Question 1. [100 points] Define the lacing of two languages A and B as $\text{licing}(A, B) = \{xyx \mid x \in A \text{ and } y \in B\}$. Prove that if A and B are r.e. sets, then $\text{licing}(A, B)$ is an r.e. set. (Hint: Be careful not to get tripped up with any issue related to the empty string, or with any issue related to your not coordinating to make sure that in xyx it is the same “x” in both places.)

Answer Sketch:

Let A, B be two arbitrary RE languages and let M_A and M_B be enumerating TMs that enumerate them. We will construct an enumerating TM C that enumerates $\text{licing}(A, B)$.

Our enumerating TM C will go one ply after another, forever. During the kth ply, it will simulate both M_A and M_B for k steps, will keep track of the strings each enumerates in that time, and then for each a that was enumerated by M_A and each b that was enumerated by M_B, it will enumerate aba.

Our construction ensures that $E(C) = \text{licing}(A, B)$ (since this process enumerates all xyx with x from A and y from B, and enumerates nothing else), so $\text{licing}(A, B)$ is always RE when A and B are RE.