
4. The Isolation Technique

Brother: And the Lord spake, saying, “First shalt thou take out the
Holy Pin. Then, shalt thou count to three, no more, no less. Three
shalt be the number thou shalt count, and the number of the counting
shalt be three. Four shalt thou not count, nor either count thou two,
excepting that thou then proceed to three. Five is right out. Once
the number three, being the third number, be reached, then lobbest
thou thy Holy Hand Grenade of Antioch towards thy foe, who being
naughty in my sight, shall snuff it.”
Maynard: Amen.
All: Amen.
Arthur: Right! One. . . two. . . five!

—Monty Python and the Holy Grail

Counting is cumbersome and sometimes painful. Studying NP would in-
deed be far simpler if all NP languages were recognized by NP machines
having at most one accepting computation path, that is, if NP = UP. The
question of whether NP = UP is a nagging open issue in complexity theory.
There is evidence that standard proof techniques can settle this question
neither affirmatively nor negatively. However, surprisingly, with the aid of
randomness we will relate NP to the problem of detecting unique solutions.
In particular, we can reduce, with high probability, the entire collection of
accepting computation paths of an NP machine to a single path, provided
that initially there is at least one accepting computation path. We call such
a reduction method an isolation technique.

In this chapter we present one such technique. Based on this technique,
we prove two surprising results relating NP and NL to counting complexity
classes: PP is polynomial-time Turing hard for the polynomial hierarchy, and
NL and UL are equal in the presence of polynomially length-bounded advice
functions.

The organization of this chapter is as follows. In Sect. 4.1, we present
the isolation technique, and show that NP is “randomized reducible” to the
problem of detecting unique solutions. More precisely, for each language L
in NP, there exist a randomized polynomial-time algorithm F and an NP-
decision problem A, such that for every string x, if x is a member of L, then
with high probability the output of F on input x is an instance of A with a

68 4. The Isolation Technique

unique solution, and if x is not a member of L, then with probability 1
|x|O(1)

the output of F on x is an instance of A with zero solutions or more than
one solution.

In Sect. 4.2, we apply the isolation technique for NP to prove Toda’s
Theorem, PH ⊆ PPP, and we also establish a well-known extension of Toda’s
Theorem. In Sect. 4.3, we prove that NL/poly = UL/poly.

4.1 GEM: Isolating a Unique Solution

The isolation technique we use in this chapter is often called the Isolation
Lemma.

4.1.1 The Isolation Lemma

A weight function over a finite set U is a mapping from U to the set of positive
integers. We naturally extend any weight function over U to one on the power
set 2U as follows. For each S ⊆ U , the weight of S with respect to a weight
function W , denoted by W (S), is

∑
x∈S W (x). Let F be a nonempty family

of nonempty subsets of U . Call a weight function W good for F if there is
exactly one minimum-weight set in F with respect to W . Call W bad for F
otherwise.

Lemma 4.1 (The Isolation Lemma) Let U be a finite set. Let
F1, . . . ,Fm be families of nonempty subsets over U , let D = ||U||, let
R > mD, and let Z be the set of all weight functions whose weights are at
most R. Let α, 0 < α < 1, be such that α > mD

R . Then more than (1−α)||Z||
functions in Z are good for all of F1, . . . ,Fm.

Proof Let F be one family. For a weight function W ∈ Z, let MinWeightW

denote the minimum weight of F with respect to W , i.e., MinWeightW =
min{W (S) |S ∈ F}, and let MinWeightSetW denote the set of all minimum-
weight sets of F with respect to W , i.e., MinWeightSetW = {S ∈ F |W (S) =
MinWeightW }. For x ∈ U , we say that the minimum-weight sets of F with
respect to W are unambiguous about inclusion of x if there exist some S, S ′ ∈
MinWeightSetW such that x ∈ (S \ S′)

⋃
(S′ \ S).

Recall that a weight function W ∈ Z is bad for F if ||MinWeightSetW || ≥
2. Suppose that W is bad for F . Let S and S′ be two distinct members of
MinWeightSetW . Since S 6= S′ there exists some x ∈ U such that x belongs
to the symmetric difference of S and S ′, i.e., (S \ S′)

⋃
(S′ \ S). Thus, the

minimum-weight sets of F with respect to W are ambiguous about some
x ∈ U . Conversely, if the minimum-weight sets of F with respect to W are
ambiguous about some x ∈ U , then there is more than one minimum-weight
sets of F with respect to W , so W is bad. Thus, W is bad if and only if there

4.1 GEM: Isolating a Unique Solution 69

is some x ∈ U such that the minimum-weight sets of F with respect to W
are ambiguous about inclusion of x.

Let x ∈ U be fixed. We count the number of weight functions W ∈ Z
such that the minimum-weight sets of F with respect to W are ambigu-
ous about inclusion of x. Let y1, . . . , yD−1 be an enumeration of U − {x}
and v1, . . . , vD−1 ∈ {1, . . . , R}. Let A be the set of all weight functions
W such that for all i, 1 ≤ i ≤ D − 1, W (yi) = vi. Suppose that there
is a weight function W in A such that the minimum-weight sets of F
with respect to W are ambiguous about inclusion of x. Let W ′ be an ar-
bitrary element in A \ {W} and δ = W ′(x) − W (x). We claim that the
minimum-weight sets of F with respect to W ′ are unambiguous about in-
clusion of x. To see why, first suppose that δ > 0. Then, for all S ∈ F ,
W ′(S) = W (S) + δ if x ∈ S and W ′(S) = W (S) otherwise. In par-
ticular, for all S ∈ MinWeightSetW , W ′(S) = W (S) + δ if x ∈ S and
W ′(S) = W (S) otherwise. This implies that MinWeightW ′ = MinWeightW

and MinWeightSetW ′ = {S ∈ MinWeightSetW | x 6∈ S}. Next suppose that
δ < 0. Then, for all S ∈ F , W ′(S) = W (S)− |δ| if x ∈ S and W ′(S) = W (S)
otherwise. In particular, for all S ∈ MinWeightSetW , W ′(S) = W (S) − |δ|
if x ∈ S and W ′(S) = W (S) otherwise. This implies that MinWeightW ′ =
MinWeightW − |δ| and MinWeightSetW ′ = {S ∈ MinWeightSetW | x ∈ S}.
Thus, if δ > 0 then all minimum-weight sets of F with respect to W ′ con-
tain s, and if δ < 0 then no minimum-weight sets of F with respect to W ′

contain s. Hence, for all W ′ ∈ A \ {W} are the minimum-weight sets of F
with respect to W ′ are unambiguous about inclusion of x. This implies that
there is at most one weight function W ∈ A such that the minimum-weight
sets of F with respect to W are ambiguous about inclusion of x. For each i,
1 ≤ i ≤ D− 1, there are R choices for vi. So, there are at most RD−1 weight
functions W ∈ Z such that the minimum-weight sets of F with respect to
W are ambiguous about inclusion of x. There are RD weight functions in
Z, there are m choices for F , and there are D choices for x. Thus, the pro-
portion of {W ∈ Z | for some i, 1 ≤ i ≤ m, W is bad for Fi} is at most
mDRD−1

RD = mD
R < α. So, the proportion of {W ∈ Z | for all i, 1 ≤ i ≤ m, W

is good for Fi} is more than 1− α. ❑

4.1.2 NP Is Randomized Reducible to US

US is the class of languages L for which there exists a nondeterministic
polynomial-time Turing machine N such that, for every x ∈ Σ∗, x ∈ L if
and only if N on input x has exactly one accepting computation path (see
Sect. A.9). USAT is the set of all boolean formulas having exactly one satis-
fying assignment and that USAT is complete for US under polynomial-time
many-one reductions (see Sect. A.9).

70 4. The Isolation Technique

We say that a language A is randomized reducible to a language B, de-
noted by A≤randomizedB, if there exist a probabilistic polynomial-time Turing
machine M and a polynomial p such that, for every x ∈ Σ∗,

• if x ∈ A, then the probability that M on input x outputs a member of B
is at least 1

p(|x|) , and

• if x ∈ A, then the probability that M on input x outputs a member of B
is zero.

Using the Isolation Lemma, one can show that every language in NP is ran-
domized reducible to USAT.

Theorem 4.2 (∀L ∈ NP)[L≤randomizedUSAT].

To prove this theorem and other results in this chapter, we will use a
pairing function with a special property regarding the encoding length. For
binary strings x, y, . . . , z, we write x#y# · · · #z to denote the string con-
structed from this expression by replacing each occurrence of 0, 1, and # by
00, 01, and 11, respectively. More precisely, the encoding is the binary string
of the form

0x1 · · · 0x|x|110y1 · · · 0y|y|11 · · · · · · 0z1 · · · 0z|z|.

Note that this pairing function satisfies the following conditions:

• If x1, x2, . . . , xk and y1, y2, . . . , yk satisfy |x1|+ |x2|+ · · · + |xk| = |y1|+
|y2|+ · · · + |yk|, then |x1#x2# . . . #xk| = |y1#y2# . . . #yk|.

• For every x, y, . . . , z ∈ Σ∗, we can recover x, y, . . . , z from x#y# · · · #z
in time polynomial in |x#y# · · · #z|.

Proof of Theorem 4.2 Let L be a language in NP. Let p be a polynomial
and A a language in P such that, for all x ∈ Σ∗,

x ∈ L ⇐⇒ (∃y ∈ Σp(|x|)) [〈x, y〉 ∈ A].

We may assume that for all n ≥ 0, p(n) ≥ 1, and that for all x, 〈x, 0p(|x|)〉 6∈ A.
For each n ≥ 1, let µ(n) be the smallest power of 2 that is greater than or
equal to p(n). Define

A′ = {〈x, y〉 | |y| = µ(|x|) ∧
(∃u, v)[|u| = p(|x|) ∧ uv = y ∧ 〈x, y〉 ∈ A]}.

Then A′ ∈ P and for every x ∈ Σ∗,

x ∈ L ⇐⇒ (∃y ∈ Σµ(|x|)) [〈x, y〉 ∈ A′].

Since for all x, 〈x, 0p(|x|)〉 6∈ A, for all x, 〈x, 0µ(|x|)〉 6∈ A′.
For each n ≥ 1, we can specify each string y ∈ Σµ(n) by bit positions at

which y has a 1; i.e., y can be specified via the set {i | 1 ≤ i ≤ p(n)∧ yi = 1}.

4.1 GEM: Isolating a Unique Solution 71

For each n ≥ 1, let U(n) = {1, . . . , µ(n)}. Then for every n ≥ 1 the power
set of U(n) represents Σµ(n); i.e., each element in Σµ(n) can be viewed as
a subset of U(n). For each x ∈ Σ∗, let F(x) be the set of all y ⊆ U(|x|)
such that 〈x, y〉 ∈ A′. By our assumption, for every x ∈ Σ∗, the empty set
(which corresponds to the string 0µ(|x|)) is not in F(x). For each n ≥ 1, let
Z(n) be the family of all the weight functions that assign to each number i,
1 ≤ i ≤ p(n), a positive weight of at most 4µ(|x|).

Let x be an arbitrary string. Apply Lemma 4.1 with m = 1, U = U(|x|),
Z = Z(|x|), F1 = F(x), and R = 4µ(|x|). Then,

• if x ∈ L, then the fraction of the weight functions in Z(|x|) with respect to
which F(x) has exactly one minimum-weight element is more than 3

4 , and
• if x 6∈ L, then the fraction of the weight functions in Z(|x|) with respect

to which F(x) has exactly one minimum-weight element is 0.

For every x ∈ Σ∗, every W ∈ Z(|x|), and every i, 1 ≤ i ≤ µ(|x|), W (i) ≤
4µ(|x|). Thus, for every x ∈ Σ∗, every W ∈ Z(|x|), and every y ⊆ U(|x|),
W (y) ≤ 4µ2(|x|). Define

B = {〈x,W, j〉 |W ∈ Z(|x|) ∧ 1 ≤ j ≤ 4µ2(|x|) ∧
||{y ∈ F(x) | W (y) = j ∧ 〈x, y〉 ∈ A′}|| = 1},

where W is encoded as W (1)# · · · #W (µ(|x|)). Then B ∈ US, which
can be witnessed by the nondeterministic Turing machine M that on
input u behaves as follows: First, M checks whether u is of the form
〈x,w1#w2# · · · #wµ(|x|), j〉 for some j, 1 ≤ j ≤ 4µ2(|x|), and some
w1, · · · , wµ(|x|), 1 ≤ w1, · · · , wµ(|x|) ≤ 4µ(|x|). If the check fails, M immedi-
ately rejects u. Otherwise, using precisely µ(|x|) nondeterministic moves, M
selects y ∈ Σµ(|x|); then M accepts u if and only if W (y) = j and 〈x, y〉 ∈ A,
where W is the weight function expressed by the string w1#w2# · · · #wµ(|x|),
i.e., for all i, 1 ≤ i ≤ µ(|x|), W (i) = wi. Since B ∈ US, there is a polynomial-
time many-one reduction g from B to USAT.

By the above probability analysis, for every x ∈ Σ∗,

• if x ∈ L, the proportion of W ∈ Z(|x|) such that for some j, 1 ≤ j ≤
4µ2(|x|), 〈x,W, j〉 ∈ B is at least 3

4 , and
• if x 6∈ L, the proportion of W ∈ Z(|x|) such that for some j, 1 ≤ j ≤

4µ2(|x|), 〈x,W, j〉 ∈ B is 0.

Let N be a probabilistic Turing machine that, on input x ∈ Σ∗, behaves as
follows:

Step 1 N picks a weight function W as follows: For each i, 1 ≤ i ≤
µ(|x|), N uniformly, randomly selects a binary string ui having length
2+log µ(|x|), then sets the value of W (i) to the binary integer 1ûi, where
ûi is the string ui with its leading 0s omitted.

Step 2 N picks j, 1 ≤ j ≤ 4µ2(|x|), as follows: N selects a binary string
v having length 2 + 2 log µ(|x|) uniformly at random. Then N sets j to

72 4. The Isolation Technique

the integer whose binary encoding is 1v̂, where v̂ is the string v with its
leading 0s omitted.

Step 3 N asks its oracle whether g(〈x,W, j〉) ∈ USAT. If the query is
answered positively, then N accepts x. Otherwise, it rejects x.

Let x ∈ Σ∗ be an input to NUSAT. Suppose x ∈ L. In Step 1, NUSAT on input
x selects with probability at least 3

4 a weight function W such that for some
j, 1 ≤ j ≤ 4µ2(|x|), 〈x,W, j〉 ∈ B. Furthermore, in Step 2, NUSAT on input x
selects each j, 1 ≤ j ≤ 4µ2(|x|), with probability 1

4µ2(|x|) . So, the probability

that NUSAT on input x generates a query 〈x,W, j〉 that belongs to B is at
least 3

16µ2(|x|) . Define q(n) = 22p2(n). Since for all n ≥ 1, µ(n) is the smallest

power of 2 that is greater than or equal to p(n), for all n ≥ 1, 2p(n) ≥ µ(n).
So, 3

16µ2(|x|) ≥ 3
64p2(|x|) ≥ 1

22p2(|x|) = 1
q(|x|) . Thus, the probability that NUSAT

on input x accepts is at least 1
q(|x|) . On the other hand, suppose x 6∈ L. Then,

NUSAT on x rejects with probability 1. Thus, L≤randomizedUSAT.
❑ Theorem 4.2

In the proof above, define

B′ = {〈x,W, j〉 | x ∈ Σ∗ ∧ 1 ≤ j ≤ 4µ2(|x|) ∧ W ∈ Z(|x|) ∧
||{y ∈ F(x) | W (y) = j ∧ 〈x, y〉 ∈ A′}|| is an odd number}.

Then B′ ∈ ⊕P. Also, in Step 3 of the program of machine N , replace the
query string by 〈x,W, j〉. Call this new machine N̂ . For every x ∈ L, the
same probability analysis holds because 1 is an odd number, so N̂B′ on
input x accepts with probability at least 1

q(|x|) . For every x ∈ L, N̂B′ on

input x rejects with probability 1 because F(x) is empty and 0 is an even
number. This implies that L≤randomizedB′. Furthermore, define T to be the
probabilistic oracle Turing machine that on input x, sequentially execute
independent simulation of N̂ on x q(|x|) times, and then accepts if n̂ in at
least one of the q(|x|) simulations and rejects otherwise. For every x ∈ L,
the probability that T B′ on input x rejects is at most (1− 1

q(|x|))
q(|x|). Since

q(n) = 22p2(n) and for all n ≥ 0, p(n) ≥ 1, for all n ≥ 0, q(n) ≥ 22. So, the
probability that T B′ on input x rejects is at most (1 − 1

22)22 < 1
2 . On the

other hand, for every x ∈ L, the probability that T B′ on input x accepts is
0. Thus, we have proven the following theorem.

Theorem 4.3 NP ⊆ RP⊕P ⊆ BPP⊕P.

4.2 Toda’s Theorem: PH ⊆ PPP

4.2.1 PH and BPP⊕P

By Theorem 4.3, NP ⊆ BPP⊕P. Since PBPPA

= BPPA for every oracle A
(see Proposition 4.6 below), it holds that ∆p

2 ⊆ BPP⊕P.

4.2 Toda’s Theorem: PH ⊆ PPP 73

Pause to Ponder 4.4 Can we extend this inclusion in BPP⊕P to even
higher levels of the polynomial hierarchy than ∆p

2?

In this section we show that indeed we can.

Theorem 4.5 For every k ≥ 1, Σp
k ⊆ BPP⊕P. Hence, PH ⊆ BPP⊕P.

The proof of Theorem 4.5 is by induction on k. The base case is, of course,
Theorem 4.3. For the induction step, we establish, for each k ≥ 1, that
Σp

k+1 ⊆ BPP⊕P by combining Theorem 4.3 and our inductive hypothesis,

Σp
k ⊆ BPP⊕P, in the following three steps:

1. (Apply Theorem 4.3 to the base machine) The proof of

Theorem 4.3 is relativizable, so, for every oracle A, NPA ⊆ BPP⊕PA

.
Noting that Σp

k+1 = NPΣp
k , we have the following, where the first inclu-

sion is via the inductively true Σp
k ⊆ BPP⊕P and the second is via using

relativized Theorem 4.3 as the oracle ranges over all BPP⊕P sets.

Σp
k+1 ⊆ NPBPP⊕P ⊆ BPP⊕PBPP⊕P

.

2. (Swap BPP and ⊕P in the middle) By Lemma 4.9 below,

⊕PBPPA ⊆ BPP⊕PA

, for every oracle A. So,

Σp
k+1 ⊆ BPPBPP⊕P⊕P

.

3. (Collapse BPPBPP to BPP, and ⊕P⊕P to ⊕P) By part 2 of

Proposition 4.6 below, BPPBPPA

= BPPA for every oracle A. By part 2
of Proposition 4.8 below, ⊕P⊕P = ⊕P. So,

Σp
k+1 ⊆ BPP⊕P.

We will first prove the two collapse results in Step 3, together with character-
izations of BPP and ⊕P. The characterizations will be useful when we prove
the “swapping” property in Step 2.

The results we prove in the rest of the section hold relative to any oracle.
For simplicity, we prove only their nonrelativized versions.

Proposition 4.6

1. (The error probability of BPP computation can be expo-
nentially reduced without sacrificing much computation time)
For every L ∈ BPP and every polynomial r, there exist a polynomial p
and a language A ∈ P such that, for every x ∈ Σ∗,
a) if x ∈ L, then the proportion of y ∈ Σp(|x|) such that x#y belongs to

A is at least 1− 2−r(|x|), and
b) if x 6∈ L, then the proportion of y ∈ Σp(|x|) such that x#y belongs to

A is at most 2−r(|x|).
2. The BPP hierarchy collapses; i.e., BPP = PBPP = BPPBPP =

PBPPBPP

= BPPBPPBPP

=

74 4. The Isolation Technique

Proof We prove first part 1 of the proposition. Let L ∈ BPP via prob-
abilistic Turing machine M . That is, for every x ∈ Σ∗, M accepts x with
probability at least 3

4 if x ∈ L and with probability at most 1
4 otherwise. Let

r be any polynomial and let q(n) = 6r(n)+1. Let N be a probabilistic Turing
machine that, on input x, simulates M on input x exactly q(|x|) times, and
accepts then if and only if M accepts in a majority of the simulations. Let
n ≥ 1 and x ∈ Σn. Suppose that x ∈ L. Let α be the probability that M on
input x accepts and e = α− 1

2 . Note that e ≥ 1
4 . The probability that N on

input x rejects is at most

∑

0≤i≤b q(n)
2 c

(
q(n)

i

) (
1

2
+ e

)i (
1

2
− e

)q(n)−i

≤
∑

0≤i≤b q(n)
2 c

(
q(n)

i

)(
1

2
+ e

) q(n)
2

(
1

2
− e

) q(n)
2

=
∑

0≤i≤b q(n)
2 c

(
q(n)

i

)(
1

4
− e2

) q(n)
2

≤
∑

0≤i≤q(n)

(
q(n)

i

)(
1

4
− e2

) q(n)
2

= 2q(n)

(
1

4
− e2

) q(n)
2

= (1− 4e2)
q(n)

2 .

This is at most
(

3
4

) q(n)
2 ≤

(
3
4

)3r(n)
< 2−r(n). Similarly, if x 6∈ L, then the

probability that N on x accepts is at most 2−r(|x|).
We view the randomized moves of N as being directed by tossing of coins.

More precisely, at each randomized step of N , there are two possible choices
and N selects one of the two by tossing a fair coin, the “head” for on move
and the “tail” for the other. Then the coin tosses of N can be “normalized”
in the sense that there is a polynomial p such that, for every x ∈ Σ∗, N on x
tosses exactly p(|x|) coins. Namely, the machine keeps track of the number of
coin tosses it makes and, at the end of computation, if the number is less than
p(|x|), the machine makes dummy coin tosses to make the total number of
coin tosses equal to p(|x|). Pick such a p and let A be the set of all x#y with
y ∈ Σp(|x|) and such that N on x with coin tosses y accepts. Clearly, A ∈ P
and, for every x ∈ Σ∗, the proportion of y ∈ Σp(|x|) such that x#y ∈ A is
equal to the probability that N on x accepts. So, conditions 1a and 1b both
hold.

We now prove part 2 of the proposition. Let L ∈ BPPA with A ∈ BPP.
The language L is defined in terms of two probabilistic polynomial-time Tur-

4.2 Toda’s Theorem: PH ⊆ PPP 75

ing machines, one for the base computation and the other for the oracle.
Intuitively, we will show below that the two machines can be combined into
a single probabilistic polynomial-time machine without creating much error.

Note that Part 1 in the above holds relative to any oracle. Let r(n) be
an arbitrary strictly increasing polynomial. Then there is a polynomial-time
probabilistic oracle Turing machine D such that, for every x ∈ Σ∗, DA on
input x decides the membership of x in L correctly with probability at least
1 − 2−r(|x|). We may assume that there exists a polynomial p such that, for
every x ∈ Σ∗ and every oracle Z, DZ on input x makes at most p(|x|) queries.
Also, we may assume that each query of D on x is at least as long as the
input. We replace the oracle A by Â = {x#y |y ∈ A} and replace D by a new

machine D̂ that, on input x ∈ Σ∗, simulates D on input x by substituting for
each query y to A the a query x#y to Â. By part 1, there is a polynomial-
time probabilistic Turing machine N such that, for every u ∈ Σ∗, N on u
correctly decides the membership of u in Â with probability 1− 2−r(|u|). Let
M be a probabilistic Turing machine that, on input x ∈ Σ∗, simulates D̂ on
input x and when D̂ makes a query, say u, to the oracle, simulates N on
input u to decide the oracle answer. For every x ∈ Σ∗, D̂ on input x makes
at most p(|x|) queries, and for every query u of D̂ on input x, N on input
u makes an error with probability at most 2−r(|u|) ≤ 2−r(|x|) since |u| ≥ |x|
and r is an increasing polynomial. So, for every x ∈ Σ∗, the probability of

the paths on which the computation of M differs from that of D̂Â is at most
p(|x|)2−r(|x|). Since DA makes an error with probability at most 2−r(|x|), the
probability that M makes an error is at most (p(|x|) + 1)2−r(|x|). Since r
is an increasing polynomial, for x sufficiently large, the error probability of
M on x is smaller than 1

4 . Hence L ∈ BPP. Since BPPBPP = BPP, clearly

BPPBPPBPP

= BPPBPP = BPP via the application of this fact and, more
generally, the BPP hierarchy collapses to BPP by induction. ❑

For a class C, C/poly is the class of all languages L for which there exist
an A ∈ C and a polynomially length-bounded function h : Σ∗ → Σ∗ such
that, for every x ∈ Σ∗, x ∈ L if and only if 〈x, h(0|x|)〉 ∈ A (see Sect. A.6).
We have the following corollary.

Corollary 4.7 BPP ⊆ P/poly.

Proof Let L ∈ BPP. Let r(n) = n + 1. By part 1 of Proposition 4.6, there
exist a polynomial p and A ∈ P such that, for every x ∈ Σ∗, the proportion
of y ∈ Σp(|x|) for which the equivalence,

x ∈ L ⇐⇒ 〈x, y〉 ∈ A,

does not hold is at most 2−(|x|+1). Let n ≥ 1. The proportion of y ∈ Σp(n)

such that ||{x ∈ Σn | x ∈ L ⇐⇒ 〈x, y〉 ∈ A does not hold }|| ≥ 1 is at most
||Σn||2−(n+1) = 2n2−(n+1) < 1. So, there is some y ∈ Σp(n) such that, for
every x ∈ Σn, x ∈ L ⇐⇒ 〈x, y〉 ∈ A. Let h(0n) be the smallest such y. Then,

76 4. The Isolation Technique

for every x ∈ Σn, x ∈ L if and only if 〈x, h(0n)〉 ∈ A. Since |h(0n)| = p(n),
this implies that L ∈ P/poly. ❑

Proposition 4.8

1. For every L ∈ ⊕P, there exist a polynomial p and a language A ∈ P such
that, for every x ∈ Σ∗, x ∈ L if and only if ||{y ∈ Σp(|x|) | x#y ∈ A}|| is
odd.

2. ⊕P⊕P = P⊕P = ⊕P.

Proof To prove part 1, let L be in ⊕P via a nondeterministic polynomial-
time Turing machine M . That is, for every x ∈ Σ∗,

x ∈ L if and only if #accM (x) is odd.

Let p be a polynomial bounding the runtime of M . Define A to be the set
of all x#y, |y| = p(|x|), such that y is an accepting computation path of M
on x (that is, a sequence z of bits representing nondeterministic moves for
M(x) leading to acceptance, on the path it specifies, on or after the move
specified by the |z|th bit of z but before any further nondeterministic move
is attempted) followed by an appropriate number of zeros. Clearly, A ∈ P
and, for every x ∈ Σ∗, the number of y, |y| = p(|x|), such that x#y ∈ A is
#accM (x).

To prove part 2, let L be an arbitrary language in ⊕P⊕P. There exist a
nondeterministic polynomial-time oracle Turing machine M and a language
B ∈ ⊕P such that, for all x, x ∈ L if and only if the number of accepting
computation paths of MB on input x is an odd number. We will construct
a nondeterministic polynomial-time Turing machine M ′ witnessing that L ∈
⊕P. Let N1 be a nondeterministic Turing machine witnessing that B ∈ ⊕P.
As we will see in Proposition 9.3, #P is closed under addition. So, the function
1 + #accN0

thus belongs to #P. Let N1 be such that #accN1
= 1 + #accN0

.
The function #accN1

flips the parity of #accN0
, in the sense that for all x,

#accN1
(x) is an odd number if and only if #accN0

(x) is an even number.
Thus, N1 witnesses that B ∈ ⊕P. Let M ′ be the nondeterministic Turing
machine that, on input x, simulates M on x but each time M makes a query
to the oracle, instead of making a query M ′ does the following two steps.
(1) M ′ guesses a bit, b ∈ {0, 1}, about the oracle answer (where b = 0 is
interpreted as ‘Yes’ and b = 1 as ‘No’) and a path of simulation of Nb (i.e.,
N0 or N1, depending on the choice of b) on input w, where w is the query
string of M . (2) Then M ′ returns to its simulation of M on input x with the
guessed oracle answer. The machine M ′ accepts along a given path if and
only if all the simulations of the machines N0, N1, and M along that path
accepted. We claim that M ′ witnesses that L ∈ ⊕P.

For each accepting computation path π of M ′ on x, let τ(π) be the part
of π corresponding to the computation of M on x and the guesses about
the queries. That is, τ(π) is π with all simulations of N0 and N1 removed.
Only the guessed values of b remain encoded in π. Let t = τ(π) for some

4.2 Toda’s Theorem: PH ⊆ PPP 77

π. How many accepting computation paths have t as their τ -value? Let
y1, . . . , ym be the query strings along π and b1, . . . , bm ∈ {0, 1} be the
guessed values encoded in π. Then the number of such paths is the product
of #accNb1

(y1), . . . ,#accNbm
(ym). This number is odd if and only if all the

guesses about the queries are correct. Thus, the parity of the number of ac-
cepting computation paths of M ′ on x equals that of the number of accepting
computation paths of M on x relative to B. Hence, L ∈ ⊕P. ❑

Lemma 4.9 ⊕PBPP ⊆ BPP⊕P.

Proof Let L ∈ ⊕PBPP. We show that L ∈ BPP⊕P. By part 1 of Propo-
sition 4.8, there exist a polynomial p and A ∈ PBPP such that, for every
x ∈ Σ∗,

x ∈ L ⇐⇒ ||{y ∈ Σp(|x|) | x#y ∈ A}|| is odd.

Furthermore, by part 2 of Proposition 4.6, PBPP = BPP, so A ∈ BPP. Then,
by part 1 of Proposition 4.6, for every polynomial r, there exist a polynomial
p and B ∈ P such that, for every u ∈ Σ∗,

the proportion of v ∈ Σp(|u|) such that u#v ∈ B is at least
1− 2−r(|u|) if u ∈ A and at most 2−r(|u|) otherwise.

(4.1)

Let r(n) = p(n)+2. Let s be the polynomial such that, for every x ∈ Σ∗ and
y ∈ Σp(|x|), s(|x|) = q(|x#y|). Define (recall that # is the specific function
defined in Sect. 4.1.2)

C = {x#v | v ∈ Σs(|x|) ∧
||{y ∈ Σp(|x|) | (x#y)#v ∈ B}|| is an odd number}.

Clearly, C ∈ ⊕P. For each x ∈ Σ∗, let

a(x) = ||{y ∈ Σp(|x|) | x#y ∈ A}||

and, for each x ∈ Σ∗ and v ∈ Σs(|x|), let

c(x#v) = ||{y ∈ Σp(|x|) | (x#y)#v ∈ C}||.

By equation 4.1, for every x ∈ Σ∗, the proportion of v ∈ Σs(|x|) satisfying the
condition

(∀y ∈ Σp(|x|)) [x#y ∈ A ⇐⇒ (x#y)#v ∈ B]

is at least 1−2p(|x|)2−r(s(|x|)) ≥ 1−2p(|x|)−p(s(|x|))−2 ≥ 1−2−2 = 3
4 , and thus

the proportion of v ∈ Σs(|x|) such that a(x) = c(x#v) is at least 3
4 . Thus, for

every x ∈ Σ∗, for at least 3
4 of v ∈ Σs(|x|), a(x) is odd if and only if c(x#v)

is odd. Note that a(x) is odd if and only if x ∈ L and that c(x#v) is odd if
and only if x#v ∈ C. So, for every x ∈ Σ∗, for at least 3

4 of v ∈ Σs(|x|), x ∈ L

if and only if x#v ∈ C. Thus, L ∈ BPP⊕P.
Intuitively, the above argument can be explained as follows: We are look-

ing at a table whose rows are y’s and whose columns are v’s, where the y’s

78 4. The Isolation Technique

correspond to the nondeterministic guesses for the “parity” computation and
the v’s correspond to the random guesses used in the “BPP” computation
(for testing whether a given x#y belongs to A). For each y and z, we place a
letter “X” in the (y, v) entry of the table exactly if the randomized guesses v
for the BPP computation on input x#y lead to an error, i.e., either (x#y ∈ A
and (x#y)#v 6∈ B) or (x#y 6∈ A and (x#y)#v ∈ B). For each column v
with no “X” the number of y such that (x#y)#v ∈ B is equal to the number
of y such that x#y ∈ A. So, for such column v, x ∈ L if and only if the
number of y such that (x#y)#v ∈ B is odd. In each row, the fraction of
the entries having an “X” is at most 2−r(s(|x|)). There are only 2p(|x|) rows.
Thus the fraction of the columns with an “X” is at most 2−r(s(|x|))+p(|x|). As
equation 4.1 holds for any polynomial r, we can select r so that this amount
is less than 1

4 . So, transpose the table: We’ll pick v first, then pick y. Then
for more than 3

4 of v it holds that x ∈ L if and only if the number of y such
that (x#y)#v ∈ B is odd. Hence we can switch the “BPP” part and the
“parity” part. ❑

This concludes the proof of Theorem 4.5. We now show below some im-
mediate corollaries to Theorem 4.5. Since BPP ⊆ P/poly by Corollary 4.7
and P⊕P = ⊕P by part 2 of Proposition 4.8, BPP⊕P ⊆ ⊕P/poly. Thus,
PH ⊆ ⊕P/poly.

Corollary 4.10 PH ⊆ ⊕P/poly.

By Lemma 4.9, ⊕PBPP ⊆ BPP⊕P. By relativizing ⊕P by PH and then
applying Theorem 4.5, we obtain the following result.

Corollary 4.11 ⊕PPH ⊆ BPP⊕P ⊆ ⊕P/poly.

4.2.2 PP Is Hard for the Polynomial Hierarchy

We now prove Toda’s Theorem.

Theorem 4.12 (Toda’s Theorem) PH ⊆ P#P[1].

Corollary 4.13 PH ⊆ P#P = PPP.

Theorem 4.12, Toda’s Theorem, follows immediately from Theorem 4.5
in light of the following lemma.

Lemma 4.14 PP⊕P ⊆ P#P[1]. In particular, BPP⊕P ⊆ P#P[1].

Proof of Lemma 4.14 Let L ∈ PP⊕P. There exist a polynomial p, a
function f ∈ FP, and a language A ∈ P⊕P = ⊕P (by Proposition 4.8) such
that, for every x ∈ Σ∗,

x ∈ L ⇐⇒ ||{y ∈ Σp(|x|) | x#y ∈ A}|| ≥ f(x). (4.2)

4.2 Toda’s Theorem: PH ⊆ PPP 79

Let M be a nondeterministic polynomial-time Turing machine witnessing
that A ∈ ⊕P. So, for every x ∈ Σ∗, x ∈ A if and only if #accM (x) is odd.
Define s0(z) = z and, for each i ≥ 1, define polynomial si(z) with coefficients
in N by

si(z) = 3(si−1(z))4 + 4(si−1(z))3. (4.3)

Claim 4.15 For every i ≥ 0 and every z ∈ N, if z is even, then si(z) is a

multiple of 22i

, and if z is odd, then si(z) + 1 is a multiple of 22i

.

Proof of Claim 4.15 The proof is by induction on i. The claim trivially
holds for the base case i = 0. For the induction step, let i = i0 for some
i0 ≥ 1 and suppose that the claim holds for values of i that are less than
i0 and greater than or equal to 0. Suppose that z is even. By the inductive
hypothesis, si−1(z) is divisible by 22i−1

. Since si(z) is divisible by (si−1(z))2

and 22i

= (22i−1

)2, si(z) is divisible by 22i

. Thus, the claim holds for even z.

Suppose that z is odd. By the inductive hypothesis, si−1(z) = m22i−1 − 1 for
some m ∈ N. So,

si(z) = 3(m22i−1 − 1)4 + 4(m22i−1 − 1)3

= 3(m424(2i−1) − 4m323(2i−1) + 6m222(2i−1) − 4m22i−1

+ 1)

+ 4(m323(2i−1) − 3m222(2i−1) + 3m22i−1 − 1)

= 3m424(2i−1) − 8m323(2i−1) + 6m222(2i−1) − 1

= 22i

(3m422i − 8m322i−1

+ 6m2)− 1.

Thus, the claim holds for odd z also. ❑ Claim 4.15
For each x ∈ Σ∗, let `x = dlog p(|x|) + 1e and define rx(z) = (s`x

(z))2

and g(x) = rx(#accM (x)). For every x ∈ Σ∗, rx(z) is a polynomial in z of
degree 22`x . The coefficients of the polynomial rx are all nonnegative and
polynomial-time computable. We claim that the function g is in #P. This
can be seen as follows. Let G be a nondeterministic Turing machine that, on
input x, operates as follows:

Step 1 G computes rx(z) = a0z
0 + a1z

1 + · · · + amzm, where m = 22`x .
Step 2 G computes the list I = {i | 0 ≤ i ≤ 22`x ∧ ai 6= 0}.
Step 3 G nondeterministically selects i ∈ I.
Step 4 G nondeterministically selects d, 1 ≤ d ≤ ai.
Step 5 G simulates M on input x i times.
Step 6 G accepts if and only if M accepts during each of the i simulations.

Then G satisfies g = #accG. By Claim 4.15, the following conditions hold for
every x ∈ Σ∗:

(?) If x ∈ A, then #accM (x) is odd, so g(x) − 1 is a multiple of 22`x
, and

thus, g(x) is of the form m2p(|x|)+1 + 1 for some m.

(??) If x 6∈ A, then #accM (x) is even, so g(x) is a multiple of 22`x
, and thus,

g(x) is of the form m2p(|x|)+1 for some m.

80 4. The Isolation Technique

Define
h(x) =

∑

|y|=p(|x|)
g(x#y).

There is a nondeterministic Turing machine H such that h = #accH , so
h ∈ #P. In particular, H guesses y ∈ Σp(|x|) and simulates G on x#y. By
equation 4.2, (?), and (??), the lowest p(|x|) + 1 bits of the binary repre-
sentation of h(x) represent the number of y ∈ Σp(|x|) such that x#y ∈ A.
So, for every x ∈ Σ∗, x ∈ L ⇐⇒ the leftmost p(|x|) + 1 bits of h(x) is
lexicographically at least 010p(|x|)−1. This implies that L is decidable by a
polynomial-time Turing machine that makes one query to h. Since L was an
arbitrary PP⊕P set and h = hL ∈ #P, it follows that PP⊕P ⊆ P#P[1], the
class of languages decided by a polynomial-time algorithm with one question
to a #P oracle. ❑ Lemma 4.14

So, Theorem 4.12 is established. Corollary 4.13 follows immediately from
Theorem 4.12 in light of Proposition 4.16.

Proposition 4.16 PPP = P#P.

Proof First we show PPP ⊆ P#P. Let L ∈ PP. There exist a polynomial p,
a language A ∈ P, and f ∈ FP such that, for every x ∈ Σ∗,

x ∈ L ⇐⇒ ||{y | |y| = p(|x|) ∧ 〈x, y〉 ∈ A}|| ≥ f(x).

Let N be a nondeterministic Turing machine that, on input x, guesses y ∈
Σp(|x|), and accepts x if and only if 〈x, y〉 ∈ A. Clearly, N can be polynomial
time-bounded. For every x ∈ Σ∗, #accN (x) = ||{y ∈ Σp(|x|) | 〈x, y〉 ∈ A}||.
Since f ∈ FP the membership in L can be tested in P#P[1]. Thus, PPP ⊆ P#P.

Next we show PPP ⊇ P#P. Let f be an arbitrary #P function. Let f =
#accN for some polynomial-time nondeterministic Turing machine N and
let p be a polynomial that strictly bounds the runtime of N . Then for all x
#accN (x) < 2p(|x|). Define L = {〈x, y〉 | 0 ≤ y ≤ 2p(|x|)− 1 ∧ #accN (x) ≥ y}.
Define N ′ to be the nondeterministic Turing machine that, on input x ∈ Σ∗,
operates as follows: N ′ simulates N on input x while counting in a variable
C the number of nondeterministic moves that N makes along the simulated
path. When N halts, N ′ guesses a binary string z of length p(|x|)−C using
exactly length p(|x|) − C bits. Then N ′ accepts if and only if the simulated
the path of N on x is accepting and z ∈ 0∗. Then for all x #accN (x) =
#accN ′(x). Also, for all x ∈ Σ∗ and all computation paths π of N ′ on input
x, N ′ along path π makes exactly p(|x|) nondeterministic moves. Define D
to the probabilistic Turing machine that, on input 〈x, y〉, 0 ≤ y ≤ 2p(|x|) − 1,
operates as follows: D uniformly, randomly selects b ∈ {0, 1}, and then does
the following:

• If b = 0, then D uniformly, randomly selects z ∈ {0, 1}p(|x|), and then
accepts if the rank of z is at most 2p(|x|) − y and rejects otherwise.

4.2 Toda’s Theorem: PH ⊆ PPP 81

• If b = 1, then D simulates N ′ on input x by replacing each nondeterministic
move of N ′ by a probabilistic move. More precisely, each time N ′ makes a
nondeterministic move, deciding between two possible actions α and β, D
selects uniformly, randomly c ∈ {0, 1}, and then D selects α if c = 0 and
β otherwise. D accepts if N ′ on x along the simulated path accepts and
rejects otherwise.

Clearly, D can be polynomial time-bounded. For every x ∈ Σ∗, the probability
that D on input x accepts is

2p(|x|) − y

2p(|x|)+1
+

#accN ′(x)

2p(|x|)+1
.

This is greater than or equal to 1
2 if and only if #accN ′(x) ≥ y. Thus, L ∈ PP.

Hence, PPP ⊇ P#P. ❑
We can strengthen Corollary 4.13 to show that not only the polynomial

hierarchy but also PPPH is included in PPP.

Corollary 4.17 PPPH ⊆ PPP.

Proof By Theorem 4.5, PH ⊆ BPP⊕P and by Lemma 4.14, PP⊕P ⊆ PPP.

So, it suffices to prove that, for every oracle X, PPBPPX ⊆ PPX . It follows
that

PPPH ⊆ PPBPP⊕P ⊆ PP⊕P ⊆ PPP.

Again, we prove only the nonrelativized version. Let L ∈ PPBPP. There exist
a polynomial p, a function f ∈ FP, and A ∈ BPP such that, for every x ∈ Σ∗,

if x ∈ L, then ||{y ∈ Σp(|x|) | x#y ∈ A}|| ≥ f(x), and (4.4)

if x 6∈ L, then ||{y ∈ Σp(|x|) | x#y ∈ A}|| ≤ f(x)− 1. (4.5)

Let r(n) = p(n) + 2. By part 1 of Proposition 4.6, there exist a polynomial q
and a language B ∈ P such that, for every u ∈ Σ∗,

if u ∈ A, then ||{v ∈ Σq(|u|) | u#v ∈ B}|| ≥ 2q(|u|)(1 −
2−r(|u|)), and

(4.6)

if u 6∈ A, then ||{v ∈ Σq(|u|) | u#v ∈ B}|| ≤ 2q(|u|)2−r(|u|). (4.7)

Define s(n) = 2(n + 1 + p(n)). The length of x#y with y ∈ Σp(|x|) is s(|x|).
Define D to be the set of all strings x#yv, with y ∈ Σp(|x|) and v ∈ Σq(s(|x|)),
such that x′#v ∈ B, where x′ = x#y. Then D is in P. For each x ∈ Σ∗,
let d(x) = ||{yv | x#yv ∈ D}|| and define g by g(x) = f(x)2q(s(|x|))(1 −
2−r(s(|x|))). Then g ∈ FP. For every x ∈ Σ∗, if x ∈ L, then by equations 4.4
and 4.6, d(x) ≥ f(x)2Q(1 − 2−R) = g(x), where P , Q, and R respectively
denote p(|x|), q(s(|x|)), and r(s(|x|)). On the other hand, if x 6∈ L, then by
equations 4.5 and 4.7

82 4. The Isolation Technique

d(x) ≤ (f(x)− 1)2Q + (2P − f(x) + 1)2Q2−R

= f(x)2Q − 2Q + 2P+Q−R − f(x)2Q−R + 2Q−R

= f(x)2Q(1− 2−R)− 2Q(1− 2P−R − 2−R)

= g(x)− 2Q(1− 2P−R − 2−R).

Since r(n) = p(n)+2 and s(n) > n, 1−2P−R−2−R is at least 1− 1
4 − 1

4 > 0.
So, d(x) < g(x). Hence, for every x ∈ Σ∗, x ∈ L if and only if d(x) ≥ g(x).
Thus, L ∈ PPA. ❑

4.3 NL/poly = UL/poly

In the previous sections we saw a number of results that connect the poly-
nomial hierarchy to polynomial-time counting complexity classes. Do the
analogs of those results hold for logspace classes? In particular, do the
logspace analogs of PH ⊆ ⊕P/poly (Corollary 4.10) and PH ⊆ PPP (Corol-
lary 4.13) hold? Since the NL hierarchy (under the Ruzzo–Simon–Tompa
relativization, see Chap. 9) collapses to NL since NL = coNL (see Sect. A.7),
we can simplify the question of whether the logspace analog of the former
inclusion holds to the question of whether NL ⊆ ⊕L/poly and the question
of whether the logspace analog of the latter inclusion holds to the question of
whether NL ⊆ LPL. Here the latter inclusion, NL ⊆ LPL, trivially holds be-
cause NL ⊆ PL. Can we use the isolation technique to prove NL ⊆ ⊕L/poly?

Pause to Ponder 4.18 Does NL ⊆ ⊕L/poly hold?

The answer to this question is in the affirmative. In fact, we can prove
something stronger: NL/poly = UL/poly. In other words, if all nondetermin-
istic logspace machines are given access to advice functions having polynomial
length, then NL and UL are equivalent.

4.3.1 An NL-Complete Set

The Graph Accessibility Problem is the problem of deciding, for a given di-
rected graph G and two nodes s and t of G, whether t is reachable from s in G.
We consider a restricted version of the problem in which G has no self-loops,
and s is the first node and t is the last node, where we order the nodes in G ac-
cording to the adjacency matrix representation of G. More precisely, we con-

sider the set, ĜAP, of all a11a12 · · · a1na21a22 · · · a2n · · · · · · , an1an2 · · · ann,
n ≥ 2, such that the diagonal elements a11, . . . , ann are each 0, and n is
reachable from 1 in G, where G is the directed graph whose adjacency ma-
trix’s (i, j)th element is aij . Since GAP, the Graph Accessibility Problem
(without constraints on the numbering of the start and finish nodes, and
without prohibiting self-loops), is well-known to be NL-complete, and since a
logspace machine, given G, s, and t, can swap the names of the source node

4.3 NL/poly = UL/poly 83

s and 1, can swap the names of the sink node t and n, and can eliminate all

self-loops, GAP≤L
mĜAP. ĜAP is clearly in NL. Hence, our problem ĜAP is

NL-complete too.

4.3.2 NL/poly = UL/poly

We show how to apply the Isolation Lemma (Lemma 4.1) to prove NL ⊆
UL/poly. Suppose we wish to decide the membership in ĜAP of an arbitrary
n-node directed graph without self-loops. Let our universe U(n) be the set of
all potential edges in such a graph. Then ||U(n)|| = n(n− 1). Let our weight
functions map each edge in U(n) to an integer between 1 and 2n3. For a given
n-node directed graph G without self-loops, and for each i, 1 ≤ i ≤ n, define
F(n,G)i to be the set of all simple paths in G from 1 to i. We view each
element of F(n,G)i as a subset of U(n). Since F(n,G)i is a collection of simple
paths from 1 to i, no two elements in F(n,G)i specify identical paths. Then
a weight function W is good for F(n,G)i if and only if the minimum-weight
path in G from 1 to i with respect to W is unique. Now apply Lemma 4.1
with m = n, U = U(n), Z = Z(n), F1 = F(n,G)1, . . . , Fn = F(n,G)n,
D = n(n− 1), R = 2n3 > 2mD, and α = 1

2 . Let Z(n) be the set of all weight
functions whose values are at most 2n3. Then we have the following lemma.

Lemma 4.19 Let n ≥ 2 and let G be an n-node directed graph. Let U(n),
Z(n), and F(n,G)1, . . . ,F(n,G)n be as stated above. Then more than half
of the edge-weight functions in Z are good for F(n,G)1, . . . ,F(n,G)n.

Suppose we wish to select, for each n ≥ 2, a sequence of some m(n)
weight functions, W1, . . . ,Wm(n) ∈ Z(n), such that for all n-node directed
graphs G, there is some i, 1 ≤ i ≤ m(n), such that Wi is good for
F(n,G)1, . . . ,F(n,G)n. How large m(n) should be? The following lemma
states that m(n) can be as small as n2.

Lemma 4.20 Let n ≥ 2. Let U(n), Z(n), and F(n,G)1, . . . ,F(n,G)n be
as stated above. There is a collection of edge-weight functions W1, . . . ,Wn2

in Z(n) such that, for every n-node directed graph without self-loops, G, there
is some k, 1 ≤ k ≤ n2, such that Wk is good for F(n,G)1, . . . ,F(n,G)n.

Proof of Lemma 4.20 Let n ≥ 2. By Lemma 4.19, for every n-node di-
rected graph without self-loops, G, the proportion of edge-weight functions in
Z(n) that are good for F(n,G)1, . . . ,F(n,G)n is more than a half. So, for all
n-node directed graphs without self-loops, the proportion of (W1, . . . ,Wn2)
such that for all k, 1 ≤ k ≤ n2, Wk is bad for F(n,G)1, . . . ,F(n,G)n

is less than 2−n2

. There are 2n(n−1) directed n-node directed graphs with-
out self-loops. So, the proportion of (W1, . . . ,Wn2) such that, for some n-
node directed graph without self-loop G, for all i, 1 ≤ i ≤ n2, Wi is bad
for F(n,G)1, . . . ,F(n,G)n is less than 2n(n−1)2−n2

< 1. This implies that

84 4. The Isolation Technique

there is some 〈W1, . . . ,Wn2〉 such that for all directed n-node directed graph
without self-loop G, there is some i, 1 ≤ i ≤ n2, such that Wi is good for
F(n,G)1, . . . ,F(n,G)n. ❑ Lemma 4.20

We define our advice function h as follows. For every n ≥ 2, h maps each
string of length n to a fixed collection 〈W1, . . . ,Wn2〉 of n2 legitimate weight
functions possessing the property in Lemma 4.20. For n = 1, h maps each
string of length n to the empty string. The domain size D is n(n−1) and the
largest weight R is 2n3. So, by encoding each weight in binary, the encoding
length of h(n) will be O(n4 log n).

Now we prove the following theorem.

Theorem 4.21 NL ⊆ UL/poly, and thus, NL/poly = UL/poly.

In fact, we will prove the following result, from which Theorem 4.21 im-
mediately follows.

Theorem 4.22 There is a UL machine that solves ĜAP using a polynomi-
ally length-bounded advice function.

Proof For simplicity, in the following, let n ≥ 2 be fixed and let W1 · · · Wn2

be the advice for length n (i.e., what the advice function gives, call it h). Also,

let G be an n-node graph G whose membership in ĜAP we are testing.
We need to define some notions and notation. For each i, 1 ≤ i ≤ n2,

and j, 1 ≤ j ≤ n, define MinWeight(i, j) to be the weight of the minimum-
weight paths from 1 to j with respect to the weight function Wi; if j is
not reachable from 1 in G, then MinWeight(i, j) = ∞. For each i, 1 ≤ i ≤
n2, and d ≥ 0, define Reach(i, d) to be the set of all nodes j, 1 ≤ j ≤
n, that are reachable from 1 via paths of weight at most d with respect
to the weight function Wi, define Count(i, d) = ||Reach(i, d)||, and define
WeightSum(i, d) =

∑
j MinWeight(i, j), where j ranges over all elements in

Reach(i, d); also, we say that Wi is d-nice if, for every j ∈ Reach(i, d), there
is a unique minimum-weight path from 1 to j in G with respect to Wi.

Due to our construction of h, every minimum-weight path has weight at
most n(2n3) = 2n4. So, for every i, 1 ≤ i ≤ n2, and for every d, d ≥ 2n4,
it holds that Reach(i, d) = Reach(i, d + 1), Count(i, d) = Count(i, d + 1),
and WeightSum(i, d) = WeightSum(i, d + 1). Note that 1 is the only node
that can be reached from 1 without traversing edges. So, for all i, 1 ≤ i ≤
n2, it holds that MinWeight(i, 1) = 0, Reach(i, 0) = {1}, Count(i, 0) = 1,
WeightSum(i, 0) = 0, and Wi is 0-nice.

We prove that if Wi is d-nice and if we know Count(i, d) and
WeightSum(i, d), then for any j, 1 ≤ j ≤ n, we can test, via unambigu-
ous logspace computation, whether j belongs to Reach(i, d). Recall that in
the previous section we presented a nondeterministic logspace procedure for
guessing a path, πj , from 1 to a given node j. Let us modify this procedure
as follows:

• For each node j, 1 ≤ j ≤ n, attempt to guess a path from 1 to j having
weight at most d (with respect to Wi) and having length at most n − 1.

4.3 NL/poly = UL/poly 85

Count the number of j for which the guess is successful (call this number
C) and compute the sum of Wi(πj) for all successful j (call this number S).

• Output “successful” if C = Count(i, d) and S = WeightSum(i, d). Output
“failure” otherwise.

Note that if Wi is d-nice and both Count(i, d) and WeightSum(i, d) are cor-
rectly computed, then there is only one computation path in the above along
which it holds that C = Count(i, d) and S = WeightSum(i, d). Furthermore,
the space requirement for this procedure is O(log n), since the guessing part
can be sequential, C ≤ n, and S ≤ n(2n4) = 2n5.

Now modify this procedure further, so that (i) it takes a number j,
1 ≤ j ≤ n, as an additional input, (ii) it memorizes whether the guess is
successful for j, and if so, it memorizes the weight of the path it guesses,
and (iii) if the computation is successful (namely, when C = Count(i, d)
and S = WeightSum(i, d)) it outputs the information that it has memo-
rized in (ii). We call this modified version ReachTest. For a d-nice Wi, given
Count(i, d) and WeightSum(i, d), ReachTest(j) behaves as an unambiguous
logspace procedure. Since the modification does not change the space require-
ment, if Wi is 2n4-nice, then ReachTest(n) will discover, via unambiguous

logspace computation, whether G ∈ ĜAP.
Now we have only to develop a UL procedure for finding an i, 1 ≤

i ≤ n2, such that Wi is 2n4-nice, and for computing Count(i, 2n4) and
WeightSum(i, 2n4) for that i. We design an inductive method for accom-
plishing this task. We vary i from 1 to n2 and, for each i, we vary d from 0 to
2n4. For each combination of i and d, we test whether Wi is d-nice, and if the
test is passed, we compute Count(i, d) and WeightSum(i, d). Note for every
i, 1 ≤ i ≤ n2, and for every d, 0 ≤ d < 2n4, that if Wi is not d-nice, then
Wi is not (d + 1)-nice. Thus, if we discover that Wi is not d-nice for some
d, then we will skip to the next value of i without investigating larger values
of d. Recall that for every i, 1 ≤ i ≤ n2, Wi is 0-nice, Reach(i, 0) = {1},
Count(i, 0) = 1, and WeightSum(i, 0) = 0. Iterating the variables i and d
requires only O(log n) space. So, it suffices to prove that there is a UL pro-
cedure that given i, 1 ≤ i ≤ n2, and d, 0 ≤ d ≤ 2n4 − 1, such that Wi is
d-nice, Count(i, d), and WeightSum(i, d), tests whether Wi is (d + 1)-nice,
and if so computes Count(i, d + 1) and WeightSum(i, d + 1). To obtain such
an algorithm, the following fact is useful.

Fact 4.23 Let 1 ≤ i ≤ n2 and 0 ≤ d ≤ 2n4 − 1. Suppose that Wi is d-nice.
Then the following conditions hold:

1. For every u, 1 ≤ u ≤ n, the condition u ∈ Reach(i, d + 1) − Reach(i, d)
is equivalent to: u 6∈ Reach(i, d) and there is some v ∈ Reach(i, d) such
that (v, u) is an edge of G and MinWeight(i, v) + Wi(v, u) = d + 1.

2. Wi is (d+1)-nice if and only if for every u ∈ Reach(i, d+1)−Reach(i, d)
there is a unique node v such that MinWeight(i, v) + Wi(v, u) = d + 1.

86 4. The Isolation Technique

Proof of Fact 4.23 Part 1 as well as the left to right direction of part 2
is straightforward. To prove the right to left direction of part 2, suppose Wi

is not (d+1)-nice but is d-nice. Then there exists some u ∈ Reach(i, d+1)−
Reach(i, d) such that there are two distinct paths from 1 to u, with respect
to Wi. Since u ∈ Reach(i, d + 1) − Reach(i, d), the weight of the two paths
should be d + 1. So, they are minimum-weight paths. ❑ Fact 4.23

Now we build a UL algorithm for the incremental steps. Let 1 ≤ i ≤ n2

and 1 ≤ d ≤ 2n4. Suppose that Wi is (d − 1)-nice and that Count(i, d − 1)
and WeightSum(i, d− 1) are known.

Step 1 Set counters c and s to 0.
Step 2 For each node u, 1 ≤ u ≤ n, do the following:

(a) Call ReachTest to test whether u ∈ Reach(i, d− 1). Then
• if the ReachTest outputs “failure,” then output “failure” and halt,

else
• if ReachTest asserts that u ∈ Reach(i, d−1), then skip to the next

u, else
• if ReachTest asserts that u 6∈ Reach(i, d− 1), then proceed to (b).

(b) Set the counter t to 0, then for each node v such that (v, u) is an
edge in G call ReachTest to test whether v ∈ Reach(i, d− 1) and
• if ReachTest returns “failure,” then output “failure” and halt, else
• if ReachTest asserts that v ∈ Reach(i, d−1) and MinWeight(i, v)+

Wi(v, u) = d, then increment t.
Next,
• if t = 0, then move on to the next u without touching c or s, else
• if t = 1, then increment c and add d to s, else
• if t > 1, then assert that Wi is not d-nice and halt.

Step 3 Set Count(i, d) to Count(i, d − 1) + c, set WeightSum(i, d) to
WeightSum(i, d− 1) + s, and halt.

The correctness of the algorithm follows from Fact 4.23. It is clear that the
space requirement is O(log n). Note that Wi being d-nice guarantees that
ReachTest(i, d) produces exactly one successful computation path. So, there
is a unique successful computation path of this algorithm, along which exactly
one of the following two events occurs:

• We observe that Wi is (d + 1)-nice and obtain Count(i, d + 1) and
WeightSum(i, d + 1).

• We observe that Wi is not (d + 1)-nice.

Thus, we can execute the induction step by a UL algorithm. Putting

all together, we have a UL machine that decides ĜAP with h (i.e.,
W1W2 · · · Wn2 on inputs of length n) as the advice. This completes the proof
of Theorem 4.22. ❑ Theorem 4.22

4.5 Bibliographic Notes 87

4.4 OPEN ISSUE: Do Ambiguous and Unambiguous
Nondeterminism Coincide?

In Sect. 4.3 we showed that the classes NL and UL are equal under
polynomial-size advice. Can we get rid of the polynomial-size advice, i.e.,
is NL equal to UL? One tempting approach would be to derandomize the
Isolation Lemma, however no one has yet succeeded along that path. It is
now known that the equivalence holds if there is a set in DSPACE[n] that
requires circuits of size at least 2cn for some c > 0. In particular, NL = UL
if SAT requires circuits of size at least 2cn for some c > 0.

Also, what can we say about the question of whether NP = UP?
There is an oracle relative to which NP 6= UP. Since there is also an
oracle relative to which NP = UP (e.g., any PSPACE-complete set, as
NPPSPACE = UPPSPACE = PSPACE), relativizable proof techniques can-
not settle the NP = UP question. In fact, it even remains an open question
whether the assumption NP = UP implies a collapse of the polynomial hier-
archy.

4.5 Bibliographic Notes

Part 2 of Proposition 4.6 is due to Ko [Ko82]. Lemma 4.9 is due to
Schöning [Sch89]. Proposition 4.8 is due to Papadimitriou and Zachos [PZ83].
Regan [Reg85] first noted the closure of #P under addition. The obser-
vation applies to #L as well. Proposition 4.16 is due to Balcázar, Book,
and Schöning ([BBS86], see also [Ang80,GJ79]). Buntrock et al. [BDHM92]
proved that ⊕L⊕L = ⊕L. The oracle, mentioned in Sect. 4.4, relative to which
NP 6= UP is due to Rackoff [Rac82].

The Isolation Lemma was established by Mulmuley, Vazirani, and Vazi-
rani [MVV87]. Their version deals only with a single collection of sets. Our
version, which deals with multiple collections of sets, is taken from the work
of Gál and Wigderson [GW96].

Toda’s Theorem is due to Toda [Tod91c], and Lemma 4.14, Theorem 4.5,
Theorem 4.12, Corollary 4.10, and Corollary 4.17 are all from his semi-
nal paper. Part 1 of Proposition 4.6 is often written as BPP = BP · P,
where BP· is what is known as the BP quantifier or the BP operator.
Heller and Zachos [ZH86] introduced this quantifier and first proved part 1
of Proposition 4.6. Corollary 4.7 generalizes Adleman’s [Adl78] early re-
sult RP ⊆ P/poly, and can be found in Bennett and Gill [BG81] and
Schöning [Sch86b]. One other form of Toda’s Theorem is PPPH ⊆ BP · PP.

Toda and Ogiwara [TO92] showed that C=PPH ⊆ BP · C=P and, for ev-
ery k ≥ 2, that ModkPPH ⊆ BP · ModkP. Tarui [Tar93] showed that R·,
the one-sided error version of BP·, can replace the BP· on the right-hand
side regarding PP and C=P, i.e., PPPH ⊆ R · PP and C=PPH ⊆ R · C=P.

88 4. The Isolation Technique

Gupta [Gup93] showed that R · C=P = BP · C=P. Green et al. [GKR+95]
observed that PH is included in the class of decision problems whose mem-
berships are determined by the “middle bit” of #P functions.

The isolation technique used in the celebrated paper by Toda is the one
by Valiant and Vazirani [VV86]. Roughly speaking, in order to reduce the
cardinality of an unknown nonempty set S of nonzero vectors in {0, 1}n,
one applies a sequence of filters. Each filter can be written as b · x = 0,
where · is the inner product modulo 2 of n dimensional vectors and only
vectors satisfying b ·x = 0 are passed through the filter. Valiant and Vazirani
show that, for any nonempty S ⊆ {0, 1}n − {0n}, if a sequence of n random
filters b1, · · · , bn ∈ {0, 1}n is chosen, the probability that at some point i,
0 ≤ i ≤ n, there is exactly one vector in S that pass through all the filters
up to bi is at least 1

4 . Thus with this technique, one needs quadratically
many bits to achieve a constant success probability in order to reduce the
cardinality to one. We may ask whether it is possible to use fewer bits to
achieve a constant success probability. Naik, Regan, and Sivakumar [NRS95]
developed a reduction scheme that uses a quasilinear number of bits to achieve
constant success probability.

Toda’s Theorem has applications in circuit theory. A translation of
Theorem 4.5 into circuit classes is: AC0 (the class of languages recognized
by families of polynomial-size, constant-depth, unbounded fan-in AND-OR
circuits) is included in the class of languages recognized by families of size

2logO(1) n, depth-2 probabilistic circuits with a PARITY gate at the top and
polylogarithmic fan-in AND gates at the bottom. This inclusion was first
proven by Allender [All89a] using a different technique. Later, Allender and
Hertrampf [AH94] showed that, for every prime number p, the class ACCp—
the class of languages recognized by families of polynomial size, constant-
depth, circuits consisting of unbounded fan-in ANDs, unbounded fan-in ORs
and unbounded fan-in MODULO p (computing whether the number of 1s
in the inputs is not divisible by p) gates—is included in the following three
classes of languages: (a) the class of languages recognized by depth-4, polylog-

arithmic bottom-fan-in, size 2logO(1) n circuits consisting of unbounded fan-in
ANDs, unbounded fan-in ORs, and unbounded fan-in MODULO p gates; (b)
the class of languages recognized by depth-3, polylogarithmic bottom-fan-

in, size 2logO(1) n circuits consisting solely of MAJORITY gates (computing
whether the majority of the inputs are 1s); and (c) the class of languages rec-

ognized by depth-2, polylogarithmic bottom-fan-in, size 2logO(1) n probabilis-
tic circuits with a MODULO p gate at the top and AND gates at the bottom.
They also showed that if the ACCp class is uniform, then the classes (a), (b),
and (c) can be all uniform. Kannan et al. [KVVY93] independently proved
the uniformity result regarding the inclusion involving class (c). Yao [Yao90]
showed that the inclusion involving class (b) holds for nonprime modulo p
as well. Tarui [Tar93] showed that AC0 is included in the class of languages

recognized by depth-2, polylogarithmic bottom-fan-in, size 2logO(1) n proba-

4.5 Bibliographic Notes 89

bilistic circuits with a MAJORITY gate at the top and AND gates at the
bottom. Beigel and Tarui [BT94] showed that in the inclusion involving class
(c), deterministic circuits suffice. Beigel, Reingold, and Spielman [BRS91]
showed that the class of languages accepted by a constant depth, polynomial-
size circuits with any symmetric gate (i.e., the output depending only on the
number of 1s in the inputs) and unbounded fan-in ANDs and ORs elsewhere

is included in the class of languages recognized by a depth-2, size 2logO(1) n

circuits with essentially the same symmetric gate at the top and polyloga-
rithmic fan-in AND gates at the bottom.

Another application of the isolation technique is the probability one “in-
clusion” of NPMV in FPNP

tt . Watanabe and Toda [WT93] proved that with
probability one relative to a random oracle NPMV (the class of multivalued
nondeterministic polynomial-time functions) has a refinement (see Chap. 3)
in FPNP

tt , the class of functions computable in polynomial time with parallel
access to an NP oracle.

Wigderson [Wig94] showed how to apply the Isolation Lemma to prove
NL ⊆ ⊕L/poly. In an expanded version of that paper, Gál and Wigder-
son [GW96] asked whether there was any use of the multiple collection version
of the Isolation Lemma. Allender and Reinhardt [RA99] gave an affirmative
answer to that question by proving Theorem 4.22. Chari, Rohatgi, and Srini-
vasan [CRS95] developed an isolation method that uses fewer random bits
than that of Mulmuley, Vazirani, and Vazirani. The results that relate the
NL = UL question to the circuit complexity of SAT and that of DSPACE(n),
mentioned in Sect. 4.4 are by Allender, Reinhardt, and Zhou [ARZ99]. For the
fact that “standard” graph accessibility problem is NL-complete, see [Sav70].

