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[s #P closed under proper subtraction?




[s #P closed under proper subtraction?

Definition 8.2 (#P) #P is the set of all functions f: {0, 1}* - N such that there is a
NPTM M such that for all x € {0, 1}*,

f(x) = number of accepting branches in M’s computation graph on x
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[s #P closed under proper subtraction?

Definition 8.2 (#P) #P is the set of all functions f: {0, 1}* - N such that there is a
NPTM M such that for all x € {0, 1}*,

f(x) = number of accepting branches in M’s computation graph on x

Proper Subtraction () a © b= max({0, a- b})
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[s #P closed under proper subtraction?

Definition 8.2 (#P) #P is the set of all functions f: {0, 1}* - N such that there is a
NPTM M such that for all x € {0, 1}*,

f(x) = number of accepting branches in M’s computation graph on x
Proper Subtraction () a © b= max({0, a- b})

Let obe an operation from N x N to N and let F be a class of functions from N to N.
We say that F is closed under (the operation) o if

(Y, € F)(VS, € F)[h, , € ]
where hfl,fz(n) =o[ fi(m), f,(n) ]
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Other #P Closures

Example: #P is closed under addition Example: #P is closed under multiplication




Other #P Closures

Example: #P is closed under addition Example: #P is closed under multiplication

v /¢\ N /¢\

fl(w) + fz(x)
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Preliminary Definitions

Predicate (does N accept x on ¢)

Polynomial length of path
Certificates (paths in N) w

{y | 1yl < q(lx]) A R(x, »)}




Preliminary Definitions

Definition of UP

A language Lis in UP if there is a polynomial-time predicate R
and a polynomial g such that for all x,

lifxelL

I{% | 1yl < q(lx]) A R(x, )} ={ Oifx & L




Preliminary Definitions

Definition of PP

A language Lis in PP if there exists a polynomial gand a
polynomial-time predicate R such that for all x,

~ _ ) <29D-Tifx g L
I{% | 1yl = q(lx]) A RCx, )} —{ > 240D -1if y € [,
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Preliminary Definitions

Definition of ©P
Alanguage L is in @P if there exists a polynomial g and a
polynomial-time predicate R such that for all x,

evenifx & L
oddif x € L

(% | 19l < q(x]) A RGx )] ={
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Witness Reduction Technique

Witness?
Adding is easy, removing is difficult
Consequences of the possibility of removing witnesses

Complexity class collapse

Idea of the technique

12



Witness Reduction Technique

C
LES, S,E 5, LES,
\ Take some set in to Coerce the function ‘
the larger class 51 — 52 back into a machine .
(S,) and coerce it defining a language in N L
\ into #P function the smaller class (S,) ‘
Application of
#P bb . #P

: Assumed Closure
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[s #P closed under proper subtraction?

e Find a collapse that characterizes the closure

e Operator ‘completeness’ for #P

14



[s #P closed under proper subtraction?

Theorem 5.6 The following statements are equivalent

1. #Pisclosed under proper subtraction.
2. #Pis closed under every polynomial-time computable operation
3. UP=PP
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[s #P closed under proper subtraction?

Theorem 5.6 The following statements are equivalent

1. #Pisclosed under proper subtraction.
v <2. #P is closed under every polynomial-time computable operation
3. UP=PP
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[s #P closed under proper subtraction?

Theorem 5.6 The following statements are equivalent

1. #Pisclosed under proper subtraction.
? [ +2. #Pis closed under every polynomial-time computable operation
3. UP=PP
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[s

P closed under proper subtraction?

Theorem 5.6 The following statements are equivalent

1. #Pisclosed under proper subtraction.
? [ +2. #Pis closed under every polynomial-time computable operation
3. UP=PP

_________

___________________

1. Closed (#P,©) |

' 2. Closed (#P,op) (op is any arbitrary polynomial-time computable operation)

129 UNIVERSITY-ROCHESTER 18
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[s #P closed under proper subtraction?

Closed(#P,&) —» UP = PP
Closed(#P,©) — PP < UP A UP C PP

UP € PP by direct proof

19



[s

3.

P closed under proper subtraction?

UP < PP by direct proof
Let L be a UP language and let N be the NPTM that accepts L

Let N'be a NPTM with the same depth, g(|x|), as N and accepts
on all paths but one

Let N,, be a NPTM that chooses between simulating Nand N’

Computation Paths : 29(¥D +1

Accepting Paths : 290D (N: 1, N”: 290D - 1)
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[s #P closed under proper subtraction?
Closed(#P,©) — UP = PP
Closed(#P,©) - PP < UP A UP C PP
UP < PP by direct proof
Closed(#P,©) —» PP C UP
Closed(#P,©) — PP € CoNP A CoNP € UP

I29, UNIVERSITYROCHESTER
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[s #P closed under proper subtraction?

Closed(#P,&) — PP € CoNP
L€ PP

L={x | l{# | lgl=q(xl) » RGx )} = 29001}

Let g’(]x]) = q(|x|) + 1 and for b € {0, 1}, R'(x, #b) = R(x, ¢) and,
for all n, g(n) = 1 (avoid q(|x|) = 0)
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[s #P closed under proper subtraction?
Closed(#P,&) — PP € CoNP

Let Nbe an NPTM that on input x guesses each ¢ such that
|| = q(|x|) then tests R(x, ¢)

The #P function f defined by this NPTM has that

X € L— f(x) > 2901
x & L- f(x) <2901

23



[s #P closed under proper subtraction?
Closed(#P,&) — PP € CoNP

g(x) =290D-1_1 js a #P function

By assumption of closure under proper subtraction

A(x) = f(x) © g(x)
is a #P function, and by substituting yields
H(x)=1 ifxel
H(x)=0 ifxéglL Clearly NP, but ...

I29, UNIVERSITYROCHESTER
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[s #P closed under proper subtraction?
Closed(#P,&) — PP € CoNP

There exists a NPTM N for which £ computes the number of
accepting paths

The values of £ are such that Nis an NP machine, so the
arbitrary PP language is in NP

[t follows that PP © NP
PP = CoPP — PP € CoNP

129 UNIVERSITY-ROCHESTER 25
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[s #P closed under proper subtraction?
Closed(#P,&©) — CoNP < UP

Let L be an arbitrary CoNP language

There exists a NPTM N that accepts L

N defines a #P function f such that
xeEL->f(x)=0
x¢L-f(x)=>1

26



[s #P closed under proper subtraction?
Closed(#P,&©) — CoNP < UP

The constant function g(x) = 1 is a #P function

By assumption of closure under proper subtraction
A(x) =g(x) © f(x)

is a #P function, and by substituting yields

Hix)=1 ifxel

H(x)=0 ifxéglL

4 corresponds to a UP machine

86l UNIVERSITY+ ROCHESTER
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[s #P closed under proper subtraction?

Theorem 5.6 The following statements are equivalent

1. #Pisclosed under proper subtraction.
2. #Pis closed under every polynomial-time computable operation
"(3. UP=PP

129 UNIVERSITY-ROCHESTER 8
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[s #P closed under proper subtraction?
UP = PP — Closed(#P,op)

1. Let opbe an arbitrary polynomial-time computable operation
2. Let f and g be arbitrary #P functions

B.={{(x,n | f(x) 2n}€PP
B ={{xn | g(x) >n}€EPP
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[s #P closed under proper subtraction?
UP = PP — Closed(#P,op)

1. Let opbe an arbitrary polynomial-time computable operation
2. Let f and g be arbitrary #P functions

B.={{(x,n | f(x) 2n}€PP
B ={{xn | g(x) >n}€EPP

V={xn,n) | {x,n) €B.A(x,n +1) B A
<x,n2> EBg/\ <x,n2+ 1) ¢ Bg}

I29, UNIVERSITYROCHESTER
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[s #P closed under proper subtraction?
UP = PP — Closed(#P,op)

V gives precise values of f(x) and g(x) by testing adjacent ns to find
transition points in Bf and Bg

V 4-truth-table reduces to the language Bf @ Bg

@ denotes disjoin Union: Y @ Z={0x | x€eY} U {1x | x € Z}

86l UNIVERSITY+ ROCHESTER
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[s #P closed under proper subtraction?
UP = PP — Closed(#P,op)

V gives precise values of f(x) and g(x) by testing adjacent ns to find
transition points in Bf and Bg

Corollary 9.17 PP is closed under polynomial time
bounded-truth-table reductions and disjoint union - V € PP

V € UP by assumption that UP = PP

86l UNIVERSITY+ ROCHESTER
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[s

P closed under proper subtraction?
UP = PP — Closed(#P,op)

f and g are #P functions, so for some polynomial g and for all x
max{f (x), g(x)} < 29"V

Consider the NP machine N that on input x

1.
2.
3.

Nondeterministically choose an integer i, 0 < i < 290*D
Nondeterministically choose an integer j, 0 < j < 290D

Guesses a computation path of Von input {x, i, j. If the path rejects, reject.
Otherwise, nondeterministically guess an integer k, 1 < k < op(i, j) and
accept.

;@@@ UNIVERSITY» ROCHESTER



[s #P closed under proper subtraction?
UP = PP — Closed(#P,op)
Foralli # f(x) and j # g(x), V({x, i, j)) rejects
For the correct i and j, N(x) accepts along precisely op(i, j) paths

The #P function defined by this machine is A (x) = op(f (x), g(x))

34



[s

P closed under proper subtraction?

op(i, J)

35



How Significant is the Collapse?

89, UNIVERSITY»ROCHESTER

©

36



How Significant is the Collapse?

Theorem 5.7 The following statements are equivalent

1. UP=PP
2. UP=NP=CoNP=PH=@P=PP=PPUPPFU ..
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How Significant is the Collapse?

Theorem 5.7 The following statements are equivalent

1. UP=PP
2. UP=NP=CoNP=PH=@P=PP=PPUPPFU ..

Prove each of the above in sequence
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How Significant is the Collapse?

UP = NP = CoONP=PH = @P =PP=PP UPP* U ...

NP C PP
1. Let L € NP and let Nbe the NPTM that accepts L

2. Let N’be a NPTM with the same depth, g(|x|),
as N and accepts on all paths but one

3. Let N,,bea NPTM that chooses between simulating Nand N’

Computation Paths : 29(¥D +1
Accepting Paths : > 290*D (N: > 1, N’: 29(*D — 1)
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How Significant is the Collapse?

UP = NP = CoONP=PH = @P =PP=PP UPP* U ...

UP € NP € PP, UP =PP - UP =NP
1. Let L € NP and let Nbe the NPTM that accepts L

2. Let N’be a NPTM with the same depth, g(|x|),
as N and accepts on all paths but one

3. Let N,,bea NPTM that chooses between simulating Nand N’

Computation Paths : 29(¥D +1
Accepting Paths : > 290*D (N: > 1, N’: 29(*D — 1)
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How Significant is the Collapse?

UP =NP = CoNP = PH = (P = PP = PP U PP** U ...
PP = CoPP
1. Let L€ PP and let Nbe the NPTM that accepts L

2. Let N’be equivalent to N, but ensuring the rightmost path rejects

3. Let N ppa NPTM that takes N"and expands down one level

For the rightmost leaf node of N’, one child accepts and one rejects
For accepting leaf nodes of N’, both children reject

For rejecting leaf nodes of N’, both children accept

129 UNIVERSITY-ROCHESTER 41
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How Significant is the Collapse?

UP = NP = CoNP =PH = (GP = PP =PP U PP** U ...

PP = CoPP

1.
2.
3.
4.

Let L € PP and let N be the NPTM that accepts L
Let N'be equivalent to N, but ensuring the rightmost path rejects

Let ¢ be the number of accepting paths in N’
Let 4 - 1 be the depth of N

Rejecting Paths: 2¢ + 1
Accepting Paths : 2#+1-2¢4 -1

42



How Significant is the Collapse?

UP = NP = CoNP =PH = (GP = PP =PP U PP** U ...

PP = CoPP
1. Let L€ PP and let Nbe the NPTM that accepts L

2. Let N’be equivalent to N, but ensuring the rightmost path rejects
3. Lety be the number of accepting paths in N’
4. Let# -1bethedepthof N

PP = CoPP, NP = PP —» NP = CoNP
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How Significant is the Collapse?
UP =NP = CoNP =PH = (P = PP = PP U PP** U ...

NP = CoNP — NPNP " CoNP — NPNP — NP —, PH = NP

44



How Significant is the Collapse?
UP = NP = CoNP = PH = @®P = PP = PP U PP U .

PN’ € PH,NP = UP - P'Y € PH, UP = PH - P"* = UP

45



How Significant is the Collapse?
UP = NP = CoNP = PH = @®P = PP = PP U PP U .

PNP c PH, NP = UP —» PY? € PH, UP = PH — PU? = UP
Lemma 4.14 —» PP®P c PPP PPP — UP, UP < @P < PP®P
— UP = P

46



How Significant is the Collapse?
UP = NP = CoNP = PH = @®P = PP = PP U PPPP U ...

PNP ¢ PH, NP = UP - P’ € PH, UP = PH - P’ = UP
Lemma 4.14 —» PP®? c PP? PPPP = UP, UP € OP < PP®P
- UP =P
@P = PP, PP®®? = PP — PP? = PPYP = pp
— any stack of PPs of arbitrary height can be reduced to PP

;@@‘?@ UNIVERSITY» ROCHESTER
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More Witness Reduction

Theorem 5.9 The following statements are equivalent

1. #Pis closed under integer division
2. #Pis closed under every polynomial-time computable operation

3. UP=PP

Definition 5.8 Let F be a class of functions from N to N. We say that F
is closed under integer division (@) if

Vi, EF)Vf,eF: (Yn)[f,(n)>0D[f, O f,€F]

86l UNIVERSITY+ ROCHESTER
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(

More Witness Reduction

Theorem 5.9 The following statements are equivalent

1. #Pis closed under integer division
2. #Pis closed under every polynomial-time computable operation

3. UP=PP

86l UNIVERSITY+ ROCHESTER
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More Witness Reduction

Closed(#P,(») - UP = PP
Let L be any PP set, there isa NPTM N and integer k = 1 such that

1. Oneachinput x, N(x) has exactly 2llf computation paths, each containing
|x|* binary choices,

2. Oneach input x, x € Liff N(x) has at least 2l -1 accepting paths, and

3. On each input x, N(x) has at least one rejecting path.

86l UNIVERSITY+ ROCHESTER

\ //
\@/

50



More Witness Reduction

Closed(#P,») —» UP = PP
Let f be the #P function for N
Let g be the #P function g(x) = olxff -1

By assumption of closure under integer division

n(x) =f(x) O g(x)

is a #P function

86l UNIVERSITY+ ROCHESTER
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More Witness Reduction

Ifxel A(x)=

IfxgL, A(x)=

Closed(#P,») —» UP = PP

2l < fa) <ol 1|
ol[F—1

0 < f(x) < kalJz ;

olzk—1

The NPTM corresponding to # is a UP machine for L

52



Intermediate Potential
Closure Properties

J&8l UNIVERSITY ROCHESTER
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P vs NP Analogues

2CNF-SAT e P Closed(#P, +)
SAT is NP-complete Closed(#P, ©) &

Vpoly-time op, Closed (#P, op)
SATeP&< P =NP Closed(#P, ©) < UP = PP
PRIME € NP, not known to be 7777

NP-complete or in P

86l UNIVERSITY+ ROCHESTER
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[s #P closed under proper decrement?

e Decrement a restrictive form of subtraction

O Intuitively more likely that #P could be closed under proper
decrement than proper subtraction

e Ideal result:
O Two classes C and D s.t.:
#P is closed under proper decrement if and only if C=D

e How to approach this? Witness reduction technique!

86l UNIVERSITY+ ROCHESTER
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[s #P closed under proper decrement?

Theorem 5.11

1. If#Pis closed under proper decrement, then NP €
2. If UP = NP, then #P is closed under proper decrement.

56



SPP - Generalized UP

Polynomial-time computable function f
NPTM N

x ¢ L = #acc,(x) = f(x) — 1
x € L = #acc,(x) = f(x)

57



[s #P closed under proper decrement?

Theorem 5.11

1.

If #P is closed under proper decrement, then NP € SPP. ]

2.

I[f UP = NP, then #P is closed under proper decrement.

58



Closed(

Le NP—NPTM N

P, ©1) = NP C SPP
- f(x) = #acc,(x) € #P

59



Closed(#P, ©1) = NP € SPP
Le NP—NPTM N - f(x) = #acc,(x) € #P
|

assume closure under proper decrement

g(x) =f(x)O1 e #P

60



Closed(#P, ©1) = NP € SPP
Le NP—NPTM N - f(x) = #acc,(x) € #P
|

assume closure under proper decrement

gx) =f(x)O1 e #P

reverse acceptance behavior of all paths

|
(X)) _ g(x) € #P
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Closed(#P, ©1) = NP € SPP
Le NP—NPTM N - f(x) = #acc,(x) € #P
|

assume closure under proper decrement

gx) =f(x)O1 e #P

reverse acceptance behavior of all paths

|
(X)) _ g(x) € #P

#P is closed under addition

f(x) + 2pPUxD . g(x) € #P
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Closed(#

P, ©1) = NP C SPP

x¢L - f(x)=0 - 2?2FD+ 0 — (06 1) =2°r0KD

xeL - f()>0 - 2P+ f(x) — (f(x) — 1) =2P0D + 1

Fx) + 2°D — g(xj € #P

63



Closed(#P, ©1) = NP € SPP
Le NP—NPTM N - f(x) = #acc,(x) € #P
|

assume closure under proper decrement

gx) =f(x)O1 e #P

reverse acceptance behavior of all paths

|
(X)) _ g(x) € #P

#P is closed under addition

|
L e SPP-—NPTM N’ — f(x) + 2PU*D — g(x) € #P

64



[s #P closed under proper decrement?

Theorem 5.11

1.

If #P is closed under proper decrement, then NP € SPP.

2.

[f UP = NP, then #P is closed under proper decrement.]

65



UP = NP = Closed(#P, ©1)

fe#P —INPTM N s.t. #acc,(x) = f(x)

B={{x, ¢) : ¢ is an accepting path of N(x) A
A¢' st p < P' A @' is acc. path of N(x)}

66



UP = NP = Closed(#P, ©1)

fe#P —INPTM N s.t. #acc,(x) = f(x)

B={{x, ¢) : ¢ is an accepting path of N(x) A
A¢' st p < P' A @' is acc. path of N(x)}
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UP = NP = Closed(#P, ©1)

fe#P —INPTM N s.t. #acc,(x) = f(x)

B={{x, ¢) : ¢ is an accepting path of N(x) A
A¢' st p < P' A @' is acc. path of N(x)}

by assumption that UP = NP

Be UP

B e NP

x| >

NV >

68



UP = NP = Closed(#P, ©1)

fe#P —INPTM N s.t. #acc,(x) = f(x)

)
B={{x, ¢) : ¢ is an accepting path of N(x) A
Jp'stp < @' A ¢'isacc. path of N(x)} h
by assumption that UP = NP A A A
B e NP Be UP < c

l x

INPTM N’ s.t. L(N) =B A #acc, (x) < 1

69



UP = NP = Closed(#P, ©1)

L(N) =B A #acc,(x) <1

89, UNIVERSITY»ROCHESTER
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UP = NP = Closed(#P, ©1)

N L(N) =B A #acc,(x) <1

N

A

A

A A~ |#acc,(x) = f(x)

71



UP = NP = Closed(#P, ©1)

N L(N) =B A #acc,(x) <1

PN

A A A A~ ]#acc, (x) = f(x)

VAVAYAAN

A A A R | #acc, (x) = #acc,(x)O1

72



UP = NP = Closed(#P, ©1)

N L(N) =B A #acc,(x) <1

/I\\
A A A A ]#ach(x)zf(x)

VATAYANIAN

x a A g ] #acc, (x) = #acc (x)O1 = f(x)O1

l
f()O1 € #P)

73



[s #P closed under integer division by 27?

- Restricting subtraction to decrement was successful
- Restricting division to division by 2 might be similar

74



[s #P closed under integer division by 27?

Restricting subtraction to decrement was successful
Restricting division to division by 2 might be similar

Theorem 5.12

If #P is closed under integer division by two, then @P = SPP
(and thus PH € PP)

Note: SPP € @P holds unconditionally, we need only show that @P < SPP.

52, UNIVERSITY+ROCHESTER

)

75



Closed(#P, ©2) = @©P = SPP

Le P —NPTM N

- f(x) = #acc,(x) € #P

76



Closed(#P, ©2) = @©P = SPP
Le P —NPTM N - f(x) = #acc,(x) € #P
|

assume closure under integer division by 2

g(x) =2(f(x)D2) e #P

77



Closed(#P, ©2) = @©P = SPP
Le P —NPTM N - f(x) = #acc,(x) € #P
|

assume closure under integer division by 2

g(x) =2(f(x)D2) e #P

reverse acceptance behavior of all paths

|
20(]x]) _ f(x) € #P
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Closed(#P, ©2) = @©P = SPP
Le P —NPTM N - f(x) = #acc,(x) € #P
|

assume closure under integer division by 2

g(x) =2(f(x)D2) e #P

reverse acceptance behavior of all paths

|
20(]x]) _ f(x) € #P

#P is closed under addition l

20D — f(x) + 2(f(x)D2) € #P

79



Closed(#P, ©2) = @©P = SPP

x ¢ L— f(x)even —» 2P0 — f(x) + 2( f(x) )/2=2rH
xeL- f(x)odd - 2P — f(x) + 2(f(x)—1)/2 = 27D — 1

270D — f(x) + 2(f(x)@2) € #P

80



Closed(#P, ©2) = @©P = SPP
Le P —NPTM N - f(x) = #acc,(x) € #P
|

assume closure under integer division by 2

g(x) =2(f(x)D2) e #P

reverse acceptance behavior of all paths

|
20(]x]) _ f(x) € #P

#P is closed under addition l

LeSPP 20D — f(x) + 2(f (1) D2) € #P
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Other operators?

We know UP = NP = Closed(#P, ©1), is there any
operator that can reverse the direction?

82



Closed(

P,77?) = UP = NP

UP is like NP with at most 1 accepting path

For NPTM N where f(x) = #acc,(x), what function
could we use to coerce this into a UP machine?

83



Closed(

P, min) = UP = NP

UP is like NP with at most 1 accepting path

For NPTM N where f(x) = #acc,(x), what function
could we use to coerce this into a UP machine?

(Theorem 5.13.1)

I29, UNIVERSITYROCHESTER

)

min(f (x), 1)
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Closed(#P, min) = UP = NP

Le NP - f(x) € #P

|

Le UP — min(f(x),1) e #P

I29, UNIVERSITYROCHESTER 25




Closed(#P, min) = Closed(#P, ©1)

Recall that UP = NP = Closed(#P, ©1)
We just proved Closed(#P, min) = UP = NP

So as a direct corollary we get
Closed(#P, min) = Closed(#P, ©1)
We can continue chaining prior results to get
Closed(#P, min) = NP < SPP

52, UNIVERSITY+ROCHESTER
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[s #P closed under min/max?

Theorem 5.13

1. If#Pis closed under minimum then UP = NP
2. If #P is closed under maximum or under minimum then= SPP
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SPP - Generalized UP

Polynomial-time computable function f
NPTM N

x ¢ L = #acc,(x) = f(x) — 1
x € L = #acc,(x) = f(x)

88



C_P - Exact Counting

Polynomial-time computable function f
NPTM N

x € L & #acc,(x) = f(x)

89



C_P - Alternate Definition

Polynomial g
Polynomial-time predicate R

Polynomial-time function f

xe L= |[{y:1y1=q(x)) AR, y)}I = f(x)




C_P - Alternate Definition

Polynomial ¢ ------------.
Polynomial-time predicate R

Polynomial-time function f

xe L [1{y: 1yl = q(x) ARG Y = £)

Certificates (paths in N) Polynomial length of path




C_P - Alternate Definition

Polynomial q
Polynomial-time predicate R------

Polynomial-time function f

xeLe |lfy: iyl = q(x1) ARG )} = £(x)

Does N accept x along path y?




C_P - Alternate Definition

Polynomial g
Polynomial-time predicate R

Polynomial-time function f ---------------

xeLe ||[{y: 1yl = q(x]) ARG, MY = f£(x)

1
Exact number of accepting paths




C_P - Alternate Definition, Fixed f

Polynomial g
Polynomial-time predicate R

nol RN,

xeLe |[{y: 1yl = q(ix) A R(x, y)}|| = 290+D~"

Fix fto be exactly half of all possibilities
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C_P - Single Sided Definition (Lemmas.14)

Polynomial r
Polynomial-time predicate S

xe L= |l{y: 1yl =r(x) A SCx, y)}|| = 27D=2
xe L= ||{y: [yl =r(Ix]) A SCx, )} < 27D~

52, UNIVERSITY+ROCHESTER
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C_P - Single Sided Definition (Lemmas.14)

7"(7’1,) = 2 q(n) z is two paths in N rather than just one

S(x, 2) = Qury, wy : lw| = lwra] = q(Ix]))
w1 w2 =2z A R(x, wi) A =R(x, w)]

15t path accepts 2" path rejects
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C_P - Single Sided Definition (Lemmas.14)

r(n) =2q(n)
S(x, z) = A, wo : lw| = lw2| = q(|x]))

w1 w2 =2z A R(x, wi) A =R(x, w)]
_

—
A(x) = f(x) (29D — f(x))

52, UNIVERSITY+ROCHESTER
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C_P - Single Sided Definition (Lemmas.14)

A (x) = 229002 = prib-=2

f(x) = 290xD~1

A(x) = f(x) (29D = f(x))

K%@ UNIVERSITY» ROCHESTER
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C_P - Single Sided Definition (Lemmas.14)

/h(x) — 22q(1x)=2 — pr(jx])—-2

f(x) = 290xD~1

A(x) = f(x) (29 — f(x))
max (A (x)) = 27x¥D-2

89, UNIVERSITY»ROCHESTER
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C_P - Single Sided Definition (Lemmas.14)

xeL=||{y:1yl=rx]) A S(x, V)} :fr(lxl)—Z}
x & L= |[{y: 1yl =r(lx) A SCx, Y} <27*D~2

A

A(x) = f(x) (29D — f(x))

max(A(x)) =202
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C_P - Single Sided Definition (Lemmas.14)

xe L= |l{y: 1yl =r(xD A SCx, )} = 27073
xe L= |I{y: Iyl =r(xD) A SCx, )} < 2773

l

q=r R=S f(x) = 27(|x])—2
xe L= ||[{y: 1yl = q(x)) A R(x, WY = f(x)
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[s #P closed under min/max?

Theorem 5.13

1. If#Pis closed under minimum then UP =NP ¢
2. If #P is closed under(maximum|or under minimum then C_P = SPP

Note: SPP € C_P holds unconditionally, proof is trivial.
We need only show C_P < SPP.

129! UNIVERSITY ROCHESTER 102
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Closed(#P, max) = C_P = SPP

xe L= |l{y: 1yl =r(x) A SCx, y)}| = 27D=2
xe L= ||{y: [yl =r(Ix]) A SCx, )} < 27D~
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Closed(#P, max) = C_P = SPP

xe L= |l{y: 1yl =r(x) A SCx, y)}| = 27D=2
xe L= ||{y: [yl =r(Ix]) A SCx, )} < 27D~
l

df € #P
xel= f(x)= 27 (|x])—2
x¢ L= f(x) < 2rlxh-2
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Closed(#P, max) = C_P = SPP

xe L= f(x) =22 g(x) =2rxD-2 _ 1 ¢ 4p
xel = f(x) < 2r(|x|)—2
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Closed(#P, max) = C_P = SPP

xe L= f(x) =22 g(x) =2rxD-2 _ 1 ¢ 4p
xel = f(x) < 2r(|x|)—2 \\

A (x) = max(f (x), g(x))
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Closed(

P, max) = C_P = SPP

xe L= f(x) =22 g(x) =2r(xD-2 _ 1 ¢ #p
xel = f(x) < 2r(|x|)—2 \\

h(x) = mle(f (x), g(x))

x € L= max(2D=2] 2r(xD-2 _ 1) = pr(x)-2

x ¢ L= max(<2r(xD=2[ 2r(xD=2 _ 1y = 2r(xD-2 _ 1
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Closed(#P, max) = C_P = SPP

xe L= f(x) =22 g(x) =2r(xD-2 _ 1 ¢ 4p
xel = f(x) < 2r(|x|)—2 \\

N (x) = mle(f (x), g(x))

NPTM N

|

L e SPP
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[s #P closed under min/max?

Theorem 5.13

1. If#Pis closed under minimum then UP = NP

2. If #P is closed under maximum or under[minimum then C_P = SPP

v
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Closed(#P, min) = C_P = SPP

xe L= |l{y: 1yl =r(x1) A SCx, )} = 27D~
xe L= |I{y: 1yl =r(x) A sCx, y)}| < 2773
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Closed(#P, min) = C_P = SPP

xe L= |l{y: 1yl =r(x1) A SCx, )} = 27D~
xe L= |I{y: 1yl =r(x) A SCx, y)}| < 2773

l negate S, essentially flipping accepting/rejecting paths

xe L= |[{y: 1yl =r(x) A =s(x, y)}| = 27D — 2rD=2
xe L= |l{y: 1yl =r(x) A =(x, y)}| > 27D — 2rD=2
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Closed(#P, min) = C_P = SPP

xe L= |l{y: 1yl =r(x1) A SCx, )} = 27D~
xe L= |I{y: 1yl =r(x) A SCx, y)}| < 2773

l negate S, essentially flipping accepting/rejecting paths

xe L= |[{y:1y1=r(x) A =5(x, y)}| = 27D — 27D

x¢ L= ||{y: 1yl =r(x]) A=S(x, y)}| > 27D — 2rxDh=2
|
xe L= f(x) = (34)2"¥D

x¢e L= f(x)> (%)ZT(IxI)
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Closed(#P, min) = C_P = SPP

xelL= f(x) = (%)Zr(IXI) g(x) = (%)Zrﬂxl) +1e#P
xe L= f(x)> (34)2" D
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Closed(#P, min) = C_P = SPP

g e R
\/\

A(x) = min(f (x), g(x))
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Closed(#P, min) = C_P = SPP

g e R
\/\

N(x) = min(f (x), g(x))

xel= min([(%)Z’”UXDJ (34)270%D 4 1) = (34)2r(*D
x¢ L= min(>(%)Zrﬂxl),[(%)zr(lxl) n ﬂ) = (34)27 "D 4 1

52, UNIVERSITY+ROCHESTER 115
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Closed(#P, min) = C_P = SPP

g e R
\/\

N(x) = min(f (x), g(x))

NPTM N

|

L e SPP

I29, UNIVERSITYROCHESTER 6
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More to consider

« Classes other than #P
o OptP (max output)
o SpanP (cardinality of set of outputs)
« Complete characterizations
o Open issue for #P under proper decrement
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Thanks!
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Bonus Content: OptP
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OptP - Optimization Functions

f € OptP iff, for some NPTM N:

f(x) = max{i € N : a path of N(x) outputs i}
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[s OptP closed under proper subtraction?

89, UNIVERSITY»ROCHESTER 122
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[s OptP closed under proper subtraction?

Theorem 5.15 The following are equivalent:

1. OptP is closed under proper subtraction
2. OptPis closed under every polynomial-time operation
3. NP =coNP
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[s OptP closed under proper subtraction?

Theorem 5.15 The following are equivalent:

<1. OptP is closed under proper subtraction
2. OptPis closed under every polynomial-time operation
3. NP =coNP
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[s OptP closed under proper subtraction?

Theorem 5.15 The following are equivalent:

1. OptP is closed under proper subtraction
2. OptPis closed under every polynomial-time operation
3. NP =coNP
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NP = coNP = Closed(OptP, op)

f € OptP — NPTM Nf
g € OptP — NPTM Ng

89, UNIVERSITY»ROCHESTER 126
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NP = coNP = Closed(OptP, op)

f € OptP — NPTM N,

g € OptP — NPTM Ng
L = {{x,i) : f(x) > i} ENP
L, = {{x,i) : g(x) > i} €ENP
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NP = coNP = Closed(OptP, op)

f € OptP — NPTM N,

g € OptP — NPTM Ng
L = {{x,i) : f(x) > i} € NP = coNP
L, = {{x,i) : g(x) > i} € NP = coNP

by assumption
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NP = coNP = Closed(OptP, op)

f € OptP — NPTM N,

g € OptP — NPTM Ng
L = {{x,i) : f(x) > i} € NP = coNP
L, = {{x,i) : g(x) > i} € NP = coNP

by assumption

Y
€NP—NPTM N,
€NP—NPTM N__

l_'f
L
g
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NP = coNP = Closed(OptP, op)

S

Guess path in Nf and get output
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NP = coNP = Closed(OptP, op)

"-.: Guess path in N, and get output
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NP = coNP = Closed(OptP, op)

Verify that w ;= f(x)

I29, UNIVERSITYROCHESTER 132
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NP = coNP = Closed(OptP, op)

Verify that w, = gx)

I29, UNIVERSITYROCHESTER 133
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NP = coNP = Closed(OptP, op)

. ..+ Compute the operation
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[s OptP closed under proper subtraction?

Theorem 5.15 The following are equivalent:

1. OptP is closed under proper subtraction
<2. OptP is closed under every polynomial-time operation
“\3. NP =coNP

129! UNIVERSITY ROCHESTER 135

&/



[s OptP closed under proper subtraction?

Theorem 5.15 The following are equivalent:

2. OptPis closed under every polynomial-time operation

1. OptP is closed under proper subtraction
< 3. NP =coNP
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Closed(OptP, ©) = NP = coNP

output 1 on accepting paths, 0 on rejecting paths

LeNP— NPTM N—— f(x) ={

lifxel
0 otherwise

OptP
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Closed(OptP, ©) = NP = coNP

output 1 on accepting paths, 0 on rejecting paths

L e NP— NPTM N— f(x) ={1 trel

0 otherwise

assume closure under proper subtraction l

g(x) =10 f(x) € OptP

OptP
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Closed(OptP, ©) = NP = coNP

output 1 on accepting paths, 0 on rejecting paths

L e NP— NPTM N— f(x) ={1 trel

0 otherwise

assume closure under proper subtraction l
gx)=1 ? f(x) € OptP

Oifxe L
gx) = {1 otherwise € OptP

OptP

139



Closed(OptP, ©) = NP = coNP

output 1 on accepting paths, 0 on rejecting paths

L e NP— NPTM N— f(x) ={1 trel

0 otherwise

OptP

assume closure under proper subtraction l
gx)=1 ? f(x) € OptP

accept only on paths that output 1 { O lf x € L,

NPTM N'— g(x) = OptP

1 otherwise
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Closed(OptP, ©) = NP = coNP

output 1 on accepting paths, 0 on rejecting paths

L e NP— NPTM N— f(x) ={1 trel

0 otherwise

assume closure under proper subtraction l
gx)=1 ? f(x) € OptP

accept only on paths that output 1 { O lf x € L,

1 otherwise

OptP

OptP

'L € coNPF-NPTM N'— g(X) =

141



[s OptP closed under proper subtraction?

Theorem 5.15 The following are equivalent:

2. OptPis closed under every polynomial-time operation

1. OptP is closed under proper subtraction
V Q
3. NP =coNP
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SpanP - Output Cardinality

f € SpanP iff, for some NPTM N:

f(x) = ||{wr € £* : an accepting path of N(x) outputs w}||
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[s SpanP closed under proper subtraction?

Theorem 5.16 The following are equivalent:

1. SpanP is closed under proper subtraction
2. SpanP is closed under every polynomial-time operation
3. PPN =PH=NP

Proof is left as an exercise for the reader.
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