Question 1. Define $A = \{⟨i, q⟩| (∃x ∈ Σ^*) [M_i on input x halts after a finite number of steps AND (either M_q on input x runs forever or M_q on input x halts after a strictly greater number of steps than M_i on input x does)] \}$. (Loosely put, there is some string on which M_i is faster than M_q.)

Define $B = \{k|L(M_k) \neq \emptyset\}$. (a) Prove, by giving a recursive reduction and proving it correct, that $A \leq_m B$. (b) Prove, by giving a recursive reduction and proving it correct, that $B \leq_m A$.

Answer: An answer is on the next page!
Answer: (a) We will give a recursive function σ such that for all pairs $\langle i, q \rangle$, $\langle i, q \rangle \in A \iff \sigma(\langle i, q \rangle) \in B$. We define $\sigma(\langle i, q \rangle) = k$ which is the index of a TM that on arbitrary input y does the following. M_k simulates M_i on y step by step, and at the end of each step a counter is incremented by one. (The counter is initialized to be zero.) If M_i halts, let t be the value of the counter when M_i halts, then M_k simulates M_q on y for t steps. M_k accepts if and only if M_q doesn’t halt within t steps.

If $\langle i, q \rangle \in A$, then there is a string x on which M_i is faster than M_q. By the definition of M_k, M_k will accept x, which implies $k \in B$.

If $\langle i, q \rangle \notin A$, then for all x, either M_i won’t halt on x or M_i on x halts after a greater or equal number of steps than M_q on input x does. By the definition of M_k, M_k won’t accept any string, which implies that $k \notin B$.

(b) We will give a recursive function σ such that for all k, $k \in B \iff \sigma(k) \in A$. We define $\sigma(k) = \langle i, q \rangle$ such that M_q is a TM which runs forever on every input and M_i is a TM that on arbitrary input y does the following. M_i ignores y and simulates the enumerator for $L(M_i)$, and then halts and accepts if and only if the enumerator enumerates something.

If $k \in B$, then $L(M_k) \neq \emptyset$. By the definition of M_i, M_i on every input will halt and accept. Since M_q runs forever on every input, we have $\langle i, q \rangle \in A$.

If $k \notin B$, then $L(M_k) = \emptyset$. By the definition of M_i, M_i will run forever on every input, which implies $\langle i, q \rangle \notin A$.

2