You may assume that M_1, M_2, M_3, \ldots is a standard enumeration of Turing machines and that $HP = \{ i \mid i \in L(M_i) \}$ is undecidable (we implicitly use the standard 1-to-1 bijection between \mathbb{N} and Σ^* to treat i both as integer and string).

Question 1. [50 FAKE (not real; does not count) points]
Prove that $A = \{ i \mid L(M_i) \text{ is an infinite language} \}$ is undecidable.

Answer:
To prove that A is undecidable, we just need to prove $HP \leq_m A$.

Namely, we need to construct a recursive reduction σ, such that $(\forall x)[x \in HP \iff \sigma(x) \in A]$.

$\sigma(x)$ outputs j, where j is the encoding of a Turing Machine M_j. The construction of the Turing Machine M_j is as follows:

On input y, M_j simulate $M_x(x)$ and if $M_x(x)$ accepts then M_j halts and accepts. If $M_x(x)$ halts and rejects, then M_j goes into an infinite loop.

1. σ is a recursive reduction.
2. $x \in HP \Rightarrow \sigma(x) = j \in A$. Because when $x \in HP$, $M_x(x)$ accepts. Thus M_j accepts all possible $y \in \Sigma^*$. Thus $L(M_j) = \Sigma^*$, which is infinite. Thus we have $\sigma(x) \in A$.
3. $x \notin HP \Rightarrow \sigma(x) = j \notin A$. $x \notin HP$ means $M_x(x)$ either runs forever or halts and rejects.

 If $M_x(x)$ runs forever, then by simulating $M_x(x)$, $M_j(y)$ will also run forever for any y. Thus $L(M_j) = \emptyset$. Thus $\sigma(x) \notin A$.

 If $M_x(x)$ halts and rejects, then according to the construction of M_j, $M_i(y)$ will go into an infinite loop and run forever for any y. Thus $L(M_j) = \emptyset$. Thus $\sigma(x) \notin A$.

 To sum up, we have $x \notin HP \Rightarrow \sigma(x) \notin A$.

 Now we have proved that $HP \leq_m A$, thus A is undecidable.

Question 2. [50 FAKE (not real; does not count) points]
Prove that $B = \{ i \mid L(M_i) \text{ is a finite language} \}$ is undecidable.

Answer:
To prove that B is undecidable, we just need to prove $HP \leq_m B$.

1
Namely, we need to construct a recursive reduction σ, such that
$(\forall x)[x \in HP \iff \sigma(x) \in B]$.

$\sigma(x)$ outputs j, where j is the encoding of a Turing Machine M_j. The
construction of the Turing Machine M_j is as follows:

On input y, M_j simulate $M_x(x)$ and if $M_x(x)$ does not accept within $|y|$ steps then M_j halts and accepts. Otherwise M_j rejects. Here $|y|$ is the length of the input y.

1. σ is a recursive reduction.
2. $x \in HP \Rightarrow \sigma(x) = j \in B$. Because if $x \in HP$ then there exists a k such that $M_x(x)$ accepts within k steps. Thus for any input y with length larger than k, M_j rejects. Thus $L(M_j)$ is a finite language. Thus we have $\sigma(x) \in B$.

3. $x \notin HP \Rightarrow \sigma(x) = j \notin B$. $x \notin HP$ means $M_x(x)$ never accepts. Thus for all y, $M_x(x)$ does not accept within $|y|$ steps. Thus for all y, $M_j(y)$ accepts. Thus $L(M_j) = \Sigma^*$, which is infinite. Thus $\sigma(x) \notin B$.

Now we have proved that $HP \leq_m B$, thus B is undecidable.