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Is #P closed under proper subtraction?
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Is #P closed under proper subtraction?
Definition 8.2 (#P)  #P is the set of all functions ƒ : {0, 1}* → ℕ such that there is a
NPTM M such that for all x ∈ {0, 1}*,

ƒ (x) = number of accepting branches in M’s computation graph on x
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Is #P closed under proper subtraction?
Definition 8.2 (#P)  #P is the set of all functions ƒ : {0, 1}* → ℕ such that there is a
NPTM M such that for all x ∈ {0, 1}*,

ƒ (x) = number of accepting branches in M’s computation graph on x

Proper Subtraction (⊖) a ⊖ b = max({0, a – b})
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Is #P closed under proper subtraction?
Definition 8.2 (#P)  #P is the set of all functions ƒ : {0, 1}* → ℕ such that there is a
NPTM M such that for all x ∈ {0, 1}*,

ƒ (x) = number of accepting branches in M’s computation graph on x

Proper Subtraction (⊖) a ⊖ b = max({0, a – b})

Let σ be an operation from ℕ 𝗑 ℕ to ℕ and let 𝓕 be a class of functions from ℕ to ℕ. 
We say that 𝓕 is closed under (the operation) σ if

(∀ƒ1 ∈ 𝓕)(∀ƒ2 ∈ 𝓕)[hf  ,f  ∈ 𝓕]

where hf  ,f (𝑛) = σ [ ƒ1(𝑛), ƒ2(𝑛) ]

5

1   2

1   2



Other #P Closures
Example: #P is closed under addition  Example: #P is closed under multiplication

? ?
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Other #P Closures
Example: #P is closed under addition  Example: #P is closed under multiplication
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Preliminary Definitions
Predicate (does 𝑁 accept 𝑥 on 𝓎)
Polynomial length of path
Certificates (paths in 𝑁)

{ 𝓎｜|𝓎| ≤ q(|𝑥|) ˄ R(𝑥, 𝓎)}
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Preliminary Definitions
Definition of UP
A language L is in UP if there is a polynomial-time predicate R 
and a polynomial q such that for all 𝑥,

||{ 𝓎｜|𝓎| ≤ q(|𝑥|) ˄ R(𝑥, 𝓎)}|| = ⎰ 0 if 𝑥 ∉ L
⎱ 1 if 𝑥 ∈ L
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Preliminary Definitions
Definition of PP
A language L is in PP if there exists a polynomial q and a 
polynomial-time predicate R such that for all 𝑥,

||{ 𝓎｜|𝓎| = q(|𝑥|) ˄ R(𝑥, 𝓎)}|| = 
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⎰ < 2q(|𝑥|) – 1 if 𝑥 ∉ L
⎱ ≥ 2q(|𝑥|) – 1 if 𝑥 ∈ L



Preliminary Definitions
Definition of ⊕P
A language L is in ⊕P if there exists a polynomial q and a 
polynomial-time predicate R such that for all 𝑥,

||{ 𝓎｜|𝓎| ≤ q(|𝑥|) ˄ R(𝑥, 𝓎)}|| = 
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⎰ even if 𝑥 ∉ L
⎱ odd if 𝑥 ∈ L



Witness Reduction Technique
● Witness?

● Adding is easy, removing is difficult

● Consequences of the possibility of removing witnesses

● Complexity class collapse

● Idea of the technique

12



Witness Reduction Technique
L ∈ S1

NL

#P Application of 
Assumed Closure

#P

N'L

L ∈ S2S2 ⊆ S1
to

S1 = S2
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Take some set in 
the larger class 

(S1) and coerce it 
into #P function

Coerce the function 
back into a machine 

defining a language in 
the smaller class (S2)



Is #P closed under proper subtraction?

● Find a collapse that characterizes the closure

● Operator ‘completeness’ for #P
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Is #P closed under proper subtraction?
Theorem 5.6  The following statements are equivalent

1. #P is closed under proper subtraction.
2. #P is closed under every polynomial-time computable operation
3. UP = PP
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Theorem 5.6  The following statements are equivalent

1. #P is closed under proper subtraction.
2. #P is closed under every polynomial-time computable operation
3. UP = PP

Is #P closed under proper subtraction?

✔
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Is #P closed under proper subtraction?

?

Theorem 5.6  The following statements are equivalent

1. #P is closed under proper subtraction.
2. #P is closed under every polynomial-time computable operation
3. UP = PP
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Is #P closed under proper subtraction?

?

Theorem 5.6  The following statements are equivalent

1. #P is closed under proper subtraction.
2. #P is closed under every polynomial-time computable operation
3. UP = PP
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(𝑜𝑝 is any arbitrary polynomial-time computable operation)
1. Closed (#𝐏,⊖)
2. Closed (#𝐏,𝑜𝑝)
3. UP = PP 



Closed(#P,⊖) → UP = PP
Closed(#P,⊖) → PP ⊆ UP ∧ UP ⊆ PP

UP ⊆ PP by direct proof

Is #P closed under proper subtraction?
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UP ⊆ PP by direct proof
1. Let L be a UP language and let N be the NPTM that accepts L

2. Let N’ be a NPTM with the same depth, q(|𝑥|), as N and accepts
on all paths but one

3. Let NPP be a NPTM that chooses between simulating N and N’

Computation Paths : 2q(|𝑥|) + 1

Accepting Paths : 2q(|𝑥|) (N : 1, N’ : 2q(|𝑥|) – 1)

Is #P closed under proper subtraction?
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Closed(#P,⊖) → UP = PP
Closed(#P,⊖) → PP ⊆ UP ∧ UP ⊆ PP

UP ⊆ PP by direct proof

Closed(#P,⊖) → PP ⊆ UP

Closed(#P,⊖) → PP ⊆ CoNP ∧ CoNP ⊆ UP

Is #P closed under proper subtraction?
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Is #P closed under proper subtraction?
Closed(#P,⊖) → PP ⊆ CoNP

L ∈ PP
L = { 𝑥｜||{ 𝓎｜|𝓎| = q(|𝑥|) ˄  R(𝑥, 𝓎)}|| ≥ 2q(|𝑥|) – 1 }

Let q’(|𝑥|) = q(|𝑥|) + 1 and for b ∈ {0, 1}, R’(𝑥, 𝓎b) = R(𝑥, 𝓎) and,     
for all 𝑛, q(𝑛) ≥ 1 (avoid q(|𝑥|) = 0)
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Closed(#P,⊖) → PP ⊆ CoNP
Let N be an NPTM that on input 𝑥 guesses each 𝓎 such that 
|𝓎| = q(|𝑥|) then tests R(𝑥, 𝓎)

The #P function ƒ  defined by this NPTM has that
𝑥 ∈ L → ƒ (𝑥) ≥ 2q(|𝑥|) – 1

𝑥 ∉ L → ƒ (𝑥)  < 2q(|𝑥|) – 1

Is #P closed under proper subtraction?
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Closed(#P,⊖) → PP ⊆ CoNP
𝑔(𝑥) = 2q(|𝑥|) – 1 – 1 is a #P function

By assumption of closure under proper subtraction

𝒽(𝑥) = 𝑓(𝑥) ⊖ 𝑔(𝑥)

is a #P function, and by substituting yields
𝒽(𝑥) ≥ 1 if 𝑥 ∈ L
𝒽(𝑥) = 0 if 𝑥 ∉ L Clearly NP, but …

Is #P closed under proper subtraction?Is #P closed under proper subtraction?
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Closed(#P,⊖) → PP ⊆ CoNP
There exists a NPTM N for which 𝒽 computes the number of

accepting paths

The values of 𝒽 are such that N is an NP machine, so the
arbitrary PP language is in NP

It follows that PP ⊆ NP
PP = CoPP → PP ⊆ CoNP

Is #P closed under proper subtraction?
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Closed(#P,⊖) → CoNP ⊆ UP
Let L be an arbitrary CoNP language

There exists a NPTM N that accepts L 

N defines a #P function ƒ  such that
𝑥 ∈ L → 𝑓(𝑥) = 0
𝑥 ∉ L → 𝑓(𝑥) ≥ 1

Is #P closed under proper subtraction?
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Closed(#P,⊖) → CoNP ⊆ UP
The constant function 𝑔(𝑥) = 1 is a #P function
By assumption of closure under proper subtraction

𝒽(𝑥) =𝑔(𝑥) ⊖ 𝑓(𝑥)
is a #P function, and by substituting yields
𝒽(𝑥) = 1 if 𝑥 ∈ L
𝒽(𝑥) = 0 if 𝑥 ∉ L
𝒽 corresponds to a UP machine

Is #P closed under proper subtraction?
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Is #P closed under proper subtraction?

?

Theorem 5.6  The following statements are equivalent

1. #P is closed under proper subtraction.
2. #P is closed under every polynomial-time computable operation
3. UP = PP
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UP = PP → Closed(#P,𝑜𝑝)
1. Let op be an arbitrary polynomial-time computable operation
2. Let 𝑓 and 𝑔 be arbitrary #P functions

B𝑓 = { 〈𝑥, 𝑛〉｜𝑓(𝑥) ≥ 𝑛 } ∈ PP
B𝑔 = { 〈𝑥, 𝑛〉｜𝑔(𝑥) ≥ 𝑛 } ∈ PP

Is #P closed under proper subtraction?
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UP = PP → Closed(#P,𝑜𝑝)
1. Let op be an arbitrary polynomial-time computable operation
2. Let 𝑓 and 𝑔 be arbitrary #P functions

B𝑓 = { 〈𝑥, 𝑛〉｜𝑓(𝑥) ≥ 𝑛 } ∈ PP
B𝑔 = { 〈𝑥, 𝑛〉｜𝑔(𝑥) ≥ 𝑛 } ∈ PP

Is #P closed under proper subtraction?

30

V   = { 〈𝑥, 𝑛1, 𝑛2〉｜〈𝑥, 𝑛1〉 ∈ B𝑓 ∧ 〈𝑥, 𝑛1 + 1〉 ∉ B𝑓  ∧
     〈𝑥, 𝑛2〉 ∈ B𝑔 ∧ 〈𝑥, 𝑛2 + 1〉 ∉ B𝑔 }



UP = PP → Closed(#P,𝑜𝑝)
V gives precise values of 𝑓(𝑥) and 𝑔(𝑥) by testing adjacent 𝑛s to find
transition points in B𝑓 and B𝑔

V 4-truth-table reduces to the language B𝑓 ⊕ B𝑔

⊕ denotes disjoin Union: 𝑌 ⊕ 𝑍 = {0𝑥｜𝑥 ∈ 𝑌} ⋃ {1𝑥｜𝑥 ∈ 𝑍}

Is #P closed under proper subtraction?
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UP = PP → Closed(#P,𝑜𝑝)
V gives precise values of 𝑓(𝑥) and 𝑔(𝑥) by testing adjacent 𝑛s to find
transition points in B𝑓 and B𝑔

Corollary 9.17 PP is closed under polynomial time 
bounded-truth-table reductions and disjoint union → V ∈ PP

V ∈ UP by assumption that UP = PP

Is #P closed under proper subtraction?
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UP = PP → Closed(#P,𝑜𝑝)
𝑓 and 𝑔 are #P functions, so for some polynomial q and for all 𝑥
max{𝑓(𝑥), 𝑔(𝑥)} ≤ 2q(|𝑥|)

Consider the NP machine N that on input 𝑥
1. Nondeterministically choose an integer 𝑖, 0 ≤ 𝑖 ≤ 2q(|𝑥|)

2. Nondeterministically choose an integer 𝑗, 0 ≤ 𝑗 ≤ 2q(|𝑥|)

3. Guesses a computation path of V on input 〈𝑥, 𝑖, 𝑗〉. If the path rejects, reject. 
Otherwise, nondeterministically guess an integer 𝑘, 1 ≤ 𝑘 ≤ op(𝑖, 𝑗) and 
accept.

Is #P closed under proper subtraction?
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UP = PP → Closed(#P,𝑜𝑝)
For all 𝑖 ≠ 𝑓(𝑥) and 𝑗 ≠ 𝑔(𝑥), V(〈𝑥, 𝑖, 𝑗〉) rejects

For the correct 𝑖 and 𝑗, N(𝑥) accepts along precisely 𝑜𝑝(𝑖, 𝑗) paths

The #P function defined by this machine is 𝒽(𝑥) = 𝑜𝑝(𝑓(𝑥), 𝑔(𝑥))

Is #P closed under proper subtraction?
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Is #P closed under proper subtraction?

35

V

𝑜𝑝(𝑖, 𝑗)



How Significant is the Collapse?
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Theorem 5.7  The following statements are equivalent

1. UP = PP
2. UP = NP = CoNP = PH = ⊕P = PP = PP ⋃ PPPP ⋃ …

How Significant is the Collapse?
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Theorem 5.7  The following statements are equivalent

1. UP = PP
2. UP = NP = CoNP = PH = ⊕P = PP = PP ⋃ PPPP ⋃ …

Prove each of the above in sequence

How Significant is the Collapse?
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UP = NP = CoNP = PH = ⊕P = PP = PP ⋃ PPPP ⋃ …
NP ⊆ PP
1. Let L ∈ NP and let N be the NPTM that accepts L

2. Let N’ be a NPTM with the same depth, q(|𝑥|), 
as N and accepts on all paths but one

3. Let NPP be a NPTM that chooses between simulating N and N’

Computation Paths : 2q(|𝑥|) + 1

Accepting Paths : ≥ 2q(|𝑥|) (N : ≥ 1, N’ : 2q(|𝑥|) – 1)

How Significant is the Collapse?

39



UP = NP = CoNP = PH = ⊕P = PP = PP ⋃ PPPP ⋃ …
UP ⊆ NP ⊆ PP, UP = PP → UP = NP
1. Let L ∈ NP and let N be the NPTM that accepts L

2. Let N’ be a NPTM with the same depth, q(|𝑥|), 
as N and accepts on all paths but one

3. Let NPP be a NPTM that chooses between simulating N and N’

Computation Paths : 2q(|𝑥|) + 1

Accepting Paths : ≥ 2q(|𝑥|) (N : ≥ 1, N’ : 2q(|𝑥|) – 1)

How Significant is the Collapse?
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UP = NP = CoNP = PH = ⊕P = PP = PP ⋃ PPPP ⋃ …
PP = CoPP
1. Let L ∈ PP and let N be the NPTM that accepts L

2. Let N’ be equivalent to N, but ensuring the rightmost path rejects

3. Let NCoPP a NPTM that takes N’ and expands down one level

For the rightmost leaf node of N’, one child accepts and one rejects
For accepting leaf nodes of N’, both children reject
For rejecting leaf nodes of N’, both children accept

How Significant is the Collapse?
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UP = NP = CoNP = PH = ⊕P = PP = PP ⋃ PPPP ⋃ …
PP = CoPP
1. Let L ∈ PP and let N be the NPTM that accepts L

2. Let N’ be equivalent to N, but ensuring the rightmost path rejects

3. Let 𝓎 be the number of accepting paths in N’

4. Let 𝒽 – 1 be the depth of N

Rejecting Paths : 2𝓎 + 1
Accepting Paths : 2𝒽 + 1 – 2𝓎 – 1

How Significant is the Collapse?
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UP = NP = CoNP = PH = ⊕P = PP = PP ⋃ PPPP ⋃ …
PP = CoPP
1. Let L ∈ PP and let N be the NPTM that accepts L

2. Let N’ be equivalent to N, but ensuring the rightmost path rejects

3. Let 𝓎 be the number of accepting paths in N’

4. Let 𝒽 – 1 be the depth of N

PP = CoPP, NP = PP → NP = CoNP

How Significant is the Collapse?
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UP = NP = CoNP = PH = ⊕P = PP = PP ⋃ PPPP ⋃ …

NP = CoNP → NPNP ∩ CoNP = NPNP = NP → PH = NP 

How Significant is the Collapse?
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UP = NP = CoNP = PH = ⊕P = PP = PP ⋃ PPPP ⋃ …

PNP ⊆ PH, NP = UP → PUP ⊆ PH, UP = PH → PUP = UP

How Significant is the Collapse?
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UP = NP = CoNP = PH = ⊕P = PP = PP ⋃ PPPP ⋃ …

PNP ⊆ PH, NP = UP → PUP ⊆ PH, UP = PH → PUP = UP
Lemma 4.14 → PP⊕P ⊆ PPP, PPP = UP, UP ⊆ ⊕P ⊆ PP⊕P 

→ UP = ⊕P

How Significant is the Collapse?
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UP = NP = CoNP = PH = ⊕P = PP = PP ⋃ PPPP ⋃ …

PNP ⊆ PH, NP = UP → PUP ⊆ PH, UP = PH → PUP = UP
Lemma 4.14 → PP⊕P ⊆ PPP, PPPP = UP, UP ⊆ ⊕P ⊆ PP⊕P 

→ UP = ⊕P
⊕P = PP, PP⊕P = PP → PPPP = PP⊕P = PP 

→ any stack of PPs of arbitrary height can be reduced to PP

How Significant is the Collapse?
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More Witness Reduction
Theorem 5.9 The following statements are equivalent

1. #P is closed under integer division
2. #P is closed under every polynomial-time computable operation
3. UP = PP

Definition 5.8 Let 𝓕 be a class of functions from ℕ to ℕ. We say that 𝓕
is closed under integer division (⊘) if

(∀𝑓1∈ 𝓕)(∀𝑓2∈ 𝓕 : (∀𝑛)[𝑓2(𝑛) > 0])[𝑓1 ⊘ 𝑓2 ∈ 𝓕]
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More Witness Reduction
Theorem 5.9 The following statements are equivalent

1. #P is closed under integer division
2. #P is closed under every polynomial-time computable operation
3. UP = PP

?
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More Witness Reduction
Closed(#P,⊘) → UP = PP

Let L be any PP set, there is a NPTM N and integer 𝑘 ≥ 1 such that

1. On each input 𝑥, N(𝑥) has exactly 2|𝑥|    computation paths, each containing 
|𝑥|𝑘 binary choices,

2. On each input 𝑥, 𝑥 ∈ L iff N(𝑥) has at least  2|𝑥|    – 1 accepting paths, and
3. On each input 𝑥, N(𝑥) has at least one rejecting path.
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𝑘
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More Witness Reduction
Closed(#P,⊘) → UP = PP

Let 𝑓 be the #P function for N
Let 𝑔 be the #P function 𝑔(𝑥) = 2|𝑥|    – 1

By assumption of closure under integer division

𝒽(𝑥) = 𝑓(𝑥) ⊘ 𝑔(𝑥)

is a #P function

𝑘
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More Witness Reduction
Closed(#P,⊘) → UP = PP

If 𝑥 ∈ L, 𝒽(𝑥) =                                                                 = 1

If 𝑥 ∉ L, 𝒽(𝑥) =                                                 = 0

The NPTM corresponding to 𝒽 is a UP machine for L
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Intermediate Potential 
Closure Properties
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P vs NP Analogues
2CNF-SAT ∊ P

SAT is NP-complete

SAT ∊ P ⟺ P = NP

PRIME ∊ NP, not known to be 
NP-complete or in P

Closed(#P, +)

Closed(#P, ⊖) ⟺ 
∀poly-time op, Closed(#P, op)

Closed(#P, ⊖) ⟺ UP = PP

????
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Is #P closed under proper decrement?

● Decrement a restrictive form of subtraction
○ Intuitively more likely that #P could be closed under proper 

decrement than proper subtraction
● Ideal result:

○ Two classes C and D s.t.:
#P is closed under proper decrement if and only if C = D

● How to approach this? Witness reduction technique!
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Is #P closed under proper decrement?

Theorem 5.11

1. If #P is closed under proper decrement, then NP ⊆ SPP.
2. If UP = NP, then #P is closed under proper decrement.
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SPP - Generalized UP

Polynomial-time computable function 𝑓
NPTM N

𝑥 ∉ L  ⟹ #accN(𝑥) = 𝑓(𝑥) − 1
𝑥 ∈ L  ⟹ #accN(𝑥) = 𝑓(𝑥) ........
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Is #P closed under proper decrement?

Theorem 5.11

1. If #P is closed under proper decrement, then NP ⊆ SPP.
2. If UP = NP, then #P is closed under proper decrement.
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𝑓(𝑥) = #accN(𝑥) ∈ #P

Closed(#P, ⊖1) ⟹ NP ⊆ SPP

59

L ∈ NP      NPTM N



𝑓(𝑥) = #accN(𝑥) ∈ #P

𝑔(𝑥) = 𝑓(𝑥)⊖1 ∈ #P

Closed(#P, ⊖1) ⟹ NP ⊆ SPP

assume closure under proper decrement
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L ∈ NP      NPTM N



𝑓(𝑥) = #accN(𝑥) ∈ #P

𝑔(𝑥) = 𝑓(𝑥)⊖1 ∈ #P

2𝑝(|𝑥|) − 𝑔(𝑥) ∈ #P

Closed(#P, ⊖1) ⟹ NP ⊆ SPP

assume closure under proper decrement

reverse acceptance behavior of all paths
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L ∈ NP      NPTM N



𝑓(𝑥) = #accN(𝑥) ∈ #P

𝑔(𝑥) = 𝑓(𝑥)⊖1 ∈ #P

2𝑝(|𝑥|) − 𝑔(𝑥) ∈ #P

𝑓(𝑥) + 2𝑝(|𝑥|) − 𝑔(𝑥) ∈ #P

Closed(#P, ⊖1) ⟹ NP ⊆ SPP

assume closure under proper decrement

reverse acceptance behavior of all paths

#P is closed under addition
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L ∈ NP      NPTM N



𝑓(𝑥) + 2𝑝(|𝑥|) − 𝑔(𝑥) ∈ #P

Closed(#P, ⊖1) ⟹ NP ⊆ SPP

63

𝑥 ∉ L   →   𝑓(𝑥) = 0   →   2𝑝(|𝑥|) +    0    −   (0 ⊖ 1)    = 2𝑝(|𝑥|)

𝑥 ∈ L   →   𝑓(𝑥) > 0   →   2𝑝(|𝑥|) + 𝑓(𝑥) − (𝑓(𝑥) − 1) = 2𝑝(|𝑥|) + 1



𝑓(𝑥) = #accN(𝑥) ∈ #P

𝑔(𝑥) = 𝑓(𝑥)⊖1 ∈ #P

2𝑝(|𝑥|) − 𝑔(𝑥) ∈ #P

𝑓(𝑥) + 2𝑝(|𝑥|) − 𝑔(𝑥) ∈ #P

Closed(#P, ⊖1) ⟹ NP ⊆ SPP

assume closure under proper decrement

reverse acceptance behavior of all paths

#P is closed under addition
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L ∈ NP      NPTM N

L ∈ SPP      NPTM N'



Is #P closed under proper decrement?

Theorem 5.11

1. If #P is closed under proper decrement, then NP ⊆ SPP.
2. If UP = NP, then #P is closed under proper decrement.
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UP = NP ⟹ Closed(#P, ⊖1)
𝑓 ∈ #P ∃ NPTM N  s.t. #accN(𝑥) = 𝑓(𝑥)

B = {⟨𝑥, 𝜙〉 : 𝜙 is an accepting path of N(𝑥) ∧
∃𝜙' s.t 𝜙 < 𝜙' ∧  𝜙' is acc. path of N(𝑥)}
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UP = NP ⟹ Closed(#P, ⊖1)
𝑓 ∈ #P ∃ NPTM N  s.t. #accN(𝑥) = 𝑓(𝑥)

B = {⟨𝑥, 𝜙〉 : 𝜙 is an accepting path of N(𝑥) ∧
∃𝜙' s.t 𝜙 < 𝜙' ∧  𝜙' is acc. path of N(𝑥)}
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ϕ

   A        A           A                A
  <        =           >               >
  ⨯        ⨯           ✓               ✓

ϕ



UP = NP ⟹ Closed(#P, ⊖1)
𝑓 ∈ #P ∃ NPTM N  s.t. #accN(𝑥) = 𝑓(𝑥)

B = {⟨𝑥, 𝜙〉 : 𝜙 is an accepting path of N(𝑥) ∧
∃𝜙' s.t 𝜙 < 𝜙' ∧  𝜙' is acc. path of N(𝑥)}

B ∈ NP B ∈ UP

68

by assumption that UP = NP

ϕ

ϕ

   A        A           A                A
  <        =           >               >
  ⨯        ⨯           ✓               ✓



UP = NP ⟹ Closed(#P, ⊖1)
𝑓 ∈ #P ∃ NPTM N  s.t. #accN(𝑥) = 𝑓(𝑥)

B = {⟨𝑥, 𝜙〉 : 𝜙 is an accepting path of N(𝑥) ∧
∃𝜙' s.t 𝜙 < 𝜙' ∧  𝜙' is acc. path of N(𝑥)}

B ∈ NP B ∈ UP

∃ NPTM N'  s.t. L(N') = B   ∧   #accN'(𝑥) ≤ 1
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by assumption that UP = NP

ϕ

ϕ

   A        A           A                A
  <        =           >               >
  ⨯        ⨯           ✓               ✓



UP = NP ⟹ Closed(#P, ⊖1)
L(N') = B   ∧  #accN'(𝑥) ≤ 1
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UP = NP ⟹ Closed(#P, ⊖1)
L(N') = B   ∧  #accN'(𝑥) ≤ 1

71

N

   A        A          A            A

N''

#accN(𝑥) = 𝑓(𝑥)



UP = NP ⟹ Closed(#P, ⊖1)
L(N') = B   ∧  #accN'(𝑥) ≤ 1
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N

   A        A          A            A

N'

N''

N' N' N'

   A               A              A                 R

#accN(𝑥) = 𝑓(𝑥)

#accN'(𝑥) = #accN(𝑥)⊖1



UP = NP ⟹ Closed(#P, ⊖1)
L(N') = B   ∧  #accN'(𝑥) ≤ 1
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N

   A        A          A            A

N'

N''

N' N' N'

   A               A              A                 R

#accN(𝑥) = 𝑓(𝑥)

#accN'(𝑥) = #accN(𝑥)⊖1 = 𝑓(𝑥)⊖1

𝑓(𝑥)⊖1 ∈ #P



Is #P closed under integer division by 2?

▪ Restricting subtraction to decrement was successful
▪ Restricting division to division by 2 might be similar
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Is #P closed under integer division by 2?

▪ Restricting subtraction to decrement was successful
▪ Restricting division to division by 2 might be similar

Theorem 5.12
If #P is closed under integer division by two, then ⊕P = SPP
(and thus PH ⊆ PP)

Note: SPP ⊆ ⊕P holds unconditionally, we need only show that ⊕P ⊆ SPP.
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𝑓(𝑥) = #accN(𝑥) ∈ #P

Closed(#P, ⊘2) ⟹ ⊕P = SPP

76

L ∈ ⊕P      NPTM N



𝑓(𝑥) = #accN(𝑥) ∈ #P

𝑔(𝑥) = 2(𝑓(𝑥)⊘2) ∈ #P

Closed(#P, ⊘2) ⟹ ⊕P = SPP
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assume closure under integer division by 2
L ∈ ⊕P      NPTM N



𝑓(𝑥) = #accN(𝑥) ∈ #P

𝑔(𝑥) = 2(𝑓(𝑥)⊘2) ∈ #P

2𝑝(|𝑥|) − 𝑓(𝑥) ∈ #P

Closed(#P, ⊘2) ⟹ ⊕P = SPP
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assume closure under integer division by 2

reverse acceptance behavior of all paths

L ∈ ⊕P      NPTM N



𝑓(𝑥) = #accN(𝑥) ∈ #P

𝑔(𝑥) = 2(𝑓(𝑥)⊘2) ∈ #P

2𝑝(|𝑥|) − 𝑓(𝑥) ∈ #P

2𝑝(|𝑥|) − 𝑓(𝑥) + 2(𝑓(𝑥)⊘2) ∈ #P

Closed(#P, ⊘2) ⟹ ⊕P = SPP
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assume closure under integer division by 2

reverse acceptance behavior of all paths

#P is closed under addition

L ∈ ⊕P      NPTM N



2𝑝(|𝑥|) − 𝑓(𝑥) + 2(𝑓(𝑥)⊘2) ∈ #P

Closed(#P, ⊘2) ⟹ ⊕P = SPP

𝑥 ∉ L → 𝑓(𝑥) even → 2𝑝(|𝑥|) − 𝑓(𝑥) + 2(   𝑓(𝑥)   )∕2 = 2𝑝(|𝑥|)

𝑥 ∈ L → 𝑓(𝑥) odd   → 2𝑝(|𝑥|) − 𝑓(𝑥) + 2(𝑓(𝑥)−1)∕2 = 2𝑝(|𝑥|) − 1
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𝑓(𝑥) = #accN(𝑥) ∈ #P

𝑔(𝑥) = 2(𝑓(𝑥)⊘2) ∈ #P

2𝑝(|𝑥|) − 𝑓(𝑥) ∈ #P

2𝑝(|𝑥|) − 𝑓(𝑥) + 2(𝑓(𝑥)⊘2) ∈ #P

Closed(#P, ⊘2) ⟹ ⊕P = SPP
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assume closure under integer division by 2

reverse acceptance behavior of all paths

#P is closed under addition

L ∈ ⊕P      NPTM N

NPTM N'

L ∈ SPP



Other operators?
We know UP = NP ⟹ Closed(#P, ⊖1), is there any 
operator that can reverse the direction?
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Closed(#P, ???) ⟹ UP = NP
UP is like NP with at most  1 accepting path
For NPTM N where 𝑓(𝑥) = #accN(𝑥), what function 
could we use to coerce this into a UP machine?
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Closed(#P, min) ⟹ UP = NP
UP is like NP with at most  1 accepting path
For NPTM N where 𝑓(𝑥) = #accN(𝑥), what function 
could we use to coerce this into a UP machine?

min(𝑓(𝑥), 1)
(Theorem 5.13.1)

84



Closed(#P, min) ⟹ UP = NP

min(𝑓(𝑥), 1) ∈ #P
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L ∈ UP

L ∈ NP 𝑓(𝑥) ∈ #P



Closed(#P, min) ⟹ Closed(#P, ⊖1)
Recall that UP = NP ⟹ Closed(#P, ⊖1)
We just proved Closed(#P, min) ⟹ UP = NP
So as a direct corollary we get

Closed(#P, min) ⟹ Closed(#P, ⊖1)
We can continue chaining prior results to get

Closed(#P, min) ⟹ NP ⊆ SPP
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Is #P closed under min/max?
Theorem 5.13

1. If #P is closed under minimum then UP = NP   ✓
2. If #P is closed under maximum or under minimum then C‗P = SPP
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SPP - Generalized UP

Polynomial-time computable function 𝑓
NPTM N

𝑥 ∉ L  ⟹ #accN(𝑥) = 𝑓(𝑥) − 1
𝑥 ∈ L  ⟹ #accN(𝑥) = 𝑓(𝑥) ........
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C‗P - Exact Counting

Polynomial-time computable function 𝑓
NPTM N

𝑥 ∈ L ⟺ #accN(𝑥) = 𝑓(𝑥)
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C‗P - Alternate Definition

Polynomial q
Polynomial-time predicate R
Polynomial-time function 𝑓

𝑥 ∈ L ⟺ ‖{𝑦 : |𝑦| = q(|𝑥|) ∧ R(𝑥, 𝑦)}‖ = 𝑓(𝑥)
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C‗P - Alternate Definition

Polynomial q
Polynomial-time predicate R
Polynomial-time function 𝑓

𝑥 ∈ L ⟺ ‖{𝑦 : |𝑦| = q(|𝑥|) ∧ R(𝑥, 𝑦)}‖ = 𝑓(𝑥)
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Polynomial length of pathCertificates (paths in N)



C‗P - Alternate Definition

Polynomial q
Polynomial-time predicate R
Polynomial-time function 𝑓

𝑥 ∈ L ⟺ ‖{𝑦 : |𝑦| = q(|𝑥|) ∧ R(𝑥, 𝑦)}‖ = 𝑓(𝑥)

92

Does N accept 𝑥 along path 𝑦?



C‗P - Alternate Definition

Polynomial q
Polynomial-time predicate R
Polynomial-time function 𝑓

𝑥 ∈ L ⟺ ‖{𝑦 : |𝑦| = q(|𝑥|) ∧ R(𝑥, 𝑦)}‖ = 𝑓(𝑥)

93

Exact number of accepting paths



C‗P - Alternate Definition, Fixed 𝑓

Polynomial q
Polynomial-time predicate R
Polynomial-time function 𝑓

𝑥 ∈ L ⟺ ‖{𝑦 : |𝑦| = q(|𝑥|) ∧ R(𝑥, 𝑦)}‖ = 2q(|𝑥|)−1
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Fix 𝑓 to be exactly half of all possibilities



C‗P - Single Sided Definition (Lemma 5.14)

Polynomial 𝑟
Polynomial-time predicate S

𝑥 ∈ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ = 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ < 2𝑟(|𝑥|)−2
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C‗P - Single Sided Definition (Lemma 5.14)

𝑟(𝑛) = 2q(𝑛)
S(𝑥, 𝑧) = (∃𝓌₁, 𝓌₂ : |𝓌₁| = |𝓌₂| = q(|𝑥|))

[𝓌₁ · 𝓌₂ = 𝑧 ∧ R(𝑥, 𝓌₁) ∧ ¬R(𝑥, 𝓌₂)]

𝑥 ∈ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ = 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ < 2𝑟(|𝑥|)−2
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𝑧 is two paths in N rather than just one

1st path accepts       2nd path rejects



C‗P - Single Sided Definition (Lemma 5.14)

𝑟(𝑛) = 2q(𝑛)
S(𝑥, 𝑧) = (∃𝓌₁, 𝓌₂ : |𝓌₁| = |𝓌₂| = q(|𝑥|))

[𝓌₁ · 𝓌₂ = 𝑧 ∧ R(𝑥, 𝓌₁) ∧ ¬R(𝑥, 𝓌₂)]

𝒽(𝑥) = 𝑓(𝑥)(2q(|𝑥|) − 𝑓(𝑥))
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C‗P - Single Sided Definition (Lemma 5.14)

𝒽(𝑥) = 𝑓(𝑥)(2q(|𝑥|) − 𝑓(𝑥))
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𝑓(𝑥) = 2q(|𝑥|)−1

𝒽(𝑥) = 22q(|𝑥|)−2 = 2𝑟(|𝑥|)−2



C‗P - Single Sided Definition (Lemma 5.14)

𝒽(𝑥) = 𝑓(𝑥)(2q(|𝑥|) − 𝑓(𝑥))
max(𝒽(𝑥)) = 2𝑟(|𝑥|)−2
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𝑓(𝑥) = 2q(|𝑥|)−1

𝒽(𝑥) = 22q(|𝑥|)−2 = 2𝑟(|𝑥|)−2



C‗P - Single Sided Definition (Lemma 5.14)

𝑥 ∈ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ = 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ < 2𝑟(|𝑥|)−2

𝒽(𝑥) = 𝑓(𝑥)(2q(|𝑥|) − 𝑓(𝑥))
max(𝒽(𝑥)) = 2𝑟(|𝑥|)−2
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C‗P - Single Sided Definition (Lemma 5.14)

𝑥 ∈ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ = 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ < 2𝑟(|𝑥|)−2

q = 𝑟 R = S 𝑓(𝑥) = 2𝑟(|𝑥|)−2

𝑥 ∈ L ⟺ ‖{𝑦 : |𝑦| = q(|𝑥|) ∧ R(𝑥, 𝑦)}‖ = 𝑓(𝑥)

101
⟶



Is #P closed under min/max?
Theorem 5.13

1. If #P is closed under minimum then UP = NP   ✓
2. If #P is closed under maximum or under minimum then C‗P = SPP

Note: SPP ⊆ C‗P holds unconditionally, proof is trivial.
We need only show C‗P ⊆ SPP.
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Closed(#P, max) ⟹ C‗P = SPP

𝑥 ∈ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ = 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ < 2𝑟(|𝑥|)−2
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Closed(#P, max) ⟹ C‗P = SPP

𝑥 ∈ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ = 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ < 2𝑟(|𝑥|)−2

↓
∃𝑓 ∈ #P

𝑥 ∈ L ⟹ 𝑓(𝑥) = 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ 𝑓(𝑥) < 2𝑟(|𝑥|)−2
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Closed(#P, max) ⟹ C‗P = SPP
𝑥 ∈ L ⟹ 𝑓(𝑥) = 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ 𝑓(𝑥) < 2𝑟(|𝑥|)−2
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𝑔(𝑥) = 2𝑟(|𝑥|)−2 − 1 ∈ #P



Closed(#P, max) ⟹ C‗P = SPP
𝑥 ∈ L ⟹ 𝑓(𝑥) = 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ 𝑓(𝑥) < 2𝑟(|𝑥|)−2
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𝑔(𝑥) = 2𝑟(|𝑥|)−2 − 1 ∈ #P

𝒽(𝑥) = max(𝑓(𝑥), 𝑔(𝑥))



Closed(#P, max) ⟹ C‗P = SPP
𝑥 ∈ L ⟹ 𝑓(𝑥) = 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ 𝑓(𝑥) < 2𝑟(|𝑥|)−2
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𝑔(𝑥) = 2𝑟(|𝑥|)−2 − 1 ∈ #P

𝒽(𝑥) = max(𝑓(𝑥), 𝑔(𝑥))

𝑥 ∈ L ⟹ max(2𝑟(|𝑥|)−2,    2𝑟(|𝑥|)−2 − 1) = 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ max(<2𝑟(|𝑥|)−2, 2𝑟(|𝑥|)−2 − 1) = 2𝑟(|𝑥|)−2 − 1



Closed(#P, max) ⟹ C‗P = SPP
𝑥 ∈ L ⟹ 𝑓(𝑥) = 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ 𝑓(𝑥) < 2𝑟(|𝑥|)−2
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𝑔(𝑥) = 2𝑟(|𝑥|)−2 − 1 ∈ #P

𝒽(𝑥) = max(𝑓(𝑥), 𝑔(𝑥))

NPTM N

L ∈ SPP



Is #P closed under min/max?
Theorem 5.13

1. If #P is closed under minimum then UP = NP   ✓
2. If #P is closed under maximum or under minimum then C‗P = SPP
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✓



Closed(#P, min) ⟹ C‗P = SPP
𝑥 ∈ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ = 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ < 2𝑟(|𝑥|)−2
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Closed(#P, min) ⟹ C‗P = SPP
𝑥 ∈ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ = 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ < 2𝑟(|𝑥|)−2

negate S, essentially flipping accepting/rejecting paths

𝑥 ∈ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ ¬S(𝑥, 𝑦)}‖ = 2𝑟(|𝑥|) − 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ ¬S(𝑥, 𝑦)}‖ > 2𝑟(|𝑥|) − 2𝑟(|𝑥|)−2
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Closed(#P, min) ⟹ C‗P = SPP
𝑥 ∈ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ = 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ S(𝑥, 𝑦)}‖ < 2𝑟(|𝑥|)−2

negate S, essentially flipping accepting/rejecting paths

𝑥 ∈ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ ¬S(𝑥, 𝑦)}‖ = 2𝑟(|𝑥|) − 2𝑟(|𝑥|)−2

𝑥 ∉ L ⟹ ‖{𝑦 : |𝑦| = 𝑟(|𝑥|) ∧ ¬S(𝑥, 𝑦)}‖ > 2𝑟(|𝑥|) − 2𝑟(|𝑥|)−2

𝑥 ∈ L ⟹ 𝑓(𝑥) = (¾)2𝑟(|𝑥|)

𝑥 ∉ L ⟹ 𝑓(𝑥) > (¾)2𝑟(|𝑥|)
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Closed(#P, min) ⟹ C‗P = SPP
𝑥 ∈ L ⟹ 𝑓(𝑥) = (¾)2𝑟(|𝑥|)

𝑥 ∉ L ⟹ 𝑓(𝑥) > (¾)2𝑟(|𝑥|)

113

𝑔(𝑥) = (¾)2𝑟(|𝑥|) + 1 ∈ #P



Closed(#P, min) ⟹ C‗P = SPP
𝑥 ∈ L ⟹ 𝑓(𝑥) = (¾)2𝑟(|𝑥|)

𝑥 ∉ L ⟹ 𝑓(𝑥) > (¾)2𝑟(|𝑥|)
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𝑔(𝑥) = (¾)2𝑟(|𝑥|) + 1 ∈ #P

𝒽(𝑥) = min(𝑓(𝑥), 𝑔(𝑥))



Closed(#P, min) ⟹ C‗P = SPP
𝑥 ∈ L ⟹ 𝑓(𝑥) = (¾)2𝑟(|𝑥|)

𝑥 ∉ L ⟹ 𝑓(𝑥) > (¾)2𝑟(|𝑥|)
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𝑔(𝑥) = (¾)2𝑟(|𝑥|) + 1 ∈ #P

𝒽(𝑥) = min(𝑓(𝑥), 𝑔(𝑥))

𝑥 ∈ L ⟹ min((¾)2𝑟(|𝑥|),     (¾)2𝑟(|𝑥|) + 1) = (¾)2𝑟(|𝑥|)

𝑥 ∉ L ⟹ min(>(¾)2𝑟(|𝑥|), (¾)2𝑟(|𝑥|) + 1) = (¾)2𝑟(|𝑥|) + 1



Closed(#P, min) ⟹ C‗P = SPP
𝑥 ∈ L ⟹ 𝑓(𝑥) = (¾)2𝑟(|𝑥|)

𝑥 ∉ L ⟹ 𝑓(𝑥) > (¾)2𝑟(|𝑥|)
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𝑔(𝑥) = (¾)2𝑟(|𝑥|) + 1 ∈ #P

𝒽(𝑥) = min(𝑓(𝑥), 𝑔(𝑥))

NPTM N

L ∈ SPP



More to consider

● Classes other than #P
○ OptP (max output)
○ SpanP (cardinality of set of outputs)

● Complete characterizations
○ Open issue for #P under proper decrement
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Thanks!
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120

Bonus Content: OptP



OptP - Optimization Functions

𝑓 ∈ OptP iff, for some NPTM N:

𝑓(𝑥) = max{𝑖 ∈ ℕ : a path of N(𝑥) outputs 𝑖}
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Is OptP closed under proper subtraction?
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Is OptP closed under proper subtraction?

Theorem 5.15    The following are equivalent:

1. OptP is closed under proper subtraction
2. OptP is closed under every polynomial-time operation
3. NP = coNP
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Is OptP closed under proper subtraction?

Theorem 5.15    The following are equivalent:

1. OptP is closed under proper subtraction
2. OptP is closed under every polynomial-time operation
3. NP = coNP
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✔



Is OptP closed under proper subtraction?
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NP = coNP ⟹ Closed(OptP, op)
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L𝑓 = {〈𝑥, 𝑖〉 : 𝑓(𝑥) > 𝑖} ∈ NP = coNP
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Lබ 𝑓 ∈ NP ⟶ NPTM N≥𝑓
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Closed(OptP, ⊖) ⟹ NP = coNP
output 1 on accepting paths, 0 on rejecting paths
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⎱0 otherwise ∈ OptP
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assume closure under proper subtraction
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SpanP - Output Cardinality

𝑓 ∈ SpanP iff, for some NPTM N:

𝑓(𝑥) = ‖{𝓌 ∈ Σ* : an accepting path of N(𝑥) outputs 𝓌}‖
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Is SpanP closed under proper subtraction?

Theorem 5.16    The following are equivalent:

1. SpanP is closed under proper subtraction
2. SpanP is closed under every polynomial-time operation
3. PPNP = PH = NP

Proof is left as an exercise for the reader.
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