The Tournament Divide and Conquer Technique

Daniel Rubery
Georgiy Platonov
Mohammad Rafayet Ali
Xiong Zhang
K-tournaments

Consider the set of k people playing a game with the following properties:

1) Game consists of multiple matches, with only two players in each match
2) Each player play against each other exactly once.
3) Every match has a winner

Such a setting can be represented by a directed graph.
Example: 4-tournament
Curious fact about tournaments

The interesting fact about tournaments is that we can select a very small subset of players such that each player not from that subset defeats someone from that set.

How small?

A logarithmically small!
Theorem 3.1:

Let $G = (V, E)$ be a k-tournament, where $V = \{1, \ldots, k\}$ is the set of nodes or players, and E is the set of edges or matches.

Then there exists a subset H of V, such that:

1) $|H| \leq \lceil \log(k + 1) \rceil$

2) $\forall v (v \in (V - H) \implies \exists g (g \in H \land (g, v) \in E))$
Example: 7-tournament
Example: 7-tournament
Example: 7-tournament
Example: 7-tournament
Proof of Theorem 3.1:

- In a k-tournament, each player plays exactly $k - 1$ games.
- There must be at least one player who lost to at least $\left\lfloor \frac{k - 1}{2} \right\rfloor$ other players.
- Add this player to H.
- Remove the nodes corresponding to that player and to all the players who defeated him from the graph. The resulting graph has at most $\left\lfloor \frac{k}{2} \right\rfloor - 1$ vertices.
- Apply the same procedure to the new graph.
- Since at each step we decrease the size of graph by factor of 2 (at least), we end up with at most $\left\lfloor \log(k + 1) \right\rfloor$ steps, so $|H| \leq \left\lfloor \log(k + 1) \right\rfloor$.
Definitions

● **P-sel**
 ○ A language L is P-selective if there is a polynomial-time function f such that:
 ○ $f(x,y)$ is either x or y
 ○ If $x \in L$ or $y \in L$, $f(x,y) \in L$
 ○ Notice that $f(x,y)$ can do anything if x and y are not in L, so in some sense, $f(x,y)$ selects which string is “more likely” to be in L

● **Example:**
 ○ For a fixed real number r, $\{<a,b> | a/b < r\}$
Definitions

- **P/poly**
 - Can be thought of as having “small circuits” that decide each length
 - Easier to think of it as polynomial amount of advice
 - More generally, for a class of languages C and class of functions F, let C/F denote the class of languages L such that:
 - There exists a language $A \in C$, and $h(n)$ such that $|h(n)| \in F$, and $L = \{ x \mid <x,h(|x|)> \in A \}$
 - So P/poly is equivalently:
 - There is a language $A \in P$ and $h(n)$ of polynomial length such that $x \in L$ iff $<x,h(|x|)> \in A$
Connection Between Tournaments and P-sel

- If L is P-selective, let f be a P-selector for L
- Then for a given length n, f gives a tournament on $L^{=n}$
 - We have an edge from a to b if $f(a,b) = b$
 - Note: This requires $f(a,b) = f(b,a)$
- Then Theorem 3.1 gives a set H with at most $\log(2^n+1) \leq n+1$ strings
- Every string in $L^{=n}$ is either in H, or beats a string in H
- Furthermore, any string in H or that beats a string in H is in $L^{=n}$
P-sel \subseteq P/poly

- Recall our definitions. To show a language L is in P/poly, we need a function g and a language A \in P such that:
 - x \in L iff <x, g(|x|)> \in A
- So let g(n) encode the, at most, n+1 strings in H
 - |g(n)| is polynomial in n
- Then A is accepted by the following deterministic Turing machine:
 - On input <x, y> do the following:
 - For each h in y, accept if x=h or f(x, h)=x
 - If we fail all the above, reject
- Then x \in L iff <x, g(|x|)> \in A, so L is in P/poly
- In fact, since g(n) has at most n+1 strings of length n, it has quadratic length
- So we can strengthen this result to P-sel \subseteq P/quadratic
3.2 Optimal Advice for the Semi-feasible Sets
Theorem 3.9

If G is a k-tournament, then there is a $v \in V_G$ such that $V_G = R_{2,G}(v)$.
Required Notations

Given a directed graph G, and a node $v \in V_G$, let
\[R_{0,G}(v) = \{v\} \]
And for each $i > 0$, let
\[R_{i,G}(v) = R_{i-1,G}(v) \cup \{z \in V_G| (\exists w \in R_{i-1,G}(v))[(w,z) \in E_G]\}. \]

For any i, G, and $S \subseteq V_G$, define
\[R_{i,G}(S) = \{w \in V_G|(\exists v \in S)[w \in R_{i,G}(v)]\}. \]
If G is a k-tournament, then there is a $v \in V_G$ such that $V_G = R_{2,G}(v)$.

Proof: By Induction

1-tournament and 2-tournament holds trivially.

Assume: k'-tournament holds in G' graph.

Consider: $k'+1$ -tournament in G graph where a is the new vertex.
If G is a k-tournament, then there is a $v \in V_G$ such that $V_G = R_{2,G}(v)$.

There is a node b in G' such that $R_{2,G'}(b) = V_{G'}$.

Case 1: If the edge between a and b points to a.
Case 2: If the edge between a and b points to b.
If G is a k-tournament, then there is a $v \in V_G$ such that $V_G = R_{2,G}(v)$.

- **Case 1:** If the edge between a and b points to a.
We are done. As $R_{2,G}(b) = V_G$
If G is a k-tournament, then there is a $v \in V_G$ such that $V_G = R_{2,G}(v)$.

- **Case 2:** If the edge between a and b points to b.
 - If $a \in R_{2,G}(b)$ then we are done.
 - If $a \notin R_{2,G}(b)$ then
 - For each node $c \in R_{1,G}(b)$ edge between a and c points to c.
 - So $R_{2,G}(a) = V_G$
Theorem 3.10 \(\text{P-sel} \subseteq \text{NP/linear} \)

What does it mean?
Theorem 3.10 \(\text{P-sel} \subseteq \text{NP/linear} \)

What does it mean?

If \(L \) is a P-sel set, then \(L \) is also a NP/linear set

\(L \) is a P-sel set \(\Rightarrow \) there exists a selector function \(f \) for \(L \) (which selects the one that is “more likely” in \(L \))

\(L \) is a NP/linear set \(\Rightarrow \) there is an advice function \(g \) and set \(A \) such that if \(x \in L \) then \((x, g(|x|)) \in A \)

How to prove this?

Hint Hint: We’ll use Theorem 3.9 (if \(G \) is a k-tournament, we can find a “core” node which has a relatively short distance (\(\leq 2 \)) to any other nodes)
Theorem 3.10 \(P\text{-sel} \subseteq NP/linear \)

What we have: a selector function \(f \) for set \(L \)

What we want: a linear advice function and an “interpreter” set \(A \)

Consider this advice function \(g \):

\[
g(n) = \begin{cases}
1^{n+1} & \text{if } L^{=n} = \emptyset \\
0\omega_n & \text{otherwise}
\end{cases}
\]

\(\omega_n \) is a length \(n \) string in \(L^{=n} \) such that, by Theorem 3.9, each node in the tournament induced on \(L^{=n} \) by \(f \) can be reached from \(\omega_n \) via paths of length at most two. (Basically \(\omega_n \) is the core of the tournament graph!)

This is great, now we have a linear advice (=n+1) and it seems to be useful, but how to construct the set \(A \) (the interpreter) based on the advice function?
Theorem 3.10 \(\text{P-sel} \subseteq \text{NP/linear} \)

The interpreter is defined as:

\[
A = \{ \langle x, 0\omega \rangle \mid \text{there is a path of length at most two, in the tournament induced on } L^n \text{ by } f, \text{ from } \omega \text{ to } x \}
\]

So if \(x \) is in \(L \), by construction of the advice function we know \(\langle x, g(|x|) \rangle \) is in \(A \)

What if \(x \) is not in \(L \)?
If \(x \notin L \), then \(\langle x, g(|x|) \rangle \notin A \), as if \(\langle x, g(|x|) \rangle \in A \), then we have a directed path from \(\omega \) to \(x \) within 2 steps (0, 1, 2):

\[
\omega \to ... \to x
\]

Remember an edge from \(a \to b \) means that \(f(a, b) = b \), or ”b beats a in the tournament”. So b is ”more likely” in L than a. If a is in already in L, then b must be in L.

In our this case a is \(\omega \), b is x. So based on our assumption (\(\langle x, g(|x|) \rangle \in A \)), x turns out to be in L!!! We get a contradiction, so our assumption is not correct.

So now we know if \(x \notin L \), then \(\langle x, g(|x|) \rangle \notin A \) ! And thus by our construction of g and A, L is a NP/linear set.
This is the end of lecture 1.