Agenda

- Definitions
- Chapter 2 of Lane and Ogi’s The Complexity Theory Companion
 - Theorem 2.5, has 2 claims
- Quiz in last 15 min of the class.

Hint Hint: Try to understand the definitions
One Way Function (OWF)?

- Function that is easy to compute but **HARD TO INVERT**
- No known One Way Function, (OWF), yet to be found!!
- But there are candidates!!

Requirements to be a One Way Function, \(f \):

- \(f \) can be computed in Polynomial Time (PTIME)
- \(f \) can’t be inverted in PTIME
- \(f \) is honest
What is Honesty?💡

Definition 2.1: Honesty

A function \(f \) is honest if the following holds:

\[
(\exists \text{ polynomial } q) \\
(\forall y \in \text{range}(f)) \\
(\exists x) \\
[|x| \leq q(|y|) \land f(x) = y]
\]

\(f \) can shrink its input by no more than polynomial.
Why Honesty

Why Honesty?

● **f being honest means:** For each range element \(y = f(x) \), there is an \(x \) that is at most polynomially longer than \(y \) (i.e., for which \(f(x) \) is not more than “polynomially” shorter than \(x \))

● Intuitively: function cannot drastically “shrink” its input

● Better reflects intuitive notion of non invertibility - no “length tricks”

\[
f(x) = 1[\log \log \log (\max\{|x|,4\})]
\]

* simple example on board: \(f(x) = \log |x| \)
Polynomial Invertibility

Definition 2.2:

A function (possibly non total) \(f \) is PTIME invertible if there is a possible (possibly non total) PTIME computable function \(g \) such that:

\[
(\forall y \in \text{range } (f)) \quad [y \in \text{domain}(g) \land g(y) \in \text{domain}(f) \land f(g(y)) = y]
\]

simply means \(f \) can be reversed engineered in somewhat similar amount of time.
Definition 2.4: One to One

A function \(f \) is one to one if:

\[
(\forall y \in \Sigma^*) \left[\| \{ x \mid f(x) = y \} \| \leq 1 \right]
\]

Simple High School algebra:

\[
(\forall x_1, x_2 \in \Sigma^*) \left[f(x_1) = f(x_2) \Rightarrow (x_1 = x_2) \right]
\]
Now what?

Now we know what One Way Function (OWF) is!!!

A function f is one way if:

- f is polynomial-time computable,
- f is not polynomial time invertible, and
- f is honest
Theorem 2.5

1. One-way functions exists if and only if $P \neq NP$
2. One-to-one one way functions exist if and only if $P \neq UP$

We shall prove this theorem for the rest of the class session.

Note: Proof of 2 is simple modification of part 1. **SO PAY CLOSE ATTENTION** while we prove 1
Things to prove:

1. One-way functions exists if and only if $P \neq NP$
 a. If: $P \neq NP \implies$ One Way Function Exists
 b. Only if: One Way Function Exists $\implies P \neq NP$

2. One-to-one one way functions exist if and only if $P \neq UP$
 a. If: $P \neq UP \implies$ one-to-one one way functions exist
 b. Only if: One-to-one one way functions exist $\implies P \neq UP$
1(a) if: $P \neq NP \Rightarrow$ One Way Function Exists

- Assume $P \neq NP$
- Let $A \in NP - P$
- \exists a NPTM, N such that $L(N) = A$

Goal: Find a one way function f
1(a) if: $P \neq NP \Rightarrow$ One Way Function Exists ...

Quest for the magical f:

- Assume some standard nice pairing function $<\cdot, \cdot>$:
 - PTIME computable and invertible
 - a bijection between $\Sigma^* \times \Sigma^*$ and Σ^*
- Consider a function f:

$$f(<x, w>) = \begin{cases} 0x, & \text{if } w \text{ is an accepting path for } N(x) \\ 1x, & \text{otherwise} \end{cases}$$

Remember:

$L(N) = A$ and $A \in NP - P$
1(a) if: $P \neq NP \Rightarrow$ One Way Function Exists ...

$$f(<x,w>) = \begin{cases}
0x, & \text{if } w \text{ is an accepting path for } N(x) \\
1x, & \text{otherwise}
\end{cases}$$

BIG PICTURE!
- Will show f is polynomial time computable, honest, hard to invert
- For the sake of contradiction assume f is easily invertible in PTIME
- Establish $A \in P$
- Lead to a contradiction $A \in P \& A \in NP - P$
- $P = NP$

Remember: $L(N) = A$ and $A \in NP - P$
1(a) if: $P \neq NP \Rightarrow$ One Way Function Exists ...

Quest for the magical f:

- f that takes paired values $<x, w>$ as input
- **Our Claim:**
 - f is polynomial time computable
 - f is honest

Remember:

$L(N) = A$ and

$A \in NP - P$
1(a) if: $P \neq NP \Rightarrow$ One Way Function Exists …

- f is computable in PTIME?

 - checking whether w is an accepting path by running N on input x is clearly polynomial

- f is honest?

 - If w is an accepting path, no path in N can be longer than some polynomial $p(|x|)$. If w is not an accepting path, $|w|$ might not be polynomial. But honesty only requires that some short preimage for $1x$ exist (easy to come up with one).

 Also, PTIME computability and invertibility of pairing function “prevents f from destroying the honesty condition”
1(a) if: $P \neq NP \Rightarrow$ One Way Function Exists ...

- We are almost there!
- Showed that our f is
 - computable in polynomial time ✓
 - honest ✓
 - hard to invert
1(a) if: $P \neq NP \Rightarrow$ One Way Function Exists ...

BIG PICTURE!
- Showed f is polynomial time computable, honest
- **Need to show hard to invert**
- For the sake of contradiction assume f is “easily” invertible in PTIME
- Gives us $A \in P$
- Will construct a DPTM M, s.t $L(M) = A$
- Lead to a contradiction $A \in P$ & $A \in NP-P$
- $P = NP$

“easily” means in **polynomial time**
1(a) if: $P \neq NP \Rightarrow$ One Way Function Exists ...

- Goal: Show f is hard to invert
- Assume f is invertible via a polynomially computable function g
- g allows us to accept A in PTIME
- We get $A \in P$
- We will show that $A \in P$ by constructing a DPTM M such that $L(M) = A$

Remember:
$L(N) = A$ and $A \in NP - P$
1(a) if: \(P \neq NP \) ⇒ One Way Function Exists …

- Construction \(M: \)

\[
f(<x, w>) = \begin{cases}
0x, & \text{if } w \text{ is an accepting path for } N(x) \\
1x, & \text{otherwise}
\end{cases}
\]

Goal: Show \(f \) is hard to invert
1(a) if: \(P \neq NP \Rightarrow \) One Way Function Exists ...

- Construction \(M \):
- On input \(x \in \Sigma^* \), check if \(0x \in \text{domain of } g \)
- if not, \text{REJECT!}

\[
f(<x,w>) = \begin{cases}
0x, \text{if } w \text{ is an accepting path for } N(x) \\
1x, \text{otherwise}
\end{cases}
\]

Goal: Show \(f \) is hard to invert.
1(a) if: $P \neq NP \Rightarrow$ One Way Function Exists ...

- Construction M:
 - On input $x \in \Sigma^*$, check if $0x \in \text{domain of } g$
 - if not, REJECT!
 - if yes:
 - compute $g(0x)$, which returns $<x,w>$
 - test if w is an accepting path in $N(x)$
 - if yes, ACCEPT!
 - Otherwise, REJECT!

\[
f(<x,w>) = \begin{cases}
0x, \text{if } w \text{ is an accepting path for } N(x) \\
1x, \text{otherwise}
\end{cases}
\]

Goal: Show f is hard to invert

Mr. RABBIT will use this construction in 2(a)
1(a) if: $P \neq NP \Rightarrow$ One Way Function Exists ...

- M accepts A in deterministic polynomial time
- Under our assumption $P \neq NP$
- Just showed a DPTM for M and $L(M) = A$
- Showed $A \in P$
- Assumed $A \in NP - P$
- Contradiction!
What actually happened?

- We constructed DPTM M assuming a inverse of f, g existed, which is polynomial time computable.
- But g does not exist i.e no polynomial time computable inverse of f exists.
- f^{-1} must not be polynomially computable, f^{-1} is HARD to invert.
- f must not be polynomially invertible.
- Vola!!! f is now a One Way Function ✓
Where are we so far?

1. One-way functions exists if and only if $P \neq NP$

 a. if: $P \neq NP \Rightarrow \text{One Way Function Exists}$ ✓

 b. only if: One Way Function Exists $\Rightarrow P \neq NP$

2. One-to-one one way functions exist if and only if $P \neq UP$

 a. if : $P \neq UP \Rightarrow \text{one-to-one one way functions exist}$

 b. only if : One-to-one one way functions exist $\Rightarrow P \neq UP$
1(b) only if: One Way Function Exists $\Rightarrow P \neq NP$

- Reverse our previous strategy: given a one-way function f, assume $P = NP$, lead to contradiction.

- Let p be f's honesty polynomial

- Think of this language:
 \[
 L = \{ <z, \text{pre} > | (\exists y)[|y| + |\text{pre}| \leq p(|z|) \land f(\text{pre}.y) = z] \}
 \]

- What does this language “mean”?
 - Prefixes of the inverse of z, i.e. $f^{-1}(z)$, that are sufficiently short (for honesty)
1(b) only if: One Way Function Exists $\Rightarrow P \neq NP$

$$L = \{ < z, \text{pre} > \mid (\exists y)[|y| + |\text{pre}| \leq p(|z|) \land f(\text{pre}.y) = z] \}$$

- Clearly L is NP: guess a string y, then check if $f(\text{pre}.y) = z$.
- Since we assumed $P = NP$, L is also P!
- We’ll use this fact to invert f “easily” (in P-time) - contradicting that f is a one-way function.
1(b) only if: One Way Function Exists $\Rightarrow P \neq NP$

- Goal: given z, find its inverse with respect to f in polynomial time
 - (find x such that $f(x) = z$)
- Since (we assumed) $L \in P$, there is a DPTM accepting L.
- If $<z, \text{pre}>$ is in L, pre is a prefix of z’s inverse
- We can check “easily” (P-time) whether something is in L!

What can we do with this?
1(b) only if: One Way Function Exists ⇒ P≠NP

Complexity rabbit says…

Search **ALL the prefixes!**
1(b) only if: One Way Function Exists $\Rightarrow P \neq NP$

Searching all the prefixes:

- Check if $f(\epsilon) = z$; if so we are done (ϵ is an inverse), if not go to next step.
- Is 0 a prefix of a suitably short inverse?
 - If NO, then 1 must be a prefix!
 - Either way, we determine the first bit.
- Are we done yet? (is this prefix the whole inverse?)
 - Check if $f(pre) = z$. If yes, we’re done! Otherwise, we need to find out the next bit…
- (Let b be the bit we’ve already figured out.) Is $b0$ a prefix of a suitably short inverse?
 - If no, then $b1$ must be a prefix…
 - Now we have the second bit (c), check if $f(bc) = z$...
1(b) only if: One Way Function Exists $\Rightarrow P \neq NP$

Can think of this as a search as a tree:

- At each step, we discover one more bit of the inverse.
- We will make progress with each step: if the next bit isn’t 0, it must be 1. No exponential expansion!
- Hence prefix search is linear in the length of the inverse!
- The honesty polynomial bounds the length of the inverse.
Recap

- We started with a one way function \(f \)
- We supposed \(P = NP \)
- We examined a language \(L \) that lets us check if a string is a prefix of \(f^{-1}(z) \)
- Since \(P = NP \), \(L \in P \)
- We used \(L \) to search for the inverse in polynomial time
- Thus \(f \) can be inverted in polynomial time. Contradiction!
- Hence our assumption was wrong: \(P \neq NP \)
Where are we so far?

1. One-way function exists if and only if $P \neq NP$
 a. $if: P \neq NP \Rightarrow \text{One Way Function Exists} \checkmark$
 b. $only if: \text{One Way Function Exists} \Rightarrow P \neq NP \checkmark$

2. One-to-one one way function exists if and only if $P \neq UP$
 a. $if : P \neq UP \Rightarrow \text{one-to-one one way functions exist}$
 b. $only if : \text{One-to-one one way functions exist} \Rightarrow P \neq UP$
What is UP?

- A complexity class like \((NP, P)\) that has unique witness
- \(L \in UP\) if:
 - NP machine \(N\) accepts \(x \in L\)
 - For all such \(x\), the computation of \(N(x)\) has at most 1 accepting path

\[
UP = \{ L \mid \exists \text{ NPTM, } N \text{ such that } L = L(N), \text{ and } \forall x \in L, N(x) \text{ has at most 1 accepting path} \}
\]
2(a) if: $P \neq UP \Rightarrow$ one-to-one one way functions exist

- Let $A \in UP - P$
- \exists NPTM, N such that $A = L(N)$
- Consider function f:

$$f(<x,w>) = \begin{cases} 0x, & \text{if } w \text{ is an accepting path for } N(x) \\ 1 < x, w >, & \text{otherwise} \end{cases}$$

Goal: want to show f is 1-to-1 one way function
Where are we now?

1. One-way function exists if and only if $P \neq NP$
 a. if: $P \neq NP \Rightarrow \text{One Way Function Exists}$ ✓
 b. only if: $\text{One Way Function Exists} \Rightarrow P \neq NP$ ✓

2. One-to-one one way function exists if and only if $P \neq UP$
 a. if : $P \neq UP \Rightarrow \text{one-to-one one way functions exist}$ ✓
 b. only if : $\text{One-to-one one way functions exist} \Rightarrow P \neq UP$
2(b): only if: 1-to-1 one way functions exist \(\Rightarrow P \neq UP \)

- No changes from 1(b)
 - Replace “one way function” with “1-to-1 one way function” and “NP” with “UP” - same argument holds
- Only difference: there is only one path in the prefix search tree that will lead us to an inverse.
 - We were ignoring the extras anyway (see special note)

- 1-to-1 one way functions exist \(\Rightarrow P \neq UP \)!!!
Big Picture!!

1. Got introduced to One Way Function (1-to-1 as well)!
2. Existence of One Way Function is tied to whether $P=NP$
3. For 1-to-1 One Way Function, it is tied to a more strongly regulated version of NP i.e. UP (***)
4. Next class we will expand on *** to cover a constant bounded version of UP