ does g(f) = g(h), then add f to C.

Output of stage i : C = C’

Stage m+1

Input is C which is now a variable-free formula collection. F is satisfiable if an
element in C is true.
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Theorem 1.2

Questions?
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Theorem 1.4

If there is a sparse set that is <£,-hard for coNP, then P=NP.

Corollary 1.5

If there is a sparse coNP-complete set, then P=NP.

Theorem 1.4



Observation
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Group A

If there is a sparse set that is </,-hard for coNP, then
P=NP.

Definition
A set S is sparse if it contains at most polynomially many
elements at each length, i.e.,

(3 polynomial p)(Vn)[|{x|x € S A |x| = n}|| < p(n).

A language A is coNP-hard, if VL € coNP, L <f, A.



Observation
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Group A

: Utilize Tree-pruning trick and the definition of coNP-hard to
construct a polynomial-time algorithm for SAT. (SAT is
NP-complete)

Explanation

m VL € NP, L <P, SAT

m SAT solved in polynomial-time by deterministic Turing
machine (DTM).

m < All NP problems solved in polynomial-time by DTM.
B & P=NP.
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Let S be a sparse set and also coNP-hard.

Theorem 1.4 Definition

V¢, pe(n) denotes the polynomial n® 4 £.

|S<"|| denotes the number of strings with length less than n in

S.
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vn, |S="I| < pa(n).

m S is sparse = |[{x|x € S A |x| = n}|| < p(n)

m We can obtain the upper bound ppmax = max, p(n), where
Pmax is bounded by polynomial.

u “SSHH = 27:0 p(i) < 27:0 Pmax = (n + 1)pmax' which is
bounded by polynomial.

O]



Observation
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Technique Recall

Sap £ SAT € NP = SAT € coNP and SAT € coNP = SAT <P, S,
since S € coNP-hard.

Let g denote the reduction function SAT <%, S.

Corollary

Vx, [8()] < pr([x])-

m Function g is computed by a DTM

m a DTM outputs at most 1 symbol in one step

= |g(x)| is bounded by polynomial length, named pi(|x]). [
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Corollary

Since Vn, ||S="|| < pg(n) and Vx, |g(x)| < pi(|x|), given g
and S,
|S=IECN|| < pg(pr(|x]))-

Rabbit: Interesting! =1l js a set with a polynomial number
of elements.



Deterministic polynomial-time algorithm for SAT
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Boolean formula Flvi, va, ..., |, w.l.o.g, m > 1.

m Collection of boolean formulas, C' = {F}
m Pass C’ to Stage 1.

Theorem 1.4

Rabbit: That's pretty easy. | can do it.



Deterministic polynomial-time algorithm for SAT
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Group A level 0

level 1
Theorem 1.4
Flvy = Flvy = Flvy = Flvy =
True, vy = True, vop = False, vo = False, vp = level 2
True] False] True] False]
Flov3 =[Flovg =[Fl..v3 =[Fl...vs =[Fl.,v3 =[FL.. vy =[FL.. w3 =[FL...va =] 5
True] False] True] False] True] False] True] False] eve
T T T T T T T T
1 1 1 1 1 1 1 1
N h'd h'd N h'd h'd N h'd
Fl.. Fl.. oo Floooyvi = FL..., vy =| F[..., v; Fl.. FL.. T leveli
True], A True], I True], oo | True], ... | True], ... | True], ... True], A True], A

Rabbit: If we keep this procedure to Stage m, the number of
strings in each level will grow larger and larger!!!



Deterministic polynomial-time algorithm for SAT
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A collection of formulas: Hi, we are from Stage i-1.

Stage i

Step 1: C = {F[v; = True], F2[vi = True], ..., Folvi =
True], F1[vi = False], Fz[v; = False], ..., Fy[vi = False]}.
Step 2: Set C' = 0.

Rabbit: lol, | can do it but where is my carrot?



Deterministic polynomial-time algorithm for SAT

The _Se_lf»
E
S A Step 3: For each formula f in C do:
1 Compute g(f).

If for no formula h € C’ does g(f) = g(h), then add f to

Theorem 1.4

C/
level 0
level 1
Flv, = Flv, =
False, vo = False, vy = level 2
True] False]
' 4 Y
Cva =|FLvg = [P ] AL s =
True] False] UL False] level 3
T T 1 T

v
(Floosp o = < FHlooon G = level i
True], . . . o True], . . .




Deterministic polynomial-time algorithm for SAT

The Self- 5
Reducibility Stage i

Technique

Step 4: If C’ contains at least py(pk(|F|)) + 1 elements, stop
and immediately declare that F € SAT.

Theorem 1.4 /\

d \Y
Boolean T
Formula

Group A

{0,2}*

SAT — S

Vv

g(x)

Figure: Reduction Mapping



Deterministic polynomial-time algorithm for SAT
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Group A Stage |

Step 4: If C’ contains at least py(pk(|F|)) + 1 elements, stop
and immediately declare that F € SAT.

Explanation

m Only py(px(|F|)) strings are in S<P«(IFI),

| Ihere is at least one formula named H maps to a string in
S,ie, g(H)¢S.

m Since g is the reduction function from SAT to S, H is
satisfiable. It imply that F is satisfiable.




Deterministic polynomial-time algorithm for SAT

The Self-
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Theorem 1.4 Stage |

End Stage i: C’ is the collection that gets passed on to Stage
i+ 1.



Deterministic polynomial-time algorithm for SAT
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Stage m+1

If some member of the formula collection output by Stage m
evaluates to being true, F € SAT, and otherwise F ¢ SAT.

Rabbit: Oh, my carrot! The proof is done here. Wait, rabbit!




DI

The _Se_lf—

S
Group A Obviously, this algorithm is computed by deterministic Turing
machine.

m Step 4 never met
Upper bound number of strings pmax = max p4(pk(|F|))-
= time for whole algorithm t < mppax

Theorem 1.4

m Step 4 invoked
This algorithm stops early before Stage m—+1.
= The algorithm is polynomial-time.

We construct a deterministic polynomial-time algorithm for
SAT.

Rabbit: If | find a carrot like this set S, | will buy a million
carrots (plus 9 millions).
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Theorem 1.4

Thank You!
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Why Study Sparseness?

o (losely related to the p-isomorphism conjecture:

Lemma 5.1 Let L, and L, be two p-ismorphic languages. Then two polynomials
p1 and po exist such that, for any n,

e, (n) Sen(mn))  and  en,(n) < e (pa(n)).

e In other words, the census functions are polynomially related.

e Since the census function for SAT is known to be exponential (Bov-Cre p. 83),
if a sparse NP-complete language L is found, then the census function for L
cannot be polynomially related to the census function for SAT. So, the p-
isomorphism conjecture falls.



Difficulty of Finding a Sparse NP-C Language

e Due to a result by Mahaney:

Theorem 5.7 If a sparse NP-complete language exists, then P = NP.

o And thus, finding such an NP-complete language means proving that P=NP,
which is widely believed to be false.
o But why does Theorem 5.7 hold?
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Theorem 5.6

Theorem 5.6 If an NP-complete sparse lang sts such that its census func-

tion is computable in polynomial time, then P = NP. census function ¢y, is said

to be computable in polynomial time if a Turing transduce S h reads
input and computes cg(n) in polynomial time.)
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Complement of S is in NP

begin {input: x}

% = |k
k = cs(n);
guess Y1, ..., Y in set of k-tuples of distinct words

each of which has length, at most, n;
{check whether the guessed k-tuple coincides with S<,}
for i =1 to k do
if NT'(y;) rejects then reject;
{check if z € S<n}
for i =1 to k do
if y; = = then reject;
accept;
end.

Further, the complement of SAT reduces to S.
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Satisfiability Trees and Tree Pruning

(21 Va2V =rs) A (m@2) A (-2 V 23)

-Tl:t/\-Tl:f
/

(mx2) A (mwp V 23) (w2 V —w3) A (mo) A (—x2 V 23)
T2=1 zo=f T2=1 zs=f
false true false (—3)

1‘3=N:f

false true




Satisfiability Trees and Tree Pruning

e Since the complement of SAT reduces to S by some function f, we can use f as a
pruning function.

o [fyisanode in the satisfiability tree and f(y) is in S, then we know that y is
not satisfiable, and we can ignore y’s children in the tree.
It is difficult to determine if f(y) is in S directly since S is NP-C.
To solve this, we build a list of elements in S as our tree pruning algorithm
runs, which we can query.
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SATisin P

function sat(y): Boolean;
begin
if y = true then sat := true;
if f(y) € list then saf := false
else
begin {input: =} {main program} hEgiff
list = {f(false)}: (o
if sat(x) then accept else reject; Le;';‘;t(yﬂ) A -sat(z) then
end. {if both yy and y; are not satisfiable
then y is not satisfiable}
list = listU{f(y)}:
sat = false;
end
else sat := true;

end;
end;



Mahaney’s Theorem

Theorem 5.7 If a sparse NP-complete language exists, then P = NP.
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Mahaney’s Theorem

e We have shown that we can prove P = NP if the sparse NP-C set
has a poly-time computable census function.
Can we still do it if we don’t have this assumption?

e Yes, and it will require “guessing” the correct value of the census
function.



Pseudo-complement of S: (PC(S))

Define PC(S) as the set of triples <x,k,0°n> accepted by this machine:

begin {input: z,k, 07}
if |z| > n Vv k > p(n) then reject;
guess yy,..., Y in set of k-tuples of distinct words
each of which is of length, at most, n;
for i =1to k do
if NT'(y;) rejects then reject;
for i =1 to k do
if y; = = then reject;
accept;
end.

Note that if |x] <= n and k = c¢_s(n), then <x,k,0"n> is in the set if and only if x
is in S complement.
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Constructing a good pruning function

Before, we used a reduction from the complement of SAT to S. This time we do
the exact same thing, with a new reduction.

First, let h be a reduction from SAT to S, and g be a reduction from PC(S) to
S.

Let p_h and p_g limit the length of h and g.

Now, suppose that x, the string we want to determine is satisfiable or not, is of
length n. .
Define F*(y) = g(h(y), es(pn(n)),0Prt)

Claim: F*(y) is a reduction from the complement of SAT to S.
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A set of pruning functions

For each n and for each k <= p(p_h(n)), where p is a polynomial bounding the
census function for S:

Define f, «(y) = g(h(y), k, 0°™).

These are all poly-time computable when |y| <=n

Note that F*(y) = Ul( ) (f—:'h fﬂﬂ Dphl'n:lj = fn cslfpﬁ{n”(.y)

So, F* is among this set of functlons and it is a poly-time reduction from the
complement of SAT to S, thus it is a valid pruning function.

The problem: we do not know the census function, so we cannot compute F*(y).



A set of pruning functions

Observation: ¢, (pp(n)) < pl(pp(n))
Solution idea: On input x of size n, for all values of k from 0 to pl:p;;[ﬁ-n , try

the tree-pruning algorithm with pruning function fn k

One of these k’s will work.

Problem: we are not guaranteed that the tree-pruning algorithm will run in poly
time with every choice of pruning function.
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Properties of the correct pruning function F*

e Observation: if k = c¢_s(p_h(n)), we have that
| {h(y), k, 0" | = 2pp(n) + O[log(p(pn(n)))]

o Thus, there is an n_0 such that for alln >=n_0,

| (hly), k.07 | < 2piy(n) + plp(n)

e This means that the list created by the tree-pruning algorithm will be at most

P(pg[2pn(n) + plpn(n))])



Properties of the correct pruning function F*

e So, we know from the poly-bound proof of the tree-pruning function, that the
algorithm visits at most

2[||p(pg [2pa(n) + p(pa(n))]) + |z| — 1]

Nodes, which is polynomial in |x]|.

e Further, if the amount of nodes explored exceeds this value, we know we have
chosen the wrong k.
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SATisin P

begin {input: =}
for k = 0 to p(pn(|=])) do
begin
execute the tree-visiting algorithm described in the
proof of Theorem 5.6 using f|,, as a pruning function
and visiting, at most, 2[|z|p(p, [‘.Zp;,(n) +p(p,,(n))]) +|z| - 1] inner nodes;
if the algorithm accepts then accept;
end;
reject;
end.
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Introduction

Group A
Lecture 3:
Sparse Sets

and Turing m We've seen: if a sparse set is NP-hard or NP-complete
Reductions w.r.t many-one reductions, then P = NP

trodction m Today we investigate whether any sparse set can be
NP-hard or NP-complete w.r.t. Turing reductions
m weaker assumption (compared to many-one
reductions)

m Open Question: do these Turing reduction based
hypotheses imply that P = NP?

m We can show that the Polynomial Hierarchy collapses,
given these assumptions hold

m Intuitively, PH collapses when all polynomial classes
above a certain order are shown to be equal
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Polynomial
Hierarchy

The Polynomial Hierarchy
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PH Collapse

Polynomial Hierarchy Collapse

PH=%"

NP
— P U NP U NPNP U NPNPY  npNPY

Theorem (Gold) !
If £? = N7, then PH = X

if NP = coNP, then PH = NP

m An implication: any problem, that can be solved using an
NP machine with access to an NP oracle, can also be
solved with a non-det poly-time TM with no access to
oracle

http://www.cs.cornell.edu/courses/cs6810/2009sp/scribe/lectures. pdf
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Topics

m Can sparse sets be NP-complete or NP-hard w.r.t Turing
reductions? What are the implications?

Theorem 1.14 [Hemaspaandra-Ogihara]

If NP has sparse Turing-complete sets, then the Polynomial
Hierarchy collapses to PNP[log n]

Theorem 1.15 [Hem-Ogi] (also called Karp-Lipton Thm)

If NP has sparse Turing-hard sets, then the Polynomial
Hierarchy collapses to NPNP
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Restricted Query
Classes

2

Bounded /restricted query classes

m Motivation: add new classes to PH to capture problems
that can be solved by restricting the number of queries
made to oracle to O(log n) (instead of polynomial)

E.g. Odd colorability in graphs

m it is in PNP and is NP-hard, but not known whether it is
in NP

m but it can be solved in PMP[log n] by using a PNP machine
making only O(log n) (rather than polynomially many)
queries to an NP oracle.

>Wagner, Klaus W. “Bounded query classes.” SIAM Journal on
Computing 19.5 (1990): 833-846.
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Proof

Theorem 1.14

Theorem 1.14

If NP has sparse NP <%.-complete sets, then

PH = PNP[log n]

Proof Strategy

m proof uses “census” approach

m For a sparse set, the census approach is to first obtain the
exact number of elements in the set up to some given
length, and then exploit that information.
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Proof

Proof of Theorem 1.14

9)

Let S be a sparse set s.t. S is g‘} —complete for NP

For any ¢, let py(n) = n® +¢

Let j be s.t. (Vn)[|S="| < p;j(n)]

Let M be deterministic poly-time TM s.t. SAT = £(M?)
m M exists since S is Turing-hard for NP

Let k be s.t. px(n) bounds runtime of M regardless of M's
oracle

Let L be an arbitrary set in X5 (i.e. NPNF)
m Since SAT is NP-complete, we have ¥5 = NP3AT
3 non-det poly-time TM N s.t. L = L(N>4T)

Let £ be s.t. py(n) bounds non-det runtime of N for all
oracles

Note that L = £(NE(M%))



Proof of Theorem 1.14 (Continued)

Group A
Lecture 3:
Sparse Sets
and Turing
Reductions

Proof

V = {0#1"#19 | |S="|>q}
U
{1#x#17#19 | (3Z C S=") [|Z] = q; A x € LINFM)]
m V e NP since S € NP

m 1st set (census): will be exploited to compute |S="|
m 2nd set: will be used to check whether x € L



Proof of Theorem 1.14 (Continued)

Group A

Lecture 3:
Sparse Sets
and Turing
Reductions

Step 1

m The following PNP[log n] algorithm accepts L by making
O(log n) calls to the NP oracle V, for each input string y

Step 1

m In O(log|y|) sequential queries to V/, compute
|S=Pelpe(ly])))|

m queries of the form 0#:1P«(Pe(lyD) 412
m vary z as in binary search until we find |S=P«(Pe(lyD))|

m Since |S=P«(Pe(l¥D))| is bounded by p;(px(pe(|yl))). thus
O(log |y|) queries are sufficient to find census value

m Let the census value obtained be r



Proof of Theorem 1.14 (Continued)

Group A
Lecture 3:
Sparse Sets
and Turing
Reductions

Step 2

Ask V the query 14y #1Px(Pe(YD)) 417 and accept if and only if

this query € V
m Clearly this is a PNP[log n] algorithm
m Algorithm accepts L
m Since L € 5 (= NPP), we have X5 = PVP[log n].

m Since P"P[log n] is closed under complementation, we
have 5 =15

m Therefore by Theorem (Gold), PH = ¥5 = PNP]log n]

O]
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Pause to Ponder 1.15 Show why this “without loss of generality claim”
holds.

(Answer sketch for Pause to Ponder 1.15: Given a machine M, let the
machines My, M, ..., be as follows. M{(z) will simulate the action of exactly
pi(|z|) steps of the action of M4(z), and then will halt in an accepting state
if MA(z) halted and accepted within p;(|z|) steps, and otherwise will reject.
Note that since the overhead involved in simulating one step of machine is at
most polynomial, for each i, there will exist an 1 such that for every A it holds
that M runs in time at most p;(n). Furthermore, in each relativized world
A in which M runs in time at most p;, it will hold that L(M4) = L(M{").
Relatedly, in our proof, given the machine M such that SAT = L(M?®), we
will in light of whatever polynomial-time bound M S obeys similarly replace
M with an appropriate M; from the list of machines just described.)
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Define

Vo = {0#1"#5"| (3z € (£*)<")[(a) 2 is not a well-formed formula
and MS'(z) accepts; or (b) z is a well-formed formula free
variables and either (bl) M5 (2) accepts and z ¢ SAT or
(b2) MS'(2) rejects and z € SAT; or (c) z is a well-formed
formula variables zy, z3,... and it is not the case that: Ms'(z)
accepts if and only if

(M5 (2[z) = True) accepts V Msl(z[zl = False]) accepts)] },
where, as defined earlier in this chapter, z[...] denotes z with
the indicated variables assigned as noted.

Vi = {148 #2 | z € LI(NEMT)))

v=v,JW.




Step 1 Nondeterministically guess a set S’ C (£*)SPx(p(pe(IvD)) satisfying
[187]] < ps(pr(pe(pe(lyl)))- 1 0#1““"“’"'”””#5’ € V then reject. Other-
wise, go to Step 2.

Step 2 Simulate the action of Ny (y) except that, each time Ny (y) makes a
query z to its L(N5AT) oracle, ask instead the query 1#8'#z to V.
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