
One Way Functions
Chapter 2, Lane-Ogi, Group B

Yang Feng
Anis Zaman

Ethan Johnson
Amin Mosayyebzadeh

Fall 2015, Midterm II 1

Agenda

● Definitions
● Chapter 2 of Lane and Ogi’s The Complexity Theory Companion

○ Theorem 2.5, has 2 claims
● Quiz in last 15 min of the class.

Hint Hint: Try to understand the definitions

2

One Way Function (OWF)?

● Function that is easy to compute but HARD TO INVERT

● No known One Way Function, (OWF), yet to be found!!

● But there are candidates!!

Requirements to be a One Way Function, f:

● f can be computed in Polynomial Time (PTIME)

● f can’t be inverted in PTIME

● f is honest
X Y

f, a PTIME computable function

has NO such g
that is PTIME
computable

3

Definition 2.1: Honesty

A function f is honest if the following holds:

(∃ polynomial q)

(∀ y∈ range (f))

(∃ x)

 [|x| ≤ q(|y|) Λ f(x) = y]

What is Honesty?

f can shrink its input
by no more than
polynomial

4

Why Honesty

Why Honesty?

● f being honest means: For each range element y = f(x), there is an

x that is at most polynomially longer than y (i.e., for which f(x) is not

more than “polynomially” shorter than x)

● Intuitively: function cannot drastically “shrink” its input

● Better reflects intuitive notion of non invertibility - no “length tricks”

Examples
5

Polynomial Invertibility

Definition 2.2:

A function (possibly non total) f is PTIME invertible

if there is a possible (possibly non total) PTIME

computable function g such that:

(∀y ∈ range (f))

[y ∈ domain(g) ⋀ g(y) ∈ domain(f) ⋀ f(g(y)) = y]

simply means f
can be reversed
engineered in
somewhat
similar amount
of time

6

Last Definition...

Definition 2.4: One to One

A function f is one to one if:

(∀ y ∈ Σ*) [|| {x | f(x) = y }|| ≤ 1]

Simple High School algebra:

(∀ x1 ,x2 ∈ Σ*) [f(x1) = f(x2) ⇒ (x1= x2)]

7

Now what?

Now we know what One Way Function (OWF) is!!!

A function f is one way if :

● f is polynomial-time computable,

● f is not polynomial time invertible,and

● f is honest

8

Theorem 2.5

1. One-way functions exists if and only if P ≠ NP

2. One-to-one one way functions exist if and only if P≠ UP

We shall prove this theorem for the rest of the class session.

Note: Proof of 2 is simple modification of part 1. SO PAY CLOSE

ATTENTION while we prove 1

9

Things to prove:

1. One-way functions exists if and only if P ≠ NP

a. if: P ≠ NP ⇒ One Way Function Exists
b. only if: One Way Function Exists ⇒ P ≠ NP

2. One-to-one one way functions exist if and only if P ≠ UP

a. if : P ≠ UP ⇒ one-to-one one way functions exist
b. only if : One-to-one one way functions exist ⇒ P ≠ UP

10

1(a) if: P ≠ NP ⇒ One Way Function Exists

● Assume P ≠ NP

● Let A ∈ NP - P

● ∃ a NPTM, N such that L(N) = A

11

Goal: Find a one way
function f

1(a) if: P ≠ NP ⇒ One Way Function Exists ...

Quest for the magical f:

● Assume some standard nice pairing function < •, • > :

○ PTIME computable and invertible

○ a bijection between Σ* x Σ* and Σ*

● Consider a function f :

A process to uniquely encode 2
things into one. Example

Remember:

L(N) = A and

A ∈ NP - P 12

1(a) if: P≠NP ⇒ One Way Function Exists ...

13

Remember:

L(N) = A and

A ∈ NP - P

● Will show f is polynomial time
computable, honest, hard to invert

● For the sake of contradiction assume f is
easily invertible in PTIME

● Establish A ∈ P
● Lead to a contradiction A ∈ P & A ∈ NP-

P
● P = NP

BIG PICTURE! NP

P

A

A

1(a) if: P≠NP ⇒ One Way Function Exists ...

Quest for the magical f:

● f that takes paired values <x, w> as input

● Our Claim:

○ f is polynomial time computable

○ f is honest
Remember:

L(N) = A and

A ∈ NP - P
14

1(a) if: P≠NP ⇒ One Way Function Exists ...

● f is computable in PTIME?

○ checking whether w is an accepting path by running N on input x

is clearly polynomial

● f is honest?
○ If w is an accepting path, no path in N can be longer than some polynomial p(|x|).

If w is not an accepting path, |w| might not be polynomial. But honesty only

requires that some short preimage for 1x exist (easy to come up with one).

○ Also, PTIME computability and invertibility of pairing function “prevents f from

destroying the honesty condition”
15

1(a) if: P≠NP ⇒ One Way Function Exists ...

● We are almost there!

● Showed that our f is

○ computable in polynomial time ✅

○ honest ✅

○ hard to invert

16

1(a) if: P≠NP ⇒ One Way Function Exists ...

17

● Showed f is polynomial time computable,
honest

● Need to show hard to invert
● For the sake of contradiction assume f is

“easily” invertible in PTIME
● Gives us A ∈ P
● Will construct a DPTM M, s.t L(M) = A
● Lead to a contradiction A ∈ P & A ∈

NP-P
● P = NP

BIG PICTURE!

“easily” means
in polynomial
time

NP

P

A

1(a) if: P≠NP ⇒ One Way Function Exists ...

● Goal: Show f is hard to invert

● Assume f is invertible via a polynomially computable function g

● g allows us to accept A in PTIME

● We get A ∈ P

● We will show that A ∈ P by constructing a

DPTM M such that L(M) = A

18

Remember:

L(N) = A and

A ∈ NP - P

NP

P

A

Assumed

A

1(a) if: P≠NP ⇒ One Way Function Exists ...

● Construction M:

19

Goal: Show f is hard to

invert

1(a) if: P≠NP ⇒ One Way Function Exists ...

● Construction M:

● On input x∈ Σ*, check if 0x ∈ domain of g

● if not, REJECT!

20

Goal: Show f is hard to

invert

1(a) if: P≠NP ⇒ One Way Function Exists ...

● Construction M:

● On input x∈ Σ*, check if 0x ∈ domain of g

● if not, REJECT!

● if yes:

○ compute g(0x), which returns <x,w>

○ test if w is an accepting path in N(x)

■ if yes, ACCEPT!

○ Otherwise, REJECT!
21

Goal: Show f is hard to

invert

Mr. RABBIT
will use this
construction in 2(a)

PTIME

1(a) if: P≠NP ⇒ One Way Function Exists ...

● M accepts A in deterministic polynomial time

● Under our assumption P ≠ NP

● Just showed a DPTM for M and L(M) = A

● Showed A ∈ P

● Assumed A ∈ NP - P

● Contradiction!

22

NP

P

A

A

What actually happened?

● We constructed DPTM M assuming a inverse of f, g existed, which is

polynomial time computable

● But g does not exist i.e no polynomial time computable inverse of f

exists

● f -1 must not be polynomially computable, f -1 is HARD to invert

● f must not be polynomially invertible

● Vola!!! f is now a One Way Function ✅

23

Where are we so far?

1. One-way functions exists if and only if P ≠ NP

a. if: P ≠ NP ⇒ One Way Function Exists ✅
b. only if: One Way Function Exists ⇒ P ≠ NP

2. One-to-one one way functions exist if and only if P ≠ UP

a. if : P ≠ UP ⇒ one-to-one one way functions exist
b. only if : One-to-one one way functions exist ⇒ P ≠ UP

24

1(b) only if: One Way Function Exists ⇒ P≠NP

● Reverse our previous strategy: given a one-way function f, assume

P=NP, lead to contradiction.

● Let p be f’s honesty polynomial

● Think of this language:

25

● What does this language “mean”?
○ Prefixes of the inverse of z, i.e. f -1(z), that are sufficiently short (for

honesty)

1(b) only if: One Way Function Exists ⇒ P≠NP

● Clearly L is NP: guess a string y, then check if f(pre.y) = z.

● Since we assumed P=NP, L is also P!

● We’ll use this fact to invert f “easily” (in P-time) - contradicting that f is

a one-way function.

26

1(b) only if: One Way Function Exists ⇒ P≠NP

● Goal: given z, find its inverse with respect to f in polynomial time

○ (find x such that f(x) = z)

● Since (we assumed) L ∈ P, there is a DPTM accepting L.

● If <z, pre> is in L, pre is a prefix of z’s inverse

● We can check “easily” (P-time) whether something is in L!

What can we do with this?

27

1(b) only if: One Way Function Exists ⇒ P≠NP
Complexity rabbit says…

Search ALL the prefixes!
28

1(b) only if: One Way Function Exists ⇒ P≠NP
Searching all the prefixes:

● Check if f(є) = z; if so we are done (є is an inverse), if not go to next step.
● Is 0 a prefix of a suitably short inverse?

○ If NO, then 1 must be a prefix!
○ Either way, we determine the first bit.

● Are we done yet? (is this prefix the whole inverse?)
○ Check if f(pre) = z. If yes, we’re done! Otherwise, we need to find out the

next bit…
● (Let b be the bit we’ve already figured out.) Is b0 a prefix of a suitably short

inverse?
○ If no, then b1 must be a prefix…
○ Now we have the second bit (c), check if f(bc) = z... 29

1(b) only if: One Way Function Exists ⇒ P≠NP

30

Can think of this as a search as a tree:

● At each step, we discover one
more bit of the inverse.

● We will make progress with each
step: if the next bit isn’t 0, it must
be 1. No exponential expansion!

● Hence prefix search is linear in the
length of the inverse!

● The honesty polynomial bounds the
length of the inverse

Recap
● We started with a one way function f

● We supposed P = NP

● We examined a language L that lets us check if a string is a prefix of

f -1(z)

● Since P = NP, L ∈ P

● We used L to search for the inverse in polynomial time

● Thus f can be inverted in polynomial time. Contradiction!

● Hence our assumption was wrong: P ≠ NP
31

Where are we so far?

1. One-way function exists if and only if P ≠ NP

a. if: P ≠ NP ⇒ One Way Function Exists ✅
b. only if: One Way Function Exists ⇒ P ≠ NP ✅

2. One-to-one one way function exists if and only if P ≠ UP

a. if : P ≠ UP ⇒ one-to-one one way functions exist
b. only if : One-to-one one way functions exist ⇒ P ≠ UP

32

What is UP?
● A complexity class like (NP, P) that has unique witness

● L ∈ UP if:

○ NP machine N accepts x ∈ L

○ For all such x, the computation of N(x) has

at most 1 accepting path

UP = { L | ∃ NPTM, N such that L = L(N), and ∀ x∈ L, N(x) has at most

1 accepting path }
33

NP

P

UP

2(a) if: P ≠ UP ⇒ one-to-one one way functions exist

● Let A ∈ UP - P

● ∃ NPTM, N such that A = L(N)

● Consider function f:

34

Goal: want to show f is 1-to-1 one way function

Mr. RABBIT
will SAVE US!!!

Where are we now?

1. One-way function exists if and only if P ≠ NP

a. if: P ≠ NP ⇒ One Way Function Exists ✅
b. only if: One Way Function Exists ⇒ P ≠ NP ✅

2. One-to-one one way function exists if and only if P ≠ UP

a. if : P ≠ UP ⇒ one-to-one one way functions exist✅
b. only if : One-to-one one way functions exist ⇒ P ≠ UP

35

2(b): only if : 1-to-1 one way functions exist ⇒ P ≠ UP
● No changes from 1(b)

○ Replace “one way function” with “1-to-1 one way function” and

“NP” with “UP” - same argument holds

● Only difference: there is only one path in the prefix search tree that

will lead us to an inverse.

○ We were ignoring the extras anyway (see special note)

● 1-to-1 one way functions exist ⇒ P ≠ UP!!! 36

Big Picture!!

1. Got introduced to One Way Function (1-to-1 as well)!

2. Existence of One Way Function is tied to whether P=NP

3. For 1-to-1 One Way Function, it is tied to a more strongly regulated

version of NP i.e. UP (***)

4. Next class we will expand on *** to cover a constant bounded version

of UP

37

One way Functions
Chapter 2.2 Hem-ogi

Group B:
Yang Feng
Anis Zaman

Ethan Johnson
Amin Mosayyebzadeh

Reminder

● one-to-one one-way functions are characterized by P ≠ UP
● one-way functions is characterized by P ≠ NP

● P ≠ UP ⇒ P ≠ NP,
○ the converse has never been established

I am the Rabbit,
but I have just
eaten a carrot

Note
● one-to-one function f is completely unambiguous in terms of inversion

○ each element of range(f) has exactly one inverse

● "constant-to-one" functions are called bounded-ambiguity functions. They
are often referred as "O(1)-to-one" functions

potato,
potato, ...

Definition 2.6: Bounded-Ambiguity Functions

1. For each k ≥ 1, we say that
a. a (possibly non-total) function f is k-to-one if (∀y ∈ range(f))[ll{ x l f(x) = y}ll ≤ k]

2. We say that
a. a (possibly non-total) function f is of bounded-ambiguity if there is a k ≥ 1 such that f is k-to-

one.

compare it with one-to-one function:
 (∀y ∈ range(f))[ll{ x l f(x) = y}ll ≤ 1]

Big picture
● We are going to prove that

○ Unambiguous one-way functions exist ⇔ Bounded-ambiguity one-way functions exist

Theorem 2.7

one-to-one one-way functions exist ⇔ constant-to-one one-way functions exist

Proof
● “Only if” direction is easy:

○ All one-to-one functions are constant-to-one functions, so the "only if" direction holds

● We will show the “if” direction

Definition 2.8
A language L is in UP≤k, k ≥ 1, if there is an NPTM N such that

1. (∀x ∈)[N(x) has at least one and at most k accepting paths]

and

2. (∀x ∈)[N(x) has no accepting paths]

Recall

● Part 2 of Theorem 2.5
○ one-to-one one-way functions exist ⇔ P ≠ UP

Fact 2.8
● For each k ≥ 2, k-to-one one-way functions exist ⇔ P ≠ UP≤k

It can be proved by exactly
analogous proof of Theorem 2.5

Proving the “if” direction

● We know that:

○ P ≠ UP ⇔ one-to-one one-way functions exist
○ P ≠ UP≤k ⇔ k-to-one one-way functions exist (from previous slide)

● If we show that P ≠ UP ⇔ P ≠ UP≤k, then
○ one-to-one one-way functions exist ⇔ k-to-one one-way functions exist

● We will use induction that:
○ for all k ∈ {1, 2, 3, . . .}, P = UP ⇒ P = UP≤k

Proving the “if” direction

● We know that:

○ P ≠ UP ⇔ one-to-one one-way functions exist
○ P ≠ UP≤k ⇔ k-to-one one-way functions exist (from previous slide)

● If we show that P ≠ UP ⇔ P ≠ UP≤k, then
○ one-to-one one-way functions exist ⇔ k-to-one one-way functions exist

● We will use induction that:
○ for all k ∈ {1, 2, 3, . . .}, P = UP ⇒ P = UP≤k

Induction
○ holds for k = 1:

■ P = UP ⇒ P = UP≤1
○ Assume:

■ P = UP ⇒ P = UP≤k'
○ prove:

■ P = UP ⇒ P = UP≤k'+1

P ≠ UP ⇔ P ≠ UP≤k

Proving P = UP ⇒ P = UP≤k'+1
(Assuming P = UP ⇒ P = UP≤k')

● Assume P = UP
● Let L be an arbitrary member of UP≤k'+1·
● Let N be an NPTM –having at most k' + 1 accepting paths on each

input– that accepts L (recall Definition 2.8)
● Consider the set

○ B = { x I N(x) has exactly k' + 1 accepting paths}
○ Clearly, B ∈ UP, via the machine that on each input x guesses each

lexicographically ordered (k'+1)-tuple of distinct computation paths and that
accepts on such a path exactly if each of the k' + 1 guessed paths is an accepting
path on input x.

○ by our P =UP assumption, B ∈ P

B
x’s paths
= K’+1

L

K’+1 or K’, that is the question

● since B ∈ P, the set
○ D = {x I x ∉ B ∧ x ∈ L(N)} is in UP≤k'

So, we are excluding
elements with k’+1 paths

(Set B)

 D
1 ≤ x’s paths ≤ k'

 B
x’s paths = K’+1

L

Proving D in UP≤k'

● We construct a TM M such that:
● We first deterministically check whether x is in B

○ Using some P algorithm for B.
○ Under our current assumptions, B ∈ P. So some such algorithm exists.

● If x ∈ B we reject
● If x ∉ B we directly simulate N(x).

○ This simulation will have at most k' accepting paths
■ x ∉ B precludes there being exactly k'+1 paths
■ N's choice precludes there being more than k' + 1 paths

● Since D ∈ UP≤k', we conclude
○ from our assumption that P = UP,
○ from our inductive hypothesis (which was P= UP⇒ P = UP≤k')

⇒ D ∈ P.

Prove

● Since P is closed under union, B ∪ D ∈ P.
● However

○ L = B ∪ D ⇒ L ∊ P
○ L is an arbitrary member of UP≤k'+1

⇨ P = UP ⇒ P = UP≤k'+1

One Way Functions
Chapter 2, Lane-Ogi, Group B

Yang Feng
Anis Zaman

Ethan Johnson
Amin Mosayyebzadeh

Fall 2015, Midterm II 18

Two-argument (denoted 2-ary) one-way functions

f(x,x’) = y

19

❖ Strong
❖ Total
❖ Commutative
❖ Associative

⇔
One-Way Functions Exist

One-Way Functions Exist

20

 2-ary function honesty

Definition 2.10:

We say a 2-ary function f: ∑* x ∑* ➝ ∑* is honest if

This definition only requires that each element of range(f) have one

appropriate pair (x, x’).

21

2-ary function invertible

Definition 2.11:

We say a 2-ary function f: ∑* x ∑* ➝ ∑* is polynomial-time invertible if
there is a polynomial-time computable function g such that, for each y ∈
range(f),

where the projection functions first(z) and second(z) denote, respectively,
the first and second components of the unique ordered pair of strings that
when paired give z.

f(x,x’) = y
g(y) = (x,x’)

22

2-ary one-way function

We say a 2-ary function f: ∑* x ∑* ➝ ∑* is one-way if

● f is polynomial-time computable,

● f is not polynomial time invertible,and

● f is honest
Are this familiar?

23

2-ary function s-honesty

We say a 2-ary function f: ∑* x ∑* ➝ ∑* is s-honest if

How to understand it? See next page.

24

(,x2)

2-ary function invertible
f(x1,x2) = y

g(y, x1) = something similar to x2

domain(f) range(f)

f
yx1

domain(g)

(y,x1)

f(x1,) = y

g

25

We say a 2-ary function f: ∑* x ∑* ➝ ∑* is strongly noninvertible if it is s-
honest and yet neither of the following conditions holds.

2-ary function strongly noninvertible

26

2-ary function associative and commutative

We say a 2-ary function f: ∑* x ∑* ➝ ∑* is associative if

We say a 2-ary function f: ∑* x ∑* ➝ ∑* is commutative if

 multiplication of integers? concatenation of strings?
27

Proposition 2.17
The following are equivalent.

1. One-way functions exist.
2. 2-ary one-way functions exist.
3. P ≠ NP.

28

(2) ⇒ (1)
Let 〈・,・〉be a pairing function used before

Let f : ∑* x ∑* ➝ ∑* be any 2-ary one-way function:

g(z) = f(first(z),second(z))

where, first(z) and second(z) denotes the first and second component of the pair
mapped to z.

29

(1) ⇒ (2)

Let h : ∑* ➝ ∑* be a one-way function:

h’(x,y) = 〈h(x), h(y)〉

30

One Way Functions
Chapter 2, Lane-Ogi, Group B

Yang Feng
Anis Zaman

Ethan Johnson
Amin Mosayyebzadeh

Fall 2015, Midterm II 1

Two-argument (denoted 2-ary) one-way functions

f(x,x’) = y

2

❖ Strong
❖ Total
❖ Commutative
❖ Associative

⇔
One-Way Functions Exist

One-Way Functions Exist

3

 2-ary function honesty

Definition 2.10:

We say a 2-ary function f: ∑* x ∑* ➝ ∑* is honest if

This definition only requires that each element of range(f) have one

appropriate pair (x, x’).

4

2-ary function invertible

Definition 2.11:

We say a 2-ary function f: ∑* x ∑* ➝ ∑* is polynomial-time invertible if
there is a polynomial-time computable function g such that, for each y ∈
range(f),

where the projection functions first(z) and second(z) denote, respectively,
the first and second components of the unique ordered pair of strings that
when paired give z.

f(x,x’) = y
g(y) = (x,x’)

5

2-ary one-way function

We say a 2-ary function f: ∑* x ∑* ➝ ∑* is one-way if

● f is polynomial-time computable,

● f is not polynomial time invertible,and

● f is honest
Are this familiar?

6

2-ary function s-honesty
We say a 2-ary function f: ∑* x ∑* ➝ ∑* is s-honest if

Intuitively:

● f doesn’t shrink its output drastically relative to either of its inputs individually
● Not the same as regular honesty - a dishonest function can still be s-honest if

it shrinks output drastically relative to both of its inputs together
○ Example:

7

f(x1,x2) = y

g(y, x1) = something similar to x2

(x1,x2)

2-ary function strong noninvertibility

domain(f)

y

range(f)

f

domain(g)

(y,x1)

f(x1,) = y

g

8

We say a 2-ary function f: ∑* x ∑* ➝ ∑* is strongly noninvertible if it is s-
honest and yet neither of the following conditions holds.

2-ary function strongly noninvertible

9

2-ary function associative and commutative

We say a 2-ary function f: ∑* x ∑* ➝ ∑* is associative if

We say a 2-ary function f: ∑* x ∑* ➝ ∑* is commutative if

 multiplication of integers? concatenation of strings?
10

Proposition 2.17
The following are equivalent.

1. One-way functions exist.
2. 2-ary one-way functions exist.
3. P ≠ NP.

11

(2) ⇒ (1)
Let 〈・,・〉be a pairing function used before

Let f : ∑* x ∑* ➝ ∑* be any 2-ary one-way function; then

g(z) = f(first(z),second(z))

where first(z) and second(z) denotes the first and second component of the pair
mapped to z, is also one-way.

12

(1) ⇒ (2)

Let h : ∑* ➝ ∑* be a one-way function; then

h’(x,y) = 〈h(x), h(y)〉

is clearly one-way.

13

❖ Strong
❖ Total
❖ Commutative
❖ Associative

⇔
One-Way Functions Exist

One-Way Functions Exist

14

Only if direction ⇒ EASY
S. T. C. A. One Way Function exist

⇒
2-ary one-way functions exist

--

By Proposition 2.17
⇒

One-way functions exist

15

If direction ⇐
Assume P ≠ NP, ∃ NPTM N’ such that L(N’) ∈ NP-P

∃ NPTM N such that L(N) = L(N’). WLOG, assume that on each input x, each
computation path of N(x) has exactly p(|x|) bits. We also require p(n) > n.

NP

P

N’

16

If direction ⇐

● We will assume One-Way Functions exist.

● We will construct a one-way function that is
strongly noninvertible, total, commutative, and
associative.

17

If direction ⇐
Witness: A witness for x is an accepting path of N(x).

Let W(x) be the set of all witnesses for x∈L(N).

● p(n) > n ⇒ A string can never be a witness for its own membership.
● Since L(N) ∈ NP, each witness for x has length polynomially related to |x|.

18

If direction ⇐
Let t be any fixed string such that t ∉ L(N). Our magic function is:

19

Intuitively:
● u and v are interpreted as pairs <x, x> or <x, w> - w is a witness for x
● These two pairs represent zero, one, or two (not necessarily unique) witnesses for x
● If input is of “wrong form” (x’s don’t match, or neither pair has a witness), output the

“garbage dump” <t, t1>. Otherwise, output the input with one less witness instance.
○ Removing information - expensive (NP) to find witnesses

If direction ⇐
Let us verify that f is a strongly noninvertible, total, commutative, associative, 2-ary
one-way function.

Total and polynomial-time computable?

20

If direction ⇐
Honest?

21

● First two cases easy since we chose N such that all paths for N(x) are p(|x|) bits
● Third case (“garbage dump”) seems obviously dishonest (due to fixed length), but since

we have only one such case, we can choose our honesty polynomial large enough to
allow the smallest string that maps to <t, t1>.

If direction ⇐
Commutative?

22

If direction ⇐

s-honest?

23

If direction ⇐

24

strongly noninvertible?

If direction ⇐

Approach:

● Assume f is not strongly noninvertible
● Will lead to a contradiction L(N) ∈ P (=> assumption is wrong)

25

Assumed L(N) ∈ NP -P
strongly noninvertible?

strongly noninvertible:

If direction ⇐

● Assume f is not strongly noninvertible via function g in PTIME
● Since f is s-honest, at least one of the 2 conditions of strong non

invertibility holds from Definition 2.14

26

27

If direction ⇐

● Assume f is not strongly noninvertible via function g in PTIME
○ Given an output and one argument, the other argument can be

computed in polynomial-time
● Thus, at least one of the 2 conditions of strong non invertibility holds

from Definition 2.14
○ WLOG suppose that Case 2 of definition (see previous slide) holds

● If x ∈ L(N),

g(<x,x>, <x,x>) outputs <x, w> where w ∈ W(x)

27

28

If direction ⇐

● If x ∈ L(N),
○ g(<x,x>, <x,x>) outputs <x, w> where w ∈ W(x)

● Going to show a DPTIME algorithm to check an input x ∈ L(N)
○ On input x, compute g(<x,x>, <x,x>)

■ Reject, if output is not of the form <x, w>
■ Otherwise simulate N(x) using w as computation path

● Accept if N(x) accepts
● Reject otherwise

if x ∉ L(N), g(<x,x>, <x,x>) outputs anything, but since testing
membership is PTIME, we can not be fooled!! 28

If direction ⇐
● Showed a DPTIME algorithm to test membership in L(N)
● So L(N) ∈ P
● But we assumed L(N) ∈ NP - P
● Contradiction!!
● Our assumption that f is not strongly noninvertible is wrong
● So f is strongly non invertible
● Done!!!

29

If direction ⇐
 The only one left: associative?

f(f(z,z'), z") = f(z,f(z', z"))?

30

If direction ⇐

f(f(z,z'), z") = f(z,f(z', z"))

〈t,t1〉

first part not all equal first part all equal

0,1 legal
2 legal

3 legal

〈t,t1〉

Third is not
〈first(z),first(z)〉

〈first(z),first(z)〉

Third is
〈first(z),first(z)〉

〈t,t1〉

〈first(z),q〉

We say a string a is legal if

31

If direction ⇐
z=〈x,w〉 z’=〈x’,w’〉 z’’=〈x’’,w’’〉

f(f(z,z'), z") = f(z,f(z', z"))

if x ≠ x’ f(z,z’) =〈t,t1〉 f(<x,w>,<x’,w>)

if x ≠ x’’ f(<x,w>,<x’,w>) f(<x,w>,<x’,w>)

if x’ ≠ x’’ f(<x,w>,<x’,w>) f(z,z’) =〈t,t1〉

32

If direction ⇐

f(f(z,z'), z") = f(z,f(z', z"))

〈t,t1〉

first part not all equal first part all equal

0,1 legal
2 legal

3 legal

〈t,t1〉

Third is not
〈first(z),first(z)〉

〈first(z),first(z)〉

Third is
〈first(z),first(z)〉

〈t,t1〉

〈first(z),q〉

We say a string a is legal if

33

If direction ⇐
z=〈x,w〉

z’=〈x,w’〉

z’’=〈x,w’’〉

if w is witness, and w’, w’’ are not,

f(z,z’)=〈x,x〉or 〈t,t1〉

f(〈x,x〉,z’’) = 〈t,t1〉

34

If direction ⇐

f(f(z,z'), z") = f(z,f(z', z"))

〈t,t1〉

first part not all equal first part all equal

0,1 legal
2 legal

3 legal

〈t,t1〉

Third is not
〈first(z),first(z)〉

〈first(z),first(z)〉

Third is
〈first(z),first(z)〉

〈t,t1〉

〈first(z),q〉

We say a string a is legal if

35

If direction ⇐
z=〈x,w〉

z’=〈x,w’〉

z’’=〈x,w’’〉

if w,w’ are witnesses,

w’’=x, f(z,z’)=〈x,min(w,w’)〉 f(z’’,〈x,min(w,w’)〉) =〈x,x〉

w’’≠x, f(z’,z’’) =〈t,t1〉

36

If direction ⇐

f(f(z,z'), z") = f(z,f(z', z"))

〈t,t1〉

first part not all equal first part all equal

0,1 legal
2 legal

3 legal

〈t,t1〉

Third is not
〈first(z),first(z)〉

〈first(z),first(z)〉

Third is
〈first(z),first(z)〉

〈t,t1〉

〈first(z),q〉

We say a string a is legal if

37

If direction ⇐
z=〈x,w〉

z’=〈x,w’〉

z’’=〈x,w’’〉

if w,w’, w’’ are witnesses

f(z,z’)=〈x,min(w,w’)〉

f(x,min(w,w’),z’’) = 〈x,min(w,w’,w’’)〉

38

http://news.sciencemag.org/math/2015/11/mathematician-claims-breakthrough-complexity-theory
39

http://news.sciencemag.org/math/2015/11/mathematician-claims-breakthrough-complexity-theory
http://news.sciencemag.org/math/2015/11/mathematician-claims-breakthrough-complexity-theory

