
The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Group A Lecture 1:
The Self-Reducibility Technique

Adam Scrivener, Haofu Liao, Nabil Hossain, Shupeng Gui,
Thomas Lindstorm-Vautrin

Department of Computer Science
University of Rochester

November 2, 2015

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Table of Contents

1 Tree Pruning Technique
Theorem 1.2
Theorem 1.4

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Theorem 1.2

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Theorem 1.2

Tally Set

A set T is a tally set exactly if T ⊆ 1∗

Theorem 1.2

If there is a tally set that is ≤p
m-hard for NP, then P=NP.

Corollary 1.3

If there is a tally set that is NP-complete, then P = NP.

Let T be a tally set that is ≤p
m-hard. Then the

NP-complete set SAT ≤p
m T .

Goal: We want to use SAT ≤p
m T to proof that SAT can

be decided in polynomial time. Thus, SAT ∈ P, then P =
NP

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Tree Pruning For SAT Problem

F

F[v1v1=True] F[v1v1=False]

F[v1v1=True,
v2v2=True]

F[v1v1=True,
v2v2=False]

F[v1v1=False,
 v2v2=True]

F[v1v1=False,
v2v2=False]

… … … …

Layer 1

Layer 2

F[vi=True] denotes the resulting boolean formula when we
assign True to variable vi

Boolean formula F is satisfiable if and only if F[v1=True]
is satisfiable or F[v1=False] is satisfiable.

Find the satisfiable assignment by traversing the tree. If
the traverse can be done in polynomial time, then
SAT ∈ P.

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Tree Pruning For SAT Problem

F

F[v1v1=True] F[v1v1=False]

F[v1v1=True,
v2v2=True]

F[v1v1=True,
v2v2=False]

F[v1v1=False,
 v2v2=True]

F[v1v1=False,
v2v2=False]

… … … …

Layer 1

Layer 2

Traverse is done layer by layer. The number of nodes in i th

layer is 2i .

If during the traverse we can ignore some redundant nodes
(tree pruning) so that for each layer we only traverse
polynomial number of nodes, then the entire traverse is
polynomial.

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Example: Tree Pruning For SAT Problem

(Rabbit says) What nodes/formulas are redundant?

If a formula is not satisfiable, then all of its descendants
are not satisfiable. Thus, this formula is redundant.

If a formula is “identical” to another formula, then it is
redundant.

If f1 is satisfiable if and only if f2 is satisfiable, then f1 and
f2 is identical.

(Rabbit says) How do we identify the redundancy?

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Tree Pruning For SAT Problem

F

F[v1v1=True] F[v1v1=False]

F[v1v1=True,
 v2v2=True]

F[v1v1=True,
v2v2=False]

F[v1v1=False,
v2v2=True]

F[v1v1=False,
 v2v2=False]

… … … …

F[v1v1=True,
v2v2=True,

 …,
vmvm=True]

F[v1v1=True,
 v2v2=True,

 …,
vmvm=False]

… …
F[v1v1=False,
v2v2=False,

 …,
vmvm=True]

F[v1v1=False,
v2v2=False,

 …,
vmvm=False]

Layer 1

Layer 2

Layer m

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Identify Redundancy

Let g be the deterministic polynomial-time function such
that ∀f ∈ SAT if and only if g(f) ∈ T , where T is the
≤p

m-hard Tally set.

Recall that T ⊆ 1∗. If g(f) /∈ 1∗, then f is not satisfiable.

For any two boolean formula f 6= h, and g(f) = g(h),
f ∈ SAT ⇐⇒ h ∈ SAT .

f ∈ SAT ⇐⇒ g(f) ∈ T

‖
h ∈ SAT ⇐⇒ g(h) ∈ T

(Rabbit says) How do we make sure the number of
remaining nodes/formulas in each layer is polynomial?

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Polynomial Bound

The length of the output of a polynomial-time function is
bounded by some polynomial

Let g(x) be a a polynomial-time function, there exists a
integer k such that ∀x , |g(x)| ≤ |x |k + k

If g(x) ∈ 1∗, then the longest possible output is 1|x |
k+k .

Thus, the total number of possible outputs of g(x) is
|x |k + k + 1.

Example

Given that |g(x)| ≤ |x |k + k and g(x) ∈ 1∗, what are the
possible outputs of g(x)?

ε, 1, 11, 111, 1111, 11111, . . . , 11 . . . 111︸ ︷︷ ︸
|x |k+k

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Polynomial Bound

Recall that for any two boolean formula f , h, if
g(f) = g(h), then f and g are “identical”. Similarly, if
g(f) 6= g(h), we say f and g are “distinct”.

Recall that the total number of possible outputs of g(x) is
|x |k + k + 1.

Let n be the size of formulas on the i th layer. Thus,
among the 2i formulas in this layer, at most nk + k + 1 of
them are “distinct”.

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Proof Sketch

F

F[v1v1=True] F[v1v1=False]

F[v1v1=True,
 v2v2=True]

F[v1v1=True,
v2v2=False]

F[v1v1=False,
v2v2=True]

F[v1v1=False,
 v2v2=False]

… … … …

F[v1v1=True,
v2v2=True,

 …,
vmvm=True]

F[v1v1=True,
 v2v2=True,

 …,
vmvm=False]

… …
F[v1v1=False,
v2v2=False,

 …,
vmvm=True]

F[v1v1=False,
v2v2=False,

 …,
vmvm=False]

Layer 1

Layer 2

Layer m

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Proof Sketch

Layer i-1

… … …

F1F1 F2F2 FkFk Fk+1Fk+1F3F3 F4F4 F2i�1F2i�1 F2iF2i
… …

F1[vi = True]F1[vi = True] F1[vi = False]F1[vi = False] F2[vi = True]F2[vi = True] F2[vi = False]F2[vi = False] Fk[vi = True]Fk[vi = True] Fk[vi = False]Fk[vi = False] Fk+1[vi = True]Fk+1[vi = True] Fk+1[vi = False]Fk+1[vi = False]

…

Layer i

g(F1[vi = True])g(F1[vi = True]) g(F1[vi = False])g(F1[vi = False]) g(F2[vi = True])g(F2[vi = True]) g(F2[vi = False])g(F2[vi = False]) g(Fk[vi = True])g(Fk[vi = True]) g(Fk[vi = False])g(Fk[vi = False]) g(Fk+1[vi = True])g(Fk+1[vi = True]) g(Fk+1[vi = False])g(Fk+1[vi = False])

The input of layer i are the output formulas from layer
i − 1.

Expand each formula by assigning True and False value to
vi (Get the corresponding formulas in layer i).

For each expanded formula f in layer i , calculate g(f). If
g(f) /∈ 1∗, remove f . If f ∈ 1∗ but exists expanded
formula h 6= f such that g(f) = g(h), remove f .

Output the resulting formulas in layer i .

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Proof

Stage 0

Outputs C=F where F is the original formula

Stage i

Input C = {F1, . . . ,Fl}
Step 1: Replace vi by True or False to get

C = {F1[vi = True],F2[vi = True], . . . ,Fl [vi = True],

F1[vi = False],F2[vi = False], . . . ,Fl [vi = False]}

Step 2: C ′ = ∅
Step 3: For each f in C do

1 Compute g(f)

2 If g(f) ∈ 1∗ and for no formula h ∈ C ′ does g(f) = g(h), then add f to C ′.

Output of stage i : C = C ′

Stage m+1

Input is C which is now a variable-free formula collection. F is satisfiable if an
element in C is true.

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Questions?

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Theorem 1.4

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Problem

Theorem 1.4

If there is a sparse set that is ≤p
m-hard for coNP, then P=NP.

Corollary 1.5

If there is a sparse coNP-complete set, then P=NP.

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Observation

Theorem 1.4

If there is a sparse set that is ≤p
m-hard for coNP, then

P=NP.

Definition

A set S is sparse if it contains at most polynomially many
elements at each length, i.e.,

(∃ polynomial p)(∀n)[‖{x |x ∈ S ∧ |x | = n}‖ ≤ p(n)].

Definition

A language A is coNP-hard, if ∀L ∈ coNP, L ≤p
m A.

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Observation

Idea

Utilize Tree-pruning trick and the definition of coNP-hard to
construct a polynomial-time algorithm for SAT . (SAT is
NP-complete)

Explanation

∀L ∈ NP, L ≤p
m SAT

SAT solved in polynomial-time by deterministic Turing
machine (DTM).

⇔ All NP problems solved in polynomial-time by DTM.

⇔ P = NP.

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Observation

Let S be a sparse set and also coNP-hard.

Definition

∀`, p`(n) denotes the polynomial n` + `.

Definition

‖S≤n‖ denotes the number of strings with length less than n in
S .

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Observation

Corollary

∀n, ‖S≤n‖ ≤ pd(n).

Proof.

S is sparse ⇒ ‖{x |x ∈ S ∧ |x | = n}‖ ≤ p(n)

We can obtain the upper bound pmax = maxn p(n), where
pmax is bounded by polynomial.

‖S≤n‖ =
∑n

i=0 p(i) ≤∑n
i=0 pmax = (n + 1)pmax , which is

bounded by polynomial.

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Observation

Recall

SAT ∈ NP ⇒ SAT ∈ coNP and SAT ∈ coNP ⇒ SAT ≤p
m S ,

since S ∈ coNP-hard.

Let g denote the reduction function SAT ≤p
m S .

Corollary

∀x , |g(x)| ≤ pk(|x |).

Proof.

Function g is computed by a DTM

a DTM outputs at most 1 symbol in one step

⇒ |g(x)| is bounded by polynomial length, named pk(|x |).

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Observation

Corollary

Since ∀n, ‖S≤n‖ ≤ pd(n) and ∀x , |g(x)| ≤ pk(|x |), given g
and S ,

‖S≤|g(x)|‖ ≤ pd(pk(|x |)).

Rabbit: Interesting! S≤|g(x)| is a set with a polynomial number
of elements.

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Deterministic polynomial-time algorithm for SAT

Input

Boolean formula F [v1, v2, ..., vm], w.l.o.g, m ≥ 1.

Stage 0

Collection of boolean formulas, C ′ = {F}
Pass C ′ to Stage 1.

Rabbit: That’s pretty easy. I can do it.

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Deterministic polynomial-time algorithm for SAT

F

F [v1 =
True]

F [v1 =
True, v2 =

True]

F [..., v3 =
True]

F [..., vi =

True], . . .

F [..., v3 =
False]

F [..., vi =

True], . . .

F [v1 =
True, v2 =

False]

F [..., v3 =
True]

F [..., vi =

True], . . .

F [..., v3 =
False]

F [..., vi =

True], . . .

F [v1 =
False]

F [v1 =
False, v2 =

True]

F [..., v3 =
True]

F [..., vi =

True], . . .

F [..., v3 =
False]

F [..., vi =

True], . . .

F [v1 =
False, v2 =

False]

F [..., v3 =
True]

F [..., vi =

True], . . .

F [..., v3 =
False]

F [..., vi =

True], . . .

level 0

level 1

level 2

level 3

level i

Rabbit: If we keep this procedure to Stage m, the number of
strings in each level will grow larger and larger!!!

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Deterministic polynomial-time algorithm for SAT

A collection of formulas: Hi, we are from Stage i-1.

Stage i

Step 1: C = {F1[vi = True],F2[vi = True], ...,F`[vi =
True],F1[vi = False],F2[vi = False], ...,F`[vi = False]}.
Step 2: Set C′ = ∅.

Rabbit: lol, I can do it but where is my carrot?

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Deterministic polynomial-time algorithm for SAT

Stage i

Step 3: For each formula f in C do:

1 Compute g(f).

2 If for no formula h ∈ C′ does g(f) = g(h), then add f to
C′

F

F [v1 =
True]

F [v1 =
True, v2 =

True]

F [..., v3 =
True]

F [..., vi =

True], . . .

F [..., v3 =
False]

F [..., vi =

True], . . .

F [v1 =
True, v2 =

False]

F [..., v3 =
True]

F [..., vi =

True], . . .

F [..., v3 =
False]

F [..., vi =

True], . . .

F [v1 =
False]

F [v1 =
False, v2 =

True]

F [..., v3 =
True]

F [..., vi =

True], . . .

F [..., v3 =
False]

F [..., vi =

True], . . .

F [v1 =
False, v2 =

False]

F [..., v3 =
True]

F [..., vi =

True], . . .

F [..., v3 =
False]

F [..., vi =

True], . . .

level 0

level 1

level 2

level 3

level i

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Deterministic polynomial-time algorithm for SAT

Stage i

Step 4: If C ′ contains at least pd(pk(|F |)) + 1 elements, stop
and immediately declare that F ∈ SAT .

SAT

Boolean
Formula

{0,1}*

S

 g(x)

Figure: Reduction Mapping

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Deterministic polynomial-time algorithm for SAT

Stage i

Step 4: If C ′ contains at least pd(pk(|F |)) + 1 elements, stop
and immediately declare that F ∈ SAT .

Explanation

Only pd(pk(|F |)) strings are in S≤pk (|F |).

There is at least one formula named H maps to a string in
S , i.e., g(H) /∈ S .

Since g is the reduction function from SAT to S , H is
satisfiable. It imply that F is satisfiable.

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Deterministic polynomial-time algorithm for SAT

Stage i

End Stage i: C′ is the collection that gets passed on to Stage
i + 1.

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Deterministic polynomial-time algorithm for SAT

Stage m+1

If some member of the formula collection output by Stage m
evaluates to being true, F ∈ SAT , and otherwise F /∈ SAT .

Rabbit: Oh, my carrot! The proof is done here. Wait, rabbit!

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Discuss

Comment

Obviously, this algorithm is computed by deterministic Turing
machine.

Step 4 never met
Upper bound number of strings pmax = max pd(pk(|F |)).
⇒ time for whole algorithm t ≤ mpmax

Step 4 invoked
This algorithm stops early before Stage m+1.
⇒ The algorithm is polynomial-time.

We construct a deterministic polynomial-time algorithm for
SAT.

Rabbit: If I find a carrot like this set S , I will buy a million
carrots (plus 9 millions).

The Self-
Reducibility
Technique

Group A

Tree Pruning
Technique

Theorem 1.2

Theorem 1.4

Thank You!

Group A Lecture 2:
Mahaney’s Theorem

Adam Scrivener, Haofu Liao, Nabil Hossain, Shupeng Gui,
Thomas Lindstorm-Vautrin

Why Study Sparseness?
● Closely related to the p-isomorphism conjecture:

● In other words, the census functions are polynomially related.
● Since the census function for SAT is known to be exponential (Bov-Cre p. 83),

if a sparse NP-complete language L is found, then the census function for L
cannot be polynomially related to the census function for SAT. So, the p-
isomorphism conjecture falls.

Difficulty of Finding a Sparse NP-C Language
● Due to a result by Mahaney:

● And thus, finding such an NP-complete language means proving that P=NP,
which is widely believed to be false.

● But why does Theorem 5.7 hold?

Table of Contents
● Theorem 5.6

○ Complement of S is in NP
○ Satisfiability tree pruning
○ SAT is in P

● Theorem 5.7 (Mahaney’s Theorem)
○ PC(S)
○ Constructing a good pruning function
○ A set of pruning functions
○ Properties of the correct pruning function
○ SAT is in P

Theorem 5.6

Table of Contents
● Theorem 5.6

○ Complement of S is in NP
○ Satisfiability tree pruning
○ SAT is in P

● Theorem 5.7 (Mahaney’s Theorem)
○ PC(S)
○ Constructing a good pruning function
○ A set of pruning functions
○ Properties of the correct pruning function
○ SAT is in P

Complement of S is in NP

Further, the complement of SAT reduces to S.

Table of Contents
● Theorem 5.6

○ Complement of S is in NP
○ Satisfiability tree pruning
○ SAT is in P

● Theorem 5.7 (Mahaney’s Theorem)
○ PC(S)
○ Constructing a good pruning function
○ A set of pruning functions
○ Properties of the correct pruning function
○ SAT is in P

Satisfiability Trees and Tree Pruning

Satisfiability Trees and Tree Pruning
● Since the complement of SAT reduces to S by some function f, we can use f as a

pruning function.
● If y is a node in the satisfiability tree and f(y) is in S, then we know that y is

not satisfiable, and we can ignore y’s children in the tree.
● It is difficult to determine if f(y) is in S directly since S is NP-C.
● To solve this, we build a list of elements in S as our tree pruning algorithm

runs, which we can query.

Table of Contents
● Theorem 5.6

○ Complement of S is in NP
○ Satisfiability tree pruning
○ SAT is in P

● Theorem 5.7 (Mahaney’s Theorem)
○ PC(S)
○ Constructing a good pruning function
○ A set of pruning functions
○ Properties of the correct pruning function
○ SAT is in P

SAT is in P

Mahaney’s Theorem

Table of Contents
● Theorem 5.6

○ Complement of S is in NP
○ Satisfiability tree pruning
○ SAT is in P

● Theorem 5.7 (Mahaney’s Theorem)
○ PC(S)
○ Constructing a good pruning function
○ A set of pruning functions
○ Properties of the correct pruning function
○ SAT is in P

Mahaney’s Theorem

● We have shown that we can prove P = NP if the sparse NP-C set
has a poly-time computable census function.

● Can we still do it if we don’t have this assumption?
● Yes, and it will require “guessing” the correct value of the census

function.

Pseudo-complement of S: (PC(S))
Define PC(S) as the set of triples <x,k,0^n> accepted by this machine:

Note that if |x| <= n and k = c_s(n), then <x,k,0^n> is in the set if and only if x
is in S complement.

Table of Contents
● Theorem 5.6

○ Complement of S is in NP
○ Satisfiability tree pruning
○ SAT is in P

● Theorem 5.7 (Mahaney’s Theorem)
○ PC(S)
○ Constructing a good pruning function
○ A set of pruning functions
○ Properties of the correct pruning function
○ SAT is in P

Constructing a good pruning function
● Before, we used a reduction from the complement of SAT to S. This time we do

the exact same thing, with a new reduction.
● First, let h be a reduction from SAT to S, and g be a reduction from PC(S) to

S.
● Let p_h and p_g limit the length of h and g.
● Now, suppose that x, the string we want to determine is satisfiable or not, is of

length n.
● Define F*(y) =
● Claim: F*(y) is a reduction from the complement of SAT to S.

Table of Contents
● Theorem 5.6

○ Complement of S is in NP
○ Satisfiability tree pruning
○ SAT is in P

● Theorem 5.7 (Mahaney’s Theorem)
○ PC(S)
○ Constructing a good pruning function
○ A set of pruning functions
○ Properties of the correct pruning function
○ SAT is in P

A set of pruning functions
● For each n and for each k <= p(p_h(n)), where p is a polynomial bounding the

census function for S:
● Define
● These are all poly-time computable when |y| <= n
● Note that F*(y) =
● So, F* is among this set of functions, and it is a poly-time reduction from the

complement of SAT to S, thus it is a valid pruning function.
● The problem: we do not know the census function, so we cannot compute F*(y).

A set of pruning functions
● Observation:
● Solution idea: On input x of size n, for all values of k from 0 to , try

the tree-pruning algorithm with pruning function
● One of these k’s will work.
● Problem: we are not guaranteed that the tree-pruning algorithm will run in poly

time with every choice of pruning function.

Table of Contents
● Theorem 5.6

○ Complement of S is in NP
○ Satisfiability tree pruning
○ SAT is in P

● Theorem 5.7 (Mahaney’s Theorem)
○ PC(S)
○ Constructing a good pruning function
○ A set of pruning functions
○ Properties of the correct pruning function
○ SAT is in P

Properties of the correct pruning function F*
● Observation: if k = c_s(p_h(n)), we have that

● Thus, there is an n_0 such that for all n >= n_0,

● This means that the list created by the tree-pruning algorithm will be at most

Properties of the correct pruning function F*
● So, we know from the poly-bound proof of the tree-pruning function, that the

algorithm visits at most

Nodes, which is polynomial in |x|.

● Further, if the amount of nodes explored exceeds this value, we know we have
chosen the wrong k.

Table of Contents
● Theorem 5.6

○ Complement of S is in NP
○ Satisfiability tree pruning
○ SAT is in P

● Theorem 5.7 (Mahaney’s Theorem)
○ PC(S)
○ Constructing a good pruning function
○ A set of pruning functions
○ Properties of the correct pruning function
○ SAT is in P

SAT is in P

Group A
Lecture 3:
Sparse Sets
and Turing
Reductions

—

Introduction

Polynomial
Hierarchy

PH Collapse

Topics

Theorem 1.14

Restricted Query
Classes

Proof

Step 1

Step 2

Group A Lecture 3:
Sparse Sets and Turing Reductions

Adam Scrivener, Haofu Liao, Nabil Hossain, Shupeng Gui,
Thomas Lindstrom-Vautrin

Department of Computer Science
University of Rochester

November 9, 2015

Group A
Lecture 3:
Sparse Sets
and Turing
Reductions

—

Introduction

Polynomial
Hierarchy

PH Collapse

Topics

Theorem 1.14

Restricted Query
Classes

Proof

Step 1

Step 2

Introduction

We’ve seen: if a sparse set is NP-hard or NP-complete
w.r.t many-one reductions, then P = NP

Today we investigate whether any sparse set can be
NP-hard or NP-complete w.r.t. Turing reductions

weaker assumption (compared to many-one
reductions)

Open Question: do these Turing reduction based
hypotheses imply that P = NP?

We can show that the Polynomial Hierarchy collapses,
given these assumptions hold

Intuitively, PH collapses when all polynomial classes
above a certain order are shown to be equal

Group A
Lecture 3:
Sparse Sets
and Turing
Reductions

—

Introduction

Polynomial
Hierarchy

PH Collapse

Topics

Theorem 1.14

Restricted Query
Classes

Proof

Step 1

Step 2

The Polynomial Hierarchy

Group A
Lecture 3:
Sparse Sets
and Turing
Reductions

—

Introduction

Polynomial
Hierarchy

PH Collapse

Topics

Theorem 1.14

Restricted Query
Classes

Proof

Step 1

Step 2

Polynomial Hierarchy Collapse

PH =
⋃
i

Σp
i

= P ∪ NP ∪ NPNP ∪ NPNPNP ∪ NPNPNPNP

∪ . . .

Theorem (Gold) 1

If Σp
i = Πp

i , then PH = Σp
i

Example

if NP = coNP, then PH = NP

An implication: any problem, that can be solved using an
NP machine with access to an NP oracle, can also be
solved with a non-det poly-time TM with no access to
oracle

1http://www.cs.cornell.edu/courses/cs6810/2009sp/scribe/lecture5.pdf

Group A
Lecture 3:
Sparse Sets
and Turing
Reductions

—

Introduction

Polynomial
Hierarchy

PH Collapse

Topics

Theorem 1.14

Restricted Query
Classes

Proof

Step 1

Step 2

Topics

Can sparse sets be NP-complete or NP-hard w.r.t Turing
reductions? What are the implications?

Theorem 1.14 [Hemaspaandra-Ogihara]

If NP has sparse Turing-complete sets, then the Polynomial
Hierarchy collapses to PNP [log n]

Theorem 1.15 [Hem-Ogi] (also called Karp-Lipton Thm)

If NP has sparse Turing-hard sets, then the Polynomial
Hierarchy collapses to NPNP

Group A
Lecture 3:
Sparse Sets
and Turing
Reductions

—

Introduction

Polynomial
Hierarchy

PH Collapse

Topics

Theorem 1.14

Restricted Query
Classes

Proof

Step 1

Step 2

Bounded/restricted query classes2

Motivation: add new classes to PH to capture problems
that can be solved by restricting the number of queries
made to oracle to O(log n) (instead of polynomial)

E.g. Odd colorability in graphs

it is in PNP and is NP-hard, but not known whether it is
in NP

but it can be solved in PNP [log n] by using a PNP machine
making only O(log n) (rather than polynomially many)
queries to an NP oracle.

2Wagner, Klaus W. “Bounded query classes.” SIAM Journal on
Computing 19.5 (1990): 833-846.

Group A
Lecture 3:
Sparse Sets
and Turing
Reductions

—

Introduction

Polynomial
Hierarchy

PH Collapse

Topics

Theorem 1.14

Restricted Query
Classes

Proof

Step 1

Step 2

Theorem 1.14

Theorem 1.14

If NP has sparse NP ≤p
T -complete sets, then

PH = PNP [log n]

Proof Strategy

proof uses “census” approach

For a sparse set, the census approach is to first obtain the
exact number of elements in the set up to some given
length, and then exploit that information.

Group A
Lecture 3:
Sparse Sets
and Turing
Reductions

—

Introduction

Polynomial
Hierarchy

PH Collapse

Topics

Theorem 1.14

Restricted Query
Classes

Proof

Step 1

Step 2

Proof of Theorem 1.14

1) Let S be a sparse set s.t. S is ≤p
T −complete for NP

2) For any `, let p`(n) = n` + `

3) Let j be s.t. (∀n)[|S≤n| ≤ pj(n)]

4) Let M be deterministic poly-time TM s.t. SAT = L(MS)

M exists since S is Turing-hard for NP

5) Let k be s.t. pk(n) bounds runtime of M regardless of M’s
oracle

6) Let L be an arbitrary set in Σp
2 (i.e. NPNP)

Since SAT is NP-complete, we have Σp
2 = NPSAT

7) ∃ non-det poly-time TM N s.t. L = L(NSAT)

8) Let ` be s.t. p`(n) bounds non-det runtime of N for all
oracles

9) Note that L = L(NL(M
S))

Group A
Lecture 3:
Sparse Sets
and Turing
Reductions

—

Introduction

Polynomial
Hierarchy

PH Collapse

Topics

Theorem 1.14

Restricted Query
Classes

Proof

Step 1

Step 2

Proof of Theorem 1.14 (Continued)

V = {0#1n#1q | |S≤n| ≥ q}⋃

{1#x#1n#1q | (∃Z ⊆ S≤n) [|Z | = q;∧ x ∈ L(NL(M
Z))]}

V ∈ NP since S ∈ NP

1st set (census): will be exploited to compute |S≤n|
2nd set: will be used to check whether x ∈ L

Group A
Lecture 3:
Sparse Sets
and Turing
Reductions

—

Introduction

Polynomial
Hierarchy

PH Collapse

Topics

Theorem 1.14

Restricted Query
Classes

Proof

Step 1

Step 2

Proof of Theorem 1.14 (Continued)

The following PNP [log n] algorithm accepts L by making
O(log n) calls to the NP oracle V , for each input string y

Step 1

In O(log |y |) sequential queries to V , compute
|S≤pk (p`(|y |))|

queries of the form 0#1pk (p`(|y |))#1z

vary z as in binary search until we find |S≤pk (p`(|y |))|
Since |S≤pk (p`(|y |))| is bounded by pj(pk(p`(|y |))), thus
O(log |y |) queries are sufficient to find census value

Let the census value obtained be r

Group A
Lecture 3:
Sparse Sets
and Turing
Reductions

—

Introduction

Polynomial
Hierarchy

PH Collapse

Topics

Theorem 1.14

Restricted Query
Classes

Proof

Step 1

Step 2

Proof of Theorem 1.14 (Continued)

Step 2

Ask V the query 1#y#1pk (p`(|y |))#1r , and accept if and only if
this query ∈ V

Clearly this is a PNP [log n] algorithm

Algorithm accepts L

Since L ∈ Σp
2 (= NPNP), we have Σp

2 = PNP [log n].

Since PNP [log n] is closed under complementation, we
have Σp

2 = Πp
2

Therefore by Theorem (Gold), PH = Σp
2 = PNP [log n]

	Tree Pruning Technique
	Theorem 1.2
	Theorem 1.4

