Question 1.

a) Let G be arbitrary tournament graph. Invert all the edges of G. By Theorem 3.1, in the resulting graph G', there exists a small subset H of players such that all players not in H defeat at least one member of H. It is easy to check that this set H satisfies the required conditions in G.

b) Consider the following selector f for empty set. Fix any three distinct strings x, y and z and let $f(x, y) = x$, $f(y, z) = y$, $f(x, z) = z$, and for all other inputs f outputs the lexicographically smallest of two arguments. $f(f(x, y), z) = z$, while $f(x, f(y, z)) = x$, so f is not associative.

Question 2.

a) For each natural n, consider an advice string having $|\Sigma|^n$ bits such that ith bit of advice is set to one iff the ith string of length n is a member of SAT.

b) We can use, at each length, a one bit advice string, indicating whether the only potential string of that length n, namely 1^n is in L or not.

Question 3. Let L be a P-selective NP-complete set, and f a P-selector for it. Let g be a many-one reduction from SAT to L. For any boolean formula F, consider the self-reducibility tree for F. Then from any node v in the tree, let v_0 and v_1 be the children of v. Then if v is in SAT, at least one of v_0, v_1 are in SAT, so $f(g(v_0), g(v_1))$ is in L and so (recalling that this assumes v is in SAT): if $f(g(v_0), g(v_1)) = g(v_0)$, then $v_0 \in SAT$ and otherwise $v_1 \in SAT$. So if F is in SAT, then repeatedly using f, as just described, to select a child will give a satisfying assignment of F. So SAT can be decided in polynomial time, and $P=NP$.