A Control Dichotomy for Pure Scoring Rules

Edith Hemaspaandra, Lane Hemaspaandra, Henning Schnoor

(The TR version is in arXiv.org and a conference version is in AAAI-14.)
Electoral Control

The “chair” of the election changes its structure/participants to affect the outcome.

Constructive Control by Adding Voters [BTT92]

Problem: \mathcal{E}-CCAV

Input: Registered voters R, unregistered voters U, preferred candidate p, $k \in \mathbb{N}$

Question: Can we add at most k voters from U such that p is a winner under election system \mathcal{E}?

Goal: Determine the complexity of \mathcal{E}-CCAV for every \mathcal{E}.
Scoring Rules

Large, important class of election systems in a common framework.

\(\alpha = (\alpha_1, \ldots, \alpha_n), \ \alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_n \) defines **scoring rule**:

- voters ranks candidates best to worst
- \(i \)th position gets \(\alpha_i \) points
- candidates with most points win
Scoring Rules

Large, important class of election systems in a common framework.

\[\alpha = (\alpha_1, \ldots, \alpha_n), \quad \alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_n \] defines scoring rule:

- voters ranks candidates best to worst
- \(i \)th position gets \(\alpha_i \) points
- candidates with most points win

Examples

- \(k \)-approval: \(\alpha = (1, \ldots, 1, 0, \ldots, 0) \)
- \(k \)-veto: \(\alpha = (1, \ldots, 1, 0, \ldots, 0) \)
- Borda: \((n - 1, n - 2, \ldots, 1, 0) \)
- Dowdall: \((1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}) \)
Scoring Rule Families

Scoring Rules

- Defined by vector $\alpha = (\alpha_1, \ldots, \alpha_n)$
- Election system for n candidates

Want: system for arbitrary number of candidates
Scoring Rule Families

Scoring Rules

- Defined by vector $\alpha = (\alpha_1, \ldots, \alpha_n)$
- Election system for n candidates

Want: system for arbitrary number of candidates

Generalized Scoring Rules

- generator: function f such that $f(n)$ is scoring vector of length n.
- generator $f \rightsquigarrow$ election system \mathcal{E}_f

Identify f and \mathcal{E}_f. Talk about f-CCAV.
Uniformity and other conditions

Restrictions: Generators f should be “nice”!

Computationally f should be p-time computable (in the number of candidates).

Conceptually This does not make much sense:

- $f(1) = (1)$
- $f(2) = (3, 1)$
- $f(3) = (1, 0, 0)$
- $f(4) = (1, 0, 0, 0)$
- $f(5) = (7, 5, 5, 0, 0)$
- $f(6) = (1, 0, 0, 0, 0, 0)$
- ...
Uniformity and other conditions

Restrictions: Generators f should be “nice”!

Computationally f should be p-time computable (in the number of candidates).

Conceptually This does not make much sense:

- $f(1) = (1)$
- $f(2) = (3, 1)$
- $f(3) = (1, 0, 0)$
- $f(4) = (1, 0, 0, 0)$
- $f(5) = (7, 5, 5, 0, 0)$
- $f(6) = (1, 0, 0, 0, 0, 0)$
- \ldots

Vectors $f(n)$ and $f(n + 1)$ should be related.
Purity Constraint

Pure generator f: p-time computable in n and vector $f(n+1)$ obtained from $f(n)$ by adding single coefficient.
Pure Scoring Rules [BD10]

Purity Constraint

Pure generator f: p-time computable in n and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

- Borda $f(1) = (0)$
Pure Scoring Rules [BD10]

Purity Constraint

Pure generator f: p-time computable in n and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

Borda $f(2) = (1, 0)$
Pure Scoring Rules [BD10]

Purity Constraint

Pure generator f: p-time computable in n and vector $f(n+1)$ obtained from $f(n)$ by adding single coefficient.

Examples

Borda $f(3) = (2, 1, 0)$
Pure Scoring Rules [BD10]

Purity Constraint

Pure generator f: p-time computable in n and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

Borda $f(4) = (3, 2, 1, 0)$
Pure Scoring Rules [BD10]

Purity Constraint

Pure generator f: p-time computable in n and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

- **Borda** $f(5) = (4, 3, 2, 1, 0)$
Pure Scoring Rules [BD10]

Purity Constraint

Pure generator f: p-time computable in n and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

Borda $f(6) = (5, 4, 3, 2, 1, 0)$
Pure Scoring Rules [BD10]

Purity Constraint

Pure generator f: p-time computable in n and vector $f(n+1)$ obtained from $f(n)$ by adding single coefficient.

Examples

Borda $f(7) = (6, 5, 4, 3, 2, 1, 0)$
Pure Scoring Rules [BD10]

Purity Constraint

Pure generator f: p-time computable in n and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

Borda $f(7) = (6, 5, 4, 3, 2, 1, 0)$

Thirds $f(1) = (1)$
Pure Scoring Rules [BD10]

Purity Constraint

Pure generator \(f \): p-time computable in \(n \) and vector \(f(n + 1) \) obtained from \(f(n) \) by adding single coefficient.

Examples

Borda \(f(7) = (6, 5, 4, 3, 2, 1, 0) \)

Thirds \(f(2) = (1, 0) \)
Pure Scoring Rules [BD10]

Purity Constraint

Pure generator f: p-time computable in n and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

- **Borda** $f(7) = (6, 5, 4, 3, 2, 1, 0)$
- **Thirds** $f(3) = (2, 1, 0)$
Pure Scoring Rules [BD10]

Purity Constraint

A pure generator \(f \): p-time computable in \(n \) and vector \(f(n + 1) \) obtained from \(f(n) \) by adding single coefficient.

Examples

- **Borda** \(f(7) = (6, 5, 4, 3, 2, 1, 0) \)
- **Thirds** \(f(4) = (2, 1, 0, 0) \)
Pure Scoring Rules [BD10]

Purity Constraint

Pure generator f: p-time computable in n and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

Borda $f(7) = (6, 5, 4, 3, 2, 1, 0)$

Thirds $f(5) = (2, 1, 1, 0, 0)$
Pure Scoring Rules [BD10]

Purity Constraint

Pure generator f: p-time computable in n and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

- **Borda** $f(7) = (6, 5, 4, 3, 2, 1, 0)$
- **Thirds** $f(6) = (2, 2, 1, 1, 0, 0)$
Purity Constraint

Pure generator f: p-time computable in n and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

Borda $f(7) = (6, 5, 4, 3, 2, 1, 0)$

Thirds $f(7) = (2, 2, 1, 1, 0, 0, 0)$
Pure Scoring Rules [BD10]

Purity Constraint

A pure generator f: p-time computable in n and vector $f(n + 1)$ obtained from $f(n)$ by adding a single coefficient.

Examples

<table>
<thead>
<tr>
<th>Scoring Rule</th>
<th>Example $f(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borda</td>
<td>$f(7) = (6, 5, 4, 3, 2, 1, 0)$</td>
</tr>
<tr>
<td>Thirds</td>
<td>$f(8) = (2, 2, 1, 1, 1, 0, 0, 0)$</td>
</tr>
</tbody>
</table>
Pure Scoring Rules [BD10]

Purity Constraint

Pure generator f: p-time computable in n and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

- Borda $f(7) = (6, 5, 4, 3, 2, 1, 0)$
- Thirds $f(9) = (2, 2, 2, 1, 1, 1, 0, 0, 0)$
Pure Scoring Rules [BD10]

Purity Constraint

Pure generator f: p-time computable in n and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

<table>
<thead>
<tr>
<th>Method</th>
<th>Score Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borda</td>
<td>(6, 5, 4, 3, 2, 1, 0)</td>
</tr>
<tr>
<td>Thirds</td>
<td>(2, 2, 2, 1, 1, 1, 0, 0, 0)</td>
</tr>
</tbody>
</table>

Pure Scoring Rules

Generated by pure generators.
Examples of Dichotomy Results for Scoring Rules

- Weighted manipulation: If “diversity of dislike,” i.e., $\alpha_2 > \alpha_n$, holds the problem is NP-complete and for all other cases the problem is in P [Hem-Hem-JCSS-2007].

- Weighted constructive control by adding (and by deleting) voters: NP-complete if there is an i such that $\alpha_1 > \alpha_i > \alpha_n$ and P otherwise [Fal-Hem-Hem-JAIR-2015].

- Weighted manipulation in the case of single-peaked electorates: NP-completeness holds if (a) $n \geq 2$ and $\alpha_2 > \alpha_{\lfloor \frac{n-1}{2} \rfloor + 2}$ and there exist integers $i, j > 1$ such that $i + j \leq n + 1$ and $(\alpha_1 - \alpha_i)(\alpha_1 - \alpha_j) > (\alpha_i - \alpha_{i+1})(\alpha_j - \alpha_{j+1})$ or (b) $n \geq 2$ and $\alpha_2 = \alpha_{\lfloor \frac{n-1}{2} \rfloor + 2}$ and $\alpha_1 > \alpha_2 > \alpha_n$ and $(\alpha_2 > \alpha_{n-1}$ or $\alpha_1 - \alpha_n > 2(\alpha_2 - \alpha_n))$; and all other cases are in P [Bra-Bri-Hem-Hem-JAIR-2015].

Note these all are for the **weighted** case, and for a **fixed** number of candidates (not about PSRs). Can we get dichotomy results for the **unweighted** case? “Holy Grail!? We’ve already got one!... (or do we?).”
Dichotomy Theorem [BD10,BR12]

Theorem

The possible winner problem for f is in P for f ultimately equivalent to:

Triviality: $f(n) = (0, \ldots, 0)$

Plurality: $f(n) = (1, 0, \ldots, 0)$

Veto: $f(n) = (1, \ldots, 1, 0)$

For all pure f not ultimately equivalent to one of these, the possible winner problem is NP-complete.
A Control Dichotomy for Pure Scoring Rules

Theorem

\(f \)-CCAV is in P for \(f \) ultimately equivalent to:

\[
\begin{align*}
\text{k-Approval, } k \leq 3: & \quad f(n) = (1, \ldots, 1, 0, \ldots, 0) \\
\text{k-Veto, } k \leq 2: & \quad f(n) = (1, \ldots, 1, 0, \ldots, 0) \\
\text{Gen. 2-App.} & \quad f(n) = (\alpha, \beta, 0, \ldots, 0) \text{ for fixed } \alpha, \beta \\
\text{Appr/Veto} & \quad f(n) = (2, 1, \ldots, 1, 0)
\end{align*}
\]

For all pure \(f \) not ultimately equivalent to one of these, \(f \)-CCAV is NP-complete.
Electoral Control

The “chair” of the election changes its structure/participants to affect the outcome.

Constructive Control by Adding Voters [BTT92]

Problem: \(\mathcal{E} \)-CCAV

Input: Registered voters \(R \), unregistered voters \(U \), preferred candidate \(p \), \(k \in \mathbb{N} \)

Question: Can we add at most \(k \) voters from \(U \) such that \(p \) is a winner under election system \(\mathcal{E} \)?

Goal: Determine the complexity of \(\mathcal{E} \)-CCAV for every \(\mathcal{E} \).
A Polynomial-Time Result

“Hybrid” between 1-Approval and 1-Veto

Generator $(2, 1, \ldots, 1, 0)$ or $(1, 0, \ldots, 0, -1)$
- Approve of one candidate
- Veto another

Proof

Preferred candidate p, registered voters R, unregistered voters U, k voters can be added.

- Add no voter with p in last place
- Add all voters with p in first place
 - Greedy strategy if we can’t use all
- After this step: add only voters $c_1 > \cdots > c_2$ with $p \notin \{c_1, c_2\}$.
A Polynomial-Time Result: \((1, 0, \ldots, 0, -1)\)

<table>
<thead>
<tr>
<th>Situation</th>
<th>Effect of Vote</th>
</tr>
</thead>
</table>
| - Only votes \(c_1 > \cdots > c_2\) for \(p \notin \{c_1, c_2\}\) | - Adding vote \(c_1 > \cdots > c_2\):
 - adds point to \(c_1\)
 - subtracts point from \(c_2\)
 \(\leadsto\) “transfers” point from \(c_2\) to \(c_1\) |
| - Select at most \(k'\) of these to add | |

Edith Hemaspaandra, Lane Hemaspaandra, Henning Schnoor - A Control Dichotomy for Pure Scoring Rules
A Polynomial-Time Result: \((1, 0, \ldots, 0, -1)\)

<table>
<thead>
<tr>
<th>Situation</th>
<th>Effect of Vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only votes (c_1 > \cdots > c_2) for (p \notin {c_1, c_2})</td>
<td>Adding vote (c_1 > \cdots > c_2):</td>
</tr>
<tr>
<td>Select at most (k') of these to add</td>
<td>* adds point to (c_1)</td>
</tr>
<tr>
<td></td>
<td>* subtracts point from (c_2)</td>
</tr>
<tr>
<td></td>
<td>(\Rightarrow) “transfers” point from (c_2) to (c_1)</td>
</tr>
</tbody>
</table>

Approach

- Vote additions “transfer” points between candidates
- Score of \(p\) is fixed (after preprocessing)
- **Goal:** For each \(c_i \neq p\), shift surplus points away
A Polynomial-Time Result: (1, 0, \ldots, 0, -1)

Situation
- Only votes $c_1 > \cdots > c_2$ for $p \not\in \{c_1, c_2\}$
- Select at most k' of these to add

Effect of Vote
Adding vote $c_1 > \cdots > c_2$:
- adds point to c_1
- subtracts point from c_2
\[\Rightarrow \text{“transfers” point from } c_2 \text{ to } c_1 \]

Approach
- Vote additions “transfer” points between candidates
- Score of p is fixed (after preprocessing)
- **Goal**: For each $c_i \neq p$, shift surplus points away

Solution
Min-cost network flow!
Polynomial Time via Network Flow: \((1, 0, \ldots, 0, -1)\)

Network Setup

- one node for each \(c_i \neq p\)
- source, target nodes \(S\) and \(T\)
Polynomial Time via Network Flow: $(1, 0, \ldots, 0, -1)$

Network Setup
- one node for each $c_i \neq p$
- source, target nodes S and T

Flows in Network
- each c_i: gets $\text{score}(c_i)$ points
Polynomial Time via Network Flow: $(1, 0, \ldots, 0, -1)$

Network Setup
- one node for each $c_i \neq p$
- source, target nodes S and T

Flows in Network
- each c_i: gets $\text{score}(c_i)$ points
- each potential vote allows to “move” one point
 - This costs one “unit”
Polynomial Time via Network Flow: \((1, 0, \ldots, 0, -1)\)

Network Setup
- one node for each \(c_i \neq p\)
- source, target nodes \(S\) and \(T\)

Flows in Network
- each \(c_i\): gets \(score(c_i)\) points
- each potential vote allows to “move” one point
 - This costs one “unit”
- each \(c_i \neq p\): at most \(score(p)\) points in the end
Polynomial Time via Network Flow

Votes

Graph

- c_1, c_2, c_3, c_4, c_5, c_6, c_7
- S, T

Construction Votes: Allow to "move" points

Each c_i: points from votes

In the end: \leq score (p) points

Control with $\leq k'$ voters (in this post-pre-processing version) \iff flow with cost $\leq k'$, flow-amount $\sum c_i \neq p$ score (c_i) exists.
Polynomial Time via Network Flow

VOTES

- $c_5 > \cdots > c_1$

CONSTRUCTION

- Votes: Allow to “move” points

Graph

Construction

- Votes: Allow to “move” points

Graph

- Votes: Allow to “move” points
Polynomial Time via Network Flow

Votes
- \(c_5 > \cdots > c_1 \)
- \(c_3 > \cdots > c_1 \)

Construction
- Votes: Allow to “move” points

Graph

![Graph diagram with nodes labeled S, c_1, c_2, c_3, c_4, c_5, c_6, c_7, and T connected by arrows indicating flow with cost 1.](image)

Score functions:
- \(\text{score}(c_5) \)
- \(\text{score}(c_3) \)
- \(\text{score}(c_1) \)
- \(\text{score}(c_2) \)
- \(\text{score}(c_4) \)
- \(\text{score}(c_6) \)
- \(\text{score}(c_7) \)
Polynomial Time via Network Flow

Voters

- \(c_5 > \cdots > c_1 \)
- \(c_3 > \cdots > c_1 \)
- \(c_7 > \cdots > c_4 \)

Graph

- Construction
 - Votes: Allow to “move” points
Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$

Graph

- Construction
 - Votes: Allow to “move” points
Polynomial Time via Network Flow

Voting
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$

Graph

Construction
- Votes: Allow to "move" points
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$

Graph

Construction
- Votes: Allow to “move” points
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$

Graph

![Graph Diagram]

Construction
- Votes: Allow to “move” points
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$

Graph

Construction
- Votes: Allow to “move” points
Polynomial Time via Network Flow

Votes

- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$

Construction

- Votes: Allow to “move” points

Graph

![Graph with nodes S, C1, C2, C3, C4, C5, C6, C7, and T connected by directed edges with labels 1 and 2. The edge from C1 to C2 has cost 1.]

Score

- $\text{score}(c_5)$
- $\text{score}(c_3)$
- $\text{score}(c_1)$
- $\text{score}(c_2)$
- $\text{score}(c_4)$
- $\text{score}(c_6)$

- $\text{score}(p)$
- $\text{score}(p)$
- $\text{score}(p)$
- $\text{score}(p)$

- Cost 1
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$

Graph

Construction
- Votes: Allow to “move” points
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$

Graph

Construction
- Votes: Allow to “move” points
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$

Graph

Construction
- Votes: Allow to “move” points
- Each c_i: points from votes

In the end: $\leq \text{score}(p)$ points

Control with $\leq k'v$ voters (in this post-pre-processing version) \iff flow with cost $\leq k'$, flow-amount $\sum_{c_i \neq p} \text{score}(c_i)$ exists.
Polynomial Time via Network Flow

Votes

- \(c_5 > \cdots > c_1\)
- \(c_3 > \cdots > c_1\)
- \(c_7 > \cdots > c_4\)
- \(c_2 > \cdots > c_4\)
- \(c_2 > \cdots > c_6\)
- \(c_5 > \cdots > c_6\)
- \(c_1 > \cdots > c_2\)
- \(c_3 > \cdots > c_2\)
- \(c_5 > \cdots > c_6\)
- \(c_3 > \cdots > c_2\)
- \(c_5 > \cdots > c_6\)

Graph

- \(score(c_3)\)
- \(score(c_5)\)
- \(c_1\)
- \(c_2\)
- \(c_3\)
- \(c_4\)
- \(c_5\)
- \(c_6\)
- \(c_7\)
- \(S\)
- \(T\)

Construction

- Votes: Allow to “move” points
- Each \(c_i\): points from votes

In the end: \(\leq\) \(score(p)\) points

Control with \(\leq k'\) voters (in this post-pre-processing version) ⇔ flow with cost \(\leq k'\), flow-amount \(\sum c_i \neq p\) exists.
Construction

- **Votes:** Allow to “move” points
- **Each** c_i: points from votes

Graph

- **$c_5 > \cdots > c_1$**
- **$c_3 > \cdots > c_1$**
- **$c_7 > \cdots > c_4$**
- **$c_2 > \cdots > c_4$**
- **$c_2 > \cdots > c_6$**
- **$c_5 > \cdots > c_6$**
- **$c_1 > \cdots > c_2$**
- **$c_3 > \cdots > c_2$**
- **$c_5 > \cdots > c_6$**
- **$c_3 > \cdots > c_2$**
- **$c_5 > \cdots > c_6$**

In the end: $\leq \text{score}(c_i)$ points

Control with $\leq k'v$ voters (in this post-pre-processing version) \iff flow with cost $\leq k'$, flow-amount $\sum c_i \neq p$ exists.
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$

Construction
- Votes: Allow to “move” points
- Each c_i: points from votes

Graph

In the end: $\leq \text{score}(p)$ points

Control with $\leq k'$ voters (in this post-pre-processing version) \iff flow with cost $\leq k'$, flow-amount $\sum c_i \neq p$ score(c_i) exists.
Polynomial Time via Network Flow

Votes
- $c_5 > \ldots > c_1$
- $c_3 > \ldots > c_1$
- $c_7 > \ldots > c_4$
- $c_2 > \ldots > c_4$
- $c_2 > \ldots > c_6$
- $c_5 > \ldots > c_6$
- $c_1 > \ldots > c_2$
- $c_3 > \ldots > c_2$
- $c_5 > \ldots > c_6$
- $c_3 > \ldots > c_2$
- $c_5 > \ldots > c_6$

Graph

Construction
- Votes: Allow to “move” points
- Each c_i: points from votes
- In the end: $\leq \text{score}(p)$ points
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$

Graph

Construction
- Votes: Allow to “move” points
- Each c_i: points from votes
- In the end: $\leq \text{score}(p)$ points
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$

Graph

Construction
- Votes: Allow to “move” points
- Each c_i: points from votes
- In the end: $\leq \text{score}(p)$ points
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$
- $c_1 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$

Construction
- Votes: Allow to “move” points
- Each c_i: points from votes
- In the end: $\leq \text{score}(p)$ points

Graph
- Edith Hemaspaandra, Lane Hemaspaandra, Henning Schnoor - A Control Dichotomy for Pure Scoring Rules

Control with $\leq k'v$ voters (in this post-pre-processing version) \iff flow with cost $\leq k'$, flow-amount $\sum c_i \neq p$ score exist.
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$

Graph

Construction
- Votes: Allow to “move” points
- Each c_i: points from votes
- In the end: $\leq \text{score}(p)$ points

Control with $\leq k'$ voters (in this post-pre-processing version) \iff flow with cost $\leq k'$, flow-amount $\sum_{c_i \not= p} \text{score}(c_i)$ exists.
A Control Dichotomy for Pure Scoring Rules

Theorem

\(f \)-CCAV is in P for \(f \) ultimately equivalent to:

- **k-Approval**, \(k \leq 3 \): \(f(n) = (1, \ldots, 1, 0, \ldots, 0) \)
- **k-Veto**, \(k \leq 2 \): \(f(n) = (1, \ldots, 1, 0, \ldots, 0) \)

Gen. 2-App. \(f(n) = (\alpha, \beta, 0, \ldots, 0) \) for fixed \(\alpha, \beta \)

Appr/Veto \(f(n) = (2, 1, \ldots, 1, 0) \)

For all pure \(f \) not ultimately equivalent to one of these, \(f \)-CCAV is NP-complete.
Hard Cases: Case Distinction (these are the $\alpha_4 = \alpha_{n-2}$ cases)

Theorem

f-CCAV is NP-complete for

- $(\alpha, \beta, \gamma, 0, \ldots, 0)$ for $\alpha \geq \beta \geq \gamma > 0, \alpha \neq \gamma$.
- $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \ldots, \alpha_4, \alpha_5, 0)$ with $\alpha_2 > \alpha_4 > 0$.
- $(\alpha_1, \alpha_2, \ldots, \alpha_2, 0)$ with $\alpha_1 \notin \{\alpha_2, 2\alpha_2\}, \alpha_2 > 0$.
- $(\alpha_1, \alpha_2, \ldots, \alpha_2, \alpha_5, 0)$ with $\alpha_1 > \alpha_2 > \alpha_5$.
- $(\alpha_1, \ldots, \alpha_1, \alpha_5, 0)$ with $\alpha_1 > \alpha_5 > 0$.

Corollary (Cor. of the theorem at the left plus some other cases that come from results related to the next slide)

For a pure generator f with f is not ultimately equivalent to a generator in the P list, f uses at most 6 different coefficients.
Hard Cases: Case Distinction (these are the $\alpha_4 = \alpha_{n-2}$ cases)

Theorem

f-CCAV is NP-complete for

- $(\alpha, \beta, \gamma, 0, \ldots, 0)$ for $\alpha \geq \beta \geq \gamma > 0$, $\alpha \neq \gamma$.
- $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \ldots, \alpha_4, \alpha_5, 0)$ with $\alpha_2 > \alpha_4 > 0$.
- $(\alpha_1, \alpha_2, \ldots, \alpha_2, 0)$ with $\alpha_1 \notin \{\alpha_2, 2\alpha_2\}$, $\alpha_2 > 0$.
- $(\alpha_1, \alpha_2, \ldots, \alpha_2, \alpha_5, 0)$ with $\alpha_1 > \alpha_2 > \alpha_5$.
- $(\alpha_1, \ldots, \alpha_1, \alpha_5, 0)$ with $\alpha_1 > \alpha_5 > 0$.

Corollary

(Cor. of the theorem at the left plus some other cases that come from results related to the next slide) For a pure generator f with

- f is not ultimately equivalent to a generator in the P list,
- f uses at most 6 different coefficients

f-CCAV is NP-complete.

Direct reductions (point counting and turning of 3DM into election-like instances).
What happens with more than six values?

Analysis

\((\alpha_1, \alpha_2, \alpha_3, \alpha_4, \ldots, \alpha_{n-2}, \alpha_{n-1}, \alpha_n)\)

- seven values: \(\alpha_4 \neq \alpha_{n-2}\)
- top four positions “better” than lowest three.
- (middle positions can be “good” or “bad.”)
- Like 4-approval or like 3-veto.
Conclusion

Contributions

- Dichotomy theorem for CCAV for PSRs.
Conclusion

Contributions

- Dichotomy theorem for CCAV for PSRs.
- Descriptive richness of different PSR definitions.
Conclusion

Contributions

- Dichotomy theorem for CCAV for PSRs.
- Descriptive richness of different PSR definitions.

Open Questions

- Complexity of CCAV for other voting systems?
Conclusion

Contributions

- Dichotomy theorem for CCAV for PSRs.
- Descriptive richness of different PSR definitions.

Open Questions

- Complexity of CCAV for other voting systems?
- Complexity of related problems
 - control by deleting voters
Conclusion

Contributions
- Dichotomy theorem for CCAV for PSRs.
- Descriptive richness of different PSR definitions.

Open Questions
- Complexity of CCAV for other voting systems?
- Complexity of related problems
 - control by deleting voters
 - bribery
Conclusion

Contributions

- Dichotomy theorem for CCAV for PSRs.
- Descriptive richness of different PSR definitions.

Open Questions

- Complexity of CCAV for other voting systems?
- Complexity of related problems
 - control by deleting voters
 - bribery
 - manipulation
Conclusion

Contributions
- Dichotomy theorem for CCAV for PSRs.
- Descriptive richness of different PSR definitions.

Open Questions
- Complexity of CCAV for other voting systems?
- Complexity of related problems
 - control by deleting voters
 - bribery
 - manipulation

Thank You!
A Control Dichotomy for Pure Scoring Rules

Edith Hemaspaandra, Lane Hemaspaandra, Henning Schnoor

(The TR version is in arXiv.org and a conference version is in AAAI-14.)
Overview

1. Introduction: Elections and Control
2. The Complexity of the Control Problem
3. A Class of Election Systems: Scoring Rules
4. The Price of Purity
5. A Dichotomy Theorem
 - Polynomial Time Results
 - Hardness Results
6. Conclusion
Overview

1. Introduction: Elections and Control
2. The Complexity of the Control Problem
3. A Class of Election Systems: Scoring Rules
4. The Price of Purity
5. A Dichotomy Theorem
 - Polynomial Time Results
 - Hardness Results
6. Conclusion
Elections

Election

Voters elect **candidate** using an **election system**
Election

Voters elect candidate using an election system

Which system is “good”?

- Political parliament
- Web page ranking
- Agreement on a single plan
Elections

Election

Voters elect **candidate** using an **election system**

Which system is “good”?

Depends on the situation!

- Political parliament
- Web page ranking
- Agreement on a single plan

Common Criteria

Winners are those that are “liked most” by the voters.
Controlling an Election

Election Idea

- Voters vote sincerely
- votes are counted correctly
- result reflects preferences of the majority
Controlling an Election

Election Idea
- Voters vote sincerely
- votes are counted correctly
- result reflects preferences of the majority

Practice
Involved parties can be dishonest...
- Voters can vote dishonestly

strategic voting
Controlling an Election

Election Idea

- Voters vote sincerely
- votes are counted correctly
- result reflects preferences of the majority

Practice

Involved parties can be dishonest . . .

- Voters can vote dishonestly
- counting can go wrong

strategic voting
manipulation of algorithms
Controlling an Election

Election Idea

- Voters vote sincerely
- votes are counted correctly
- result reflects preferences of the majority

Practice

Involved parties can be disonest . . .

- Voters can vote dishonestly
- counting can go wrong
- election chair can control the election:
 - add / delete candidates or voters
 - set up voting districts
Controlling an Election

Election Idea
- Voters vote sincerely
- votes are counted correctly
- result reflects preferences of the majority

Practice
Involved parties can be dishonest . . .
- Voters can vote dishonestly
- counting can go wrong
- election chair can control the election:
 - add / delete candidates or voters
 - set up voting districts

strategic voting
manipulation of algorithms
← this talk
Control by Adding Voters

Observation

Easier to change **whether** someone votes than **whom** she votes.

- voter turnout depends on weather
- bad weather good for CDU
Control by Adding Voters

Observation

Easier to change **whether** someone votes than **whom** she votes.

- voter turnout depends on weather
- bad weather good for CDU
Control by Adding Voters

Observation
Easier to change whether someone votes than whom she votes.
- voter turnout depends on weather
- bad weather good for CDU

Assumption

Situation
- Voters R decided to vote
- Voters U undecided whether they will
- Every voter knows how she would vote
Control by Adding Voters

Observation

Easier to change *whether* someone votes than *whom* she votes.
- voter turnout depends on weather
- bad weather good for CDU

Assumption

Situation
- Voters R decided to vote
- Voters U undecided whether they will
- Every voter knows *how* she would vote

Election authority (chair)
- knows preferences of each voter in R and U
- has resources to make k people in U vote
Overview

1 Introduction: Elections and Control

2 The Complexity of the Control Problem

3 A Class of Election Systems: Scoring Rules

4 The Price of Purity

5 A Dichotomy Theorem
 • Polynomial Time Results
 • Hardness Results

6 Conclusion
Control as a Computational Problem

Election Chair Point of View

Knows:
- voting system
- candidates
- votes of *registered voters*
- votes of *potential voters*
- cost limit k

Complexity of Control Problem

PTIME-solvable Chair can exercise control in practice

NP-hard voting system is computationally resistant

Edith Hemaspaandra, Lane Hemaspaandra, Henning Schnoor - A Control Dichotomy for Pure Scoring Rules
Control as a Computational Problem

Election Chair Point of View

Knows:
- voting system
- candidates
- votes of registered voters
- votes of potential voters
- cost limit k

Question:
Which k potential voters should she add?
Control as a Computational Problem

Election Chair Point of View

Knows:
- voting system
- candidates
- votes of registered voters
- votes of potential voters
- cost limit k

Question:
Which k potential voters should she add?

Complexity of Control Problem

PTIME-solvable Chair can exercise control in practice
Control as a Computational Problem

Election Chair Point of View

Knows:
- voting system
- candidates
- votes of **registered voters**
- votes of **potential voters**
- cost limit k

Question:
Which k potential voters should she add?

Complexity of Control Problem

- **PTIME-solvable** Chair can exercise control in practice
- **NP-hard** voting system is **computationally resistant** to control
Constructive Control by Adding Voters

CCAV

Problem: CCAV

Input: Voters \(R \), potential voters \(U \), candidate \(p \), \(k \in \mathbb{N} \)

Question: Can we add at most \(k \) votes from \(U \) such that \(p \) is a winner of the election?
Constructive Control by Adding Voters

CCA\(V\)

- **Problem:** C\(C\)AV
- **Input:** Voters \(R\), potential voters \(U\), candidate \(p\), \(k \in \mathbb{N}\)
- **Question:** Can we add at most \(k\) votes from \(U\) such that \(p\) is a winner of the election?

Each election system gives different CCA\(V\) problem!
Constructive Control by Adding Voters

CCAV

Problem: \mathcal{E}-CCAV

Input: Voters R, potential voters U, candidate p, $k \in \mathbb{N}$

Question: Can we add at most k votes from U such that p is a winner of the election when election system \mathcal{E} is used?

Each election system gives different CCAV problem!
Constructive Control by Adding Voters

CCAV

Problem: \mathcal{E}-CCAV

Input: Voters R, potential voters U, candidate p, $k \in \mathbb{N}$

Question: Can we add at most k votes from U such that p is a winner of the election when election system \mathcal{E} is used?

Each election system gives different CCAV problem!

Hope

If \mathcal{E}-CCAV is NP-hard, the chair cannot control \mathcal{E}-elections in practice.

Research Question

Given \mathcal{E}, what is the complexity of \mathcal{E}-CCAV?
Overview

1. Introduction: Elections and Control

2. The Complexity of the Control Problem

3. A Class of Election Systems: Scoring Rules

4. The Price of Purity

5. A Dichotomy Theorem
 - Polynomial Time Results
 - Hardness Results

6. Conclusion
Towards a Dichotomy

Goal: Complexity of every \mathcal{E}-CCAV

- What is an election system?
- How can we find uniform description of election systems?
Towards a Dichotomy

Goal: Complexity of every \mathcal{E}-CCAV

- **What is an election system?**
- **How can we find uniform description of election systems?**

Election System

- **Input** Set C of candidates, multiset V of votes (orders on C)
- **Output** Set $W \subseteq C$ of **winners** (tie-breaking may be needed)
Towards a Dichotomy

Goal: Complexity of every \mathcal{E}-CCAV

- What is an election system?
- **How can we find uniform description of election systems?**

Election System

Input Set C of candidates, multiset V of votes (orders on C)

Output Set $W \subseteq C$ of **winners** (tie-breaking may be needed)

Characterization of \mathcal{E}-CCAV

Large class of \mathcal{E} in common framework: **Scoring rules**.
Example Election Systems

Plurality

- each voter selects a candidate
- the most-often selected candidate wins
Example Election Systems

<table>
<thead>
<tr>
<th>Plurality</th>
<th>k-Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>- each voter selects a candidate</td>
<td>- Same, but each voter selects k candidates.</td>
</tr>
<tr>
<td>- the most-often selected candidate wins</td>
<td></td>
</tr>
</tbody>
</table>
Example Election Systems

Plurality
- each voter selects a candidate
- the most-often selected candidate wins

k-Approval
- Same, but each voter selects k candidates.

k-Veto
- each voter chooses k candidates
- least-often selected candidates win
Example Election Systems

<table>
<thead>
<tr>
<th>Plurality</th>
<th>k-Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>- each voter selects a candidate</td>
<td>- Same, but each voter selects k candidates.</td>
</tr>
<tr>
<td>- the most-often selected candidate wins</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k-Veto</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- each voter chooses k candidates</td>
<td></td>
</tr>
<tr>
<td>- least-often selected candidates win</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Borda Count</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- voters rank n candidates best to worst</td>
<td></td>
</tr>
<tr>
<td>- i-th candidate gets $n - i$ points</td>
<td></td>
</tr>
</tbody>
</table>
Example Election Systems

<table>
<thead>
<tr>
<th>Plurality</th>
<th>k-Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>- each voter selects a candidate</td>
<td>Same, but each voter selects k candidates.</td>
</tr>
<tr>
<td>- the most-often selected candidate wins</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k-Veto</th>
</tr>
</thead>
<tbody>
<tr>
<td>- each voter chooses k candidates</td>
</tr>
<tr>
<td>- least-often selected candidates win</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Borda Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>- voters rank n candidates best to worst</td>
</tr>
<tr>
<td>- i-th candidate gets $n - i$ points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dowdall</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Same, but with points $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots$</td>
</tr>
</tbody>
</table>

Edith Hemaspaandra, Lane Hemaspaandra, Henning Schnoor - A Control Dichotomy for Pure Scoring Rules
Generalization

Scoring Rules

$\alpha = (\alpha_1, \ldots, \alpha_n)$ defines **scoring rule**:

- voters ranks candidates best to worst
- i-th position i gets α_i points
- candidates with most points win
Generalization

Scoring Rules

\[\alpha = (\alpha_1, \ldots, \alpha_n) \] defines **scoring rule**:

- voters ranks candidates best to worst
- \(i \)-th position \(i \) gets \(\alpha_i \) points
- candidates with most points win

Examples

- \(k \)-approval: \(\alpha = (1, \ldots, 1, 0, \ldots, 0) \)
- Dowdall: \((1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}) \)
- Borda: \((n-1, n-2, \ldots, 1, 0) \)
Generalization

Scoring Rules

$\alpha = (\alpha_1, \ldots, \alpha_n)$ defines **scoring rule**:
- voters ranks candidates best to worst
- i-th position i gets α_i points
- candidates with most points win

Examples

- k-approval: $\alpha = (1, \ldots, 1, 0, \ldots, 0)$
- k-veto: $\alpha = (1, 1, 1, 0, \ldots, 0)$

Schreiben Sie Platz- oder Rangnummern (1, 2, ...) neben einige oder alle Namen.

- [] Max Muster
- [1] Tanja Tüchtig
- [3] Hans Schmidt
- [] Markus Möglich
- [2] Maria Hügel
Generalization

Scoring Rules

$\alpha = (\alpha_1, \ldots, \alpha_n)$ defines scoring rule:
- voters ranks candidates best to worst
- i-th position i gets α_i points
- candidates with most points win

Examples

- k-approval: $\alpha = (1, \ldots, 1, 0, \ldots, 0)$
- k-veto: $\alpha = (1, 1, 1, 0, \ldots, 0)$
- Borda: $(n-1, n-2, \ldots, 1, 0)$
Generalization

Scoring Rules

\(\alpha = (\alpha_1, \ldots, \alpha_n) \) defines **scoring rule**:

- voters ranks candidates best to worst
- \(i \)-th position \(i \) gets \(\alpha_i \) points
- candidates with most points win

Examples

- **k**-approval: \(\alpha = (1, \ldots, 1, 0, \ldots, 0) \)
- **k**-veto: \(\alpha = (1, 1, 1, 0, \ldots, 0) \)
- Borda: \((n - 1, n - 2, \ldots, 1, 0) \)
- Dowdall: \((1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}) \)
Scoring Rules: An Example

Election System

- 6 candidates
- \(\alpha = (17, 9, 5, 2, 2, -1) \)

Example Vote

<table>
<thead>
<tr>
<th></th>
<th>Alice:</th>
<th>Bob:</th>
<th>Charlie:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(c_3)</td>
<td>(c_2)</td>
<td>(c_4)</td>
</tr>
<tr>
<td>(c_2)</td>
<td>></td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>(c_3)</td>
<td>></td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>(c_1)</td>
<td>></td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>(c_5)</td>
<td>></td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>(c_4)</td>
<td>></td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>(c_6)</td>
<td>></td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>(c_1)</td>
<td>></td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>(c_2)</td>
<td>></td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>(c_3)</td>
<td>></td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>(c_5)</td>
<td>></td>
<td>></td>
<td>></td>
</tr>
</tbody>
</table>

Count

\[
\begin{align*}
\text{c}_1 & = 2 + 5 + 9 = 16 \\
\text{c}_2 & = 9 + 17 + 2 = 28 \\
\text{c}_3 & = 17 + 9 + 2 = 28 \\
\text{c}_4 & = -1 + 2 + 17 = 18 \\
\text{c}_5 & = 2 + 2 - 1 = 1 \\
\text{c}_6 & = 5 - 1 + 5 = 9
\end{align*}
\]

\(\text{c}_2 \) and \(\text{c}_3 \) win the election.

More Candidates?

This "system" only works for 6 candidates.
Scoring Rules: An Example

Election System
- 6 candidates
- $\alpha = (17, 9, 5, 2, 2, -1)$

Example Vote

<table>
<thead>
<tr>
<th></th>
<th>17</th>
<th>9</th>
<th>5</th>
<th>2</th>
<th>2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>c3</td>
<td>></td>
<td>c2</td>
<td>></td>
<td>c6</td>
<td>></td>
</tr>
<tr>
<td>Bob</td>
<td>c2</td>
<td>></td>
<td>c3</td>
<td>></td>
<td>c1</td>
<td>></td>
</tr>
<tr>
<td>Charlie</td>
<td>c4</td>
<td>></td>
<td>c1</td>
<td>></td>
<td>c6</td>
<td>></td>
</tr>
</tbody>
</table>

c_2 and c_3 win the election.

More Candidates?
This “system” only works for 6 candidates.
Scoring Rules: An Example

Election System
- 6 candidates
- $\alpha = (17, 9, 5, 2, 2, -1)$

Example Vote

<table>
<thead>
<tr>
<th></th>
<th>17</th>
<th>9</th>
<th>5</th>
<th>2</th>
<th>2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>c_3 > c_2 > c_6 > c_1 > c_5 > c_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>c_2 > c_3 > c_1 > c_5 > c_4 > c_6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charlie</td>
<td>c_4 > c_1 > c_6 > c_2 > c_3 > c_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Count

$c_1: 2 + 5 + 9 = 16$
Scoring Rules: An Example

Election System
- 6 candidates
- $\alpha = (17, 9, 5, 2, 2, -1)$

Example Vote

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Alice</th>
<th>Bob</th>
<th>Charlie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c_3</td>
<td>c_2</td>
<td>c_4</td>
</tr>
<tr>
<td>17</td>
<td>$>$</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>9</td>
<td>$>$</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>5</td>
<td>$>$</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>2</td>
<td>$>$</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>2</td>
<td>$>$</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Count

- $c_1: 2 + 5 + 9 = 16$
- $c_2: 9 + 17 + 2 = 28$

Bob and Charlie win the election.
Scoring Rules: An Example

Election System
- 6 candidates
- $\alpha = (17, 9, 5, 2, 2, -1)$

Example Vote

<table>
<thead>
<tr>
<th></th>
<th>17</th>
<th>9</th>
<th>5</th>
<th>2</th>
<th>2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice:</td>
<td>c_3</td>
<td>c_2</td>
<td>c_6</td>
<td>c_1</td>
<td>c_5</td>
<td>c_4</td>
</tr>
<tr>
<td>Bob:</td>
<td>c_2</td>
<td>c_3</td>
<td>c_1</td>
<td>c_5</td>
<td>c_4</td>
<td>c_6</td>
</tr>
<tr>
<td>Charlie:</td>
<td>c_4</td>
<td>c_1</td>
<td>c_6</td>
<td>c_2</td>
<td>c_3</td>
<td>c_5</td>
</tr>
</tbody>
</table>

Count

<table>
<thead>
<tr>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 + 5 + 9</td>
<td>9 + 17 + 2</td>
<td>17 + 9 + 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>= 16</td>
<td>= 28</td>
<td>= 28</td>
</tr>
</tbody>
</table>
Scoring Rules: An Example

<table>
<thead>
<tr>
<th>Election System</th>
<th>Example Vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 6 candidates</td>
<td>- Alice: $c_3 > c_2 > c_6 > c_1 > c_5 > c_4$</td>
</tr>
<tr>
<td>- $\alpha = (17, 9, 5, 2, 2, -1)$</td>
<td>- Bob: $c_2 > c_3 > c_1 > c_5 > c_4 > c_6$</td>
</tr>
<tr>
<td></td>
<td>- Charlie: $c_4 > c_1 > c_6 > c_2 > c_3 > c_5$</td>
</tr>
</tbody>
</table>

Count

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>$2 + 5 + 9 = 16$</td>
</tr>
<tr>
<td>c_2</td>
<td>$9 + 17 + 2 = 28$</td>
</tr>
<tr>
<td>c_3</td>
<td>$17 + 9 + 2 = 28$</td>
</tr>
<tr>
<td>c_4</td>
<td>$-1 + 2 + 17 = 18$</td>
</tr>
</tbody>
</table>

Bob and Charlie win the election.
Scoring Rules: An Example

Election System

- 6 candidates
- \(\alpha = (17, 9, 5, 2, 2, -1) \)

Example Vote

<table>
<thead>
<tr>
<th></th>
<th>17</th>
<th>9</th>
<th>5</th>
<th>2</th>
<th>2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>(c_3)</td>
<td>(> c_2)</td>
<td>(> c_6)</td>
<td>(> c_1)</td>
<td>(> c_5)</td>
<td>(> c_4)</td>
</tr>
<tr>
<td>Bob</td>
<td>(c_2)</td>
<td>(> c_3)</td>
<td>(> c_1)</td>
<td>(> c_5)</td>
<td>(> c_4)</td>
<td>(> c_6)</td>
</tr>
<tr>
<td>Charlie</td>
<td>(c_4)</td>
<td>(> c_1)</td>
<td>(> c_6)</td>
<td>(> c_2)</td>
<td>(> c_3)</td>
<td>(> c_5)</td>
</tr>
</tbody>
</table>

Count

\(c_1 \)	2 + 5 + 9 = 16
\(c_2 \)	9 + 17 + 2 = 28
\(c_3 \)	17 + 9 + 2 = 28
\(c_4 \)	-1 + 2 + 17 = 18
\(c_5 \)	2 + 2 - 1 = 1
Scoring Rules: An Example

Election System
- 6 candidates
- \(\alpha = (17, 9, 5, 2, 2, -1) \)

Example Vote

<table>
<thead>
<tr>
<th></th>
<th>17</th>
<th>9</th>
<th>5</th>
<th>2</th>
<th>2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>(\ast_3)</td>
<td>(\ast_2)</td>
<td>(\ast_6)</td>
<td>(\ast_1)</td>
<td>(\ast_5)</td>
<td>(\ast_4)</td>
</tr>
<tr>
<td>Bob</td>
<td>(\ast_2)</td>
<td>(\ast_3)</td>
<td>(\ast_1)</td>
<td>(\ast_5)</td>
<td>(\ast_4)</td>
<td>(\ast_6)</td>
</tr>
<tr>
<td>Charlie</td>
<td>(\ast_4)</td>
<td>(\ast_1)</td>
<td>(\ast_6)</td>
<td>(\ast_2)</td>
<td>(\ast_3)</td>
<td>(\ast_5)</td>
</tr>
</tbody>
</table>

Count

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ast_1)</td>
<td>2 + 5 + 9 = 16</td>
</tr>
<tr>
<td>(\ast_2)</td>
<td>9 + 17 + 2 = 28</td>
</tr>
<tr>
<td>(\ast_3)</td>
<td>17 + 9 + 2 = 28</td>
</tr>
<tr>
<td>(\ast_4)</td>
<td>-1 + 2 + 17 = 18</td>
</tr>
<tr>
<td>(\ast_5)</td>
<td>2 + 2 - 1 = 1</td>
</tr>
<tr>
<td>(\ast_6)</td>
<td>5 - 1 + 5 = 9</td>
</tr>
</tbody>
</table>

Bob and Charlie win the election.
Scoring Rules: An Example

Election System

- 6 candidates
- \(\alpha = (17, 9, 5, 2, 2, -1) \)

Example Vote

<table>
<thead>
<tr>
<th></th>
<th>17</th>
<th>9</th>
<th>5</th>
<th>2</th>
<th>2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>c_3 > c_2 > c_6 > c_1 > c_5 > c_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>c_2 > c_3 > c_1 > c_5 > c_4 > c_6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charlie</td>
<td>c_4 > c_1 > c_6 > c_2 > c_3 > c_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Count

- \(c_1 = 2 + 5 + 9 = 16 \)
- \(c_2 = 9 + 17 + 2 = 28 \)
- \(c_3 = 17 + 9 + 2 = 28 \)
- \(c_4 = -1 + 2 + 17 = 18 \)
- \(c_5 = 2 + 2 - 1 = 1 \)
- \(c_6 = 5 - 1 + 5 = 9 \)

\(c_2 \) and \(c_3 \) win the election.
Scoring Rules: An Example

Election System
- 6 candidates
- \(\alpha = (17, 9, 5, 2, 2, -1) \)

Example Vote

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice:</td>
<td>17</td>
</tr>
<tr>
<td>Bob:</td>
<td>9</td>
</tr>
<tr>
<td>Charlie:</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-1</td>
</tr>
</tbody>
</table>

| Alice: C3 > C2 > C6 > C1 > C5 > C4 |
| Bob: C2 > C3 > C1 > C5 > C4 > C6 |
| Charlie: C4 > C1 > C6 > C2 > C3 > C5 |

Count

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2 + 5 + 9 = 16</td>
</tr>
<tr>
<td>C2</td>
<td>9 + 17 + 2 = 28</td>
</tr>
<tr>
<td>C3</td>
<td>17 + 9 + 2 = 28</td>
</tr>
<tr>
<td>C4</td>
<td>-1 + 2 + 17 = 18</td>
</tr>
<tr>
<td>C5</td>
<td>2 + 2 - 1 = 1</td>
</tr>
<tr>
<td>C6</td>
<td>5 - 1 + 5 = 9</td>
</tr>
</tbody>
</table>

\(c_2 \) and \(c_3 \) win the election.

More Candidates?

This “system” only works for 6 candidates.
Scoring Rule Families

Scoring Rules

- Defined by vector $\alpha = (\alpha_1, \ldots, \alpha_n)$
- Election system for n candidates

Want: system for arbitrary number of candidates
Scoring Rule Families

Scoring Rules
- Defined by vector $\alpha = (\alpha_1, \ldots, \alpha_n)$
- Election system for n candidates

Want: system for arbitrary number of candidates

Generalized Scoring Rules
- **generator**: function f such that $f(n)$ is scoring vector of length n.
- generator $f \mapsto$ election system \mathcal{E}_f

Identify f and \mathcal{E}_f. Talk about f-CCAV.
Overview

1. Introduction: Elections and Control
2. The Complexity of the Control Problem
3. A Class of Election Systems: Scoring Rules
4. The Price of Purity
5. A Dichotomy Theorem
 - Polynomial Time Results
 - Hardness Results
6. Conclusion
Uniformity and Other Conditions

Restrictions: Generators f should be “nice”!

Computationally f should be PTIME-computable (in the number of candidates).

Conceptually This does not make much sense:
- $f(1) = (1)$
Uniformity and Other Conditions

Restrictions: Generators f should be “nice”!

Computationally f should be PTIME-computable (in the number of candidates).

Conceptually This does not make much sense:

- $f(1) = (1)$
- $f(2) = (3, 1)$
Uniformity and Other Conditions

Restrictions: Generators f should be “nice”!

Computationally f should be PTIME-computable (in the number of candidates).

Conceptually This does not make much sense:

- $f(1) = (1)$
- $f(2) = (3, 1)$
- $f(3) = (1, 0, 0)$
Uniformity and Other Conditions

Restrictions: Generators f should be “nice”!

Computationally f should be PTIME-computable (in the number of candidates).

Conceptually This does not make much sense:

- $f(1) = (1)$
- $f(2) = (3, 1)$
- $f(3) = (1, 0, 0)$
- $f(4) = (1, 0, 0, 0)$
- $f(5) = (7, 5, 5, 0, 0)$
- $f(6) = (1, 0, 0, 0, 0)$

Vectors $f(n)$ and $f(n+1)$ should be related.
Restrictions: Generators f should be “nice”!

Computationally f should be PTIME-computable (in the number of candidates).

Conceptually This does not make much sense:

- $f(1) = (1)$
- $f(2) = (3, 1)$
- $f(3) = (1, 0, 0)$
- $f(4) = (1, 0, 0, 0)$
- $f(5) = (7, 5, 5, 0, 0)$
Uniformity and Other Conditions

Restrictions: Generators f should be “nice”!

Computationally f should be PTIME-computable (in the number of candidates).

Conceptually This does not make much sense:

- $f(1) = (1)$
- $f(2) = (3, 1)$
- $f(3) = (1, 0, 0)$
- $f(4) = (1, 0, 0, 0)$
- $f(5) = (7, 5, 5, 0, 0)$
- $f(6) = (1, 0, 0, 0, 0, 0)$
- ...
Uniformity and Other Conditions

Restrictions: Generators f should be “nice”!

Computationally f should be PTIME-computable (in the number of candidates).

Conceptually This does not make much sense:

- $f(1) = (1)$
- $f(2) = (3, 1)$
- $f(3) = (1, 0, 0)$
- $f(4) = (1, 0, 0, 0)$
- $f(5) = (7, 5, 5, 0, 0)$
- $f(6) = (1, 0, 0, 0, 0, 0)$
- ...

Vectors $f(n)$ and $f(n + 1)$ should be related.
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

- **3-Approval** $f(1) = (1)$
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

3-Approval $f(2) = (1, 1)$
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

| 3-Approval | $f(3) = (1, 1, 1)$ |
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

- **3-Approval** $f(4) = (1, 1, 1, 0)$
Pure Scoring Rules

Purity Constraint

Pure generator \(f \): p-time computable and vector \(f(n + 1) \) obtained from \(f(n) \) by adding single coefficient.

Examples

3-Approval \(f(5) = (1, 1, 1, 0, 0) \)
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

3-Approval $f(6) = (1, 1, 1, 0, 0, 0)$
Pure Scoring Rules

Purity Constraint

A pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding a single coefficient.

Examples

- **3-Approval**

 $f(7) = (1, 1, 1, 0, 0, 0, 0)$

- **3-Veto**

 $f() = (0)$

- **Borda**

 $f() = (0)$
Pure Scoring Rules

Purity Constraint

Pure generator \(f \): p-time computable and vector \(f(n + 1) \) obtained from \(f(n) \) by adding single coefficient.

Examples

- **3-Approval** \(f(7) = (1, 1, 1, 0, 0, 0, 0) \)
- **3-Veto** \(f(1) = (0) \)
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

3-Approval $f(7) = (1, 1, 1, 0, 0, 0, 0)$

3-Veto $f(2) = (0, 0)$
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

3-Approval $f(7) = (1, 1, 1, 0, 0, 0, 0)$

3-Veto $f(3) = (0, 0, 0)$
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

- **3-Approval** $f(7) = (1, 1, 1, 0, 0, 0, 0)$
- **3-Veto** $f(4) = (1, 0, 0, 0)$
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

3-Approval $f(7) = (1, 1, 1, 0, 0, 0, 0, 0)$
3-Veto $f(5) = (1, 1, 0, 0, 0)$
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

3-Approval $f(7) = (1, 1, 1, 0, 0, 0, 0, 0)$

3-Veto $f(6) = (1, 1, 1, 0, 0, 0)$
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

3-Approval $f(7) = (1, 1, 1, 0, 0, 0, 0)$

3-Veto $f(7) = (1, 1, 1, 1, 0, 0, 0)$
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

3-Approval $f(7) = (1, 1, 1, 0, 0, 0, 0)$

3-Veto $f(7) = (1, 1, 1, 1, 0, 0, 0)$

Borda $f(1) = (0)$
Pure Scoring Rules

Purity Constraint

Pure generator \(f \): p-time computable and vector \(f(n + 1) \) obtained from \(f(n) \) by adding single coefficient.

Examples

- **3-Approval** \(f(7) = (1, 1, 1, 0, 0, 0, 0) \)
- **3-Veto** \(f(7) = (1, 1, 1, 1, 0, 0, 0) \)
- **Borda** \(f(2) = (1, 0) \)
Pure Scoring Rules

Purity Constraint

Pure generator \(f \): p-time computable and vector \(f(n + 1) \) obtained from \(f(n) \) by adding single coefficient.

Examples

- **3-Approval** \(f(7) = (1, 1, 1, 0, 0, 0, 0, 0) \)
- **3-Veto** \(f(7) = (1, 1, 1, 1, 0, 0, 0) \)
- **Borda** \(f(3) = (2, 1, 0) \)
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

- **3-Approval**
 \[f(7) = (1, 1, 1, 0, 0, 0, 0) \]

- **3-Veto**
 \[f(7) = (1, 1, 1, 1, 0, 0, 0) \]

- **Borda**
 \[f(4) = (3, 2, 1, 0) \]
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

<table>
<thead>
<tr>
<th>Scoring Rule</th>
<th>Vector $f(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Approval</td>
<td>$(1, 1, 1, 0, 0, 0, 0)$</td>
</tr>
<tr>
<td>3-Veto</td>
<td>$(1, 1, 1, 1, 0, 0, 0)$</td>
</tr>
<tr>
<td>Borda</td>
<td>$(4, 3, 2, 1, 0)$</td>
</tr>
</tbody>
</table>
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

3-Approval $f(7) = (1, 1, 1, 0, 0, 0, 0, 0)$

3-Veto $f(7) = (1, 1, 1, 1, 0, 0, 0, 0)$

Borda $f(6) = (5, 4, 3, 2, 1, 0)$
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

3-Approval $f(7) = (1, 1, 1, 0, 0, 0, 0)$

3-Veto $f(7) = (1, 1, 1, 1, 0, 0, 0)$

Borda $f(7) = (6, 5, 4, 3, 2, 1, 0)$
Pure Scoring Rules

Purity Constraint

Pure generator f: p-time computable and vector $f(n + 1)$ obtained from $f(n)$ by adding single coefficient.

Examples

- **3-Approval** $f(7) = (1, 1, 1, 0, 0, 0, 0)$
- **3-Veto** $f(7) = (1, 1, 1, 1, 0, 0, 0)$
- **Borda** $f(7) = (6, 5, 4, 3, 2, 1, 0)$
Equivalent Generators

Equivalence of Scoring Rules

Three Scoring Rules:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule 1</td>
<td>$f_1(1) = 1$</td>
</tr>
<tr>
<td>Rule 2</td>
<td>$f_2(1) = 3$</td>
</tr>
<tr>
<td>Rule 3</td>
<td>$f_3(1) = 6$</td>
</tr>
</tbody>
</table>

These rules always choose the same winner!

Observation: f_1 and f_2 equivalent if f_1 is an affine transformation of f_2.

Affine transformation (as used in this talk will mean): $\alpha_i \rightarrow c \cdot \alpha_i + d$ with $c > 0$ (different c, d for each vector length allowed).
Equivalent Generators

Equivalence of Scoring Rules

Three Scoring Rules:

- **Rule 1** \(f_1(2) = (2, 1) \)
- **Rule 2** \(f_2(2) = (4, 3) \)
- **Rule 3** \(f_3(2) = (8, 6) \)
Equivalent Generators

Equivalence of Scoring Rules

Three Scoring Rules:

- Rule 1 \(f_1(3) = (3, 2, 1) \)
- Rule 2 \(f_2(3) = (5, 4, 3) \)
- Rule 3 \(f_3(3) = (10, 8, 6) \)
Equivalent Generators

Equivalence of Scoring Rules

Three Scoring Rules:

Rule 1 \(f_1(4) = (4, 3, 2, 1) \)

Rule 2 \(f_2(4) = (6, 5, 4, 3) \)

Rule 3 \(f_3(4) = (12, 10, 8, 6) \)
Equivalent Generators

Equivalence of Scoring Rules

Three Scoring Rules:

- **Rule 1** \(f_1(5) = (5, 4, 3, 2, 1) \)
- **Rule 2** \(f_2(5) = (7, 6, 5, 4, 3) \)
- **Rule 3** \(f_3(5) = (14, 12, 10, 8, 6) \)
Equivalent Generators

Equivalence of Scoring Rules

Three Scoring Rules:

Rule 1 $f_1(6) = (6, 5, 4, 3, 2, 1)$

Rule 2 $f_2(6) = (8, 7, 6, 5, 4, 3)$

Rule 3 $f_3(6) = (16, 14, 12, 10, 8, 6)$
Equivalent Generators

Equivalence of Scoring Rules

Three Scoring Rules:

Rule 1 \(f_1(7) = (7, 6, 5, 4, 3, 2, 1) \)

Rule 2 \(f_2(7) = (9, 8, 7, 6, 5, 4, 3) \)

Rule 3 \(f_3(7) = (18, 16, 14, 12, 10, 8, 6) \)
Equivalent Generators

Equivalence of Scoring Rules

Three Scoring Rules:

Rule 1 $f_1(7) = (7, 6, 5, 4, 3, 2, 1)$
Rule 2 $f_2(7) = (9, 8, 7, 6, 5, 4, 3)$
Rule 3 $f_3(7) = (18, 16, 14, 12, 10, 8, 6)$

These rules always choose the same winner!
Equivalent Generators

Equivalence of Scoring Rules

Three Scoring Rules:

Rule 1 \(f_1(7) = (7, 6, 5, 4, 3, 2, 1) \)

Rule 2 \(f_2(7) = (9, 8, 7, 6, 5, 4, 3) \)

Rule 3 \(f_3(7) = (18, 16, 14, 12, 10, 8, 6) \)

These rules always choose the same winner!
Equivalent Generators

Equivalence of Scoring Rules

Three Scoring Rules:

Rule 1 $f_1(7) = (7, 6, 5, 4, 3, 2, 1)$
Rule 2 $f_2(7) = (9, 8, 7, 6, 5, 4, 3)$
Rule 3 $f_3(7) = (18, 16, 14, 12, 10, 8, 6)$

These rules always choose the same winner!
Equivalent Generators

Equivalence of Scoring Rules

Three Scoring Rules:

Rule 1 \(f_1(7) = (7, 6, 5, 4, 3, 2, 1) \)

Rule 2 \(f_2(7) = (9, 8, 7, 6, 5, 4, 3) \)

Rule 3 \(f_3(7) = (18, 16, 14, 12, 10, 8, 6) \)

These rules always choose the same winner!

Equivalent

Generators \(f_1 \) and \(f_2 \) equivalent, if they always choose the same winners
Equivalent Generators

Equivalence of Scoring Rules

Three Scoring Rules:

Rule 1 \(f_1(7) = (7, 6, 5, 4, 3, 2, 1) \)

Rule 2 \(f_2(7) = (9, 8, 7, 6, 5, 4, 3) \)

Rule 3 \(f_3(7) = (18, 16, 14, 12, 10, 8, 6) \)

These rules always choose the same winner!

Equivalent

Generators \(f_1 \) and \(f_2 \) equivalent, if they always choose the same winners

Observation

\(f_1 \) and \(f_2 \) equivalent iff \(f_1 \) is affine transformation of \(f_2 \).

Affine transformation (as used in this talk will mean): \(\alpha_i \rightarrow c \cdot \alpha_i + d \) with \(c > 0 \) (different \(c, d \) for each vector length allowed).
Normalized

Previous Work: Normalization

Assume: For each n: $f(n) = (\alpha^n_1, \alpha^n_2, \ldots, \alpha^n_n)$ with $\alpha^n_n = 0$
Normalization

Previous Work: Normalization

Assume: For each n: $f(n) = (\alpha^n_1, \alpha^n_2, \ldots, \alpha^n_n)$ with

- $\alpha^n_n = 0$
- $\gcd(\alpha^n_1, \alpha^n_2, \ldots, \alpha^n_{n-1}) = 1$
Normalization

Previous Work: Normalization

Assume: For each n: $f(n) = (\alpha_1^n, \alpha_2^n, \ldots, \alpha_n^n)$ with

- $\alpha_n^n = 0$
- $\gcd(\alpha_1^n, \alpha_2^n, \ldots, \alpha_{n-1}^n) = 1$
- each α_i^n is in \mathbb{N}
Normalization

Previous Work: Normalization

Assume: For each n: $f(n) = (\alpha_1^n, \alpha_2^n, \ldots, \alpha_n^n)$ with
- $\alpha_n^n = 0$
- $\gcd(\alpha_1^n, \alpha_2^n, \ldots, \alpha_{n-1}^n) = 1$
- each α_i^n is in \mathbb{N}

For each n: achieved by affine transformation.
Normalization

Previous Work: Normalization

Assume: For each n: $f(n) = (\alpha_1^n, \alpha_2^n, \ldots, \alpha_n^n)$ with

- $\alpha_n^n = 0$
- $\gcd(\alpha_1^n, \alpha_2^n, \ldots, \alpha_{n-1}^n) = 1$
- each α_i^n is in \mathbb{N}

For each n: achieved by affine transformation.

Question

Do we lose something?
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

(1)

Note: The naturals are not enough as the scores do not include fractions. Dowdall System with natural numbers is not possible since it requires non-integer scores.
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\((1)\)

\[\hat{=} (1)\]
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[(1) \hat{=} (1)\]
\[(1, \frac{1}{2}) \hat{=} (1)\]
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[
\begin{align*}
(1) & \\
(1, \frac{1}{2}) & = (\frac{2}{2}, \frac{1}{2})
\end{align*}
\]

\(\hat{=} (1)\)

Not a pure generator!

Purify by multiplication

Works only for finite length!
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[
\begin{align*}
(1) &= (1) \\
(1, \frac{1}{2}) &= (\frac{2}{2}, \frac{1}{2}) \quad \hat{=} (1) \\
\hat{=} (2, 1)
\end{align*}
\]
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[
(1) = (\frac{2}{2}, \frac{1}{2}) \quad \hat{=} (1) \\
(1, \frac{1}{2}) = (\frac{2}{2}, \frac{1}{2}) \quad \hat{=} (2, 1) \\
(1, \frac{1}{2}, \frac{1}{3})
\]
Missing: The naturals are not enough

Dowdall System

Scores \(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\)

Dowdall with natural numbers?

\[
\begin{align*}
(1) & \\
(1, \frac{1}{2}) & = (\frac{2}{2}, \frac{1}{2}) \\
(1, \frac{1}{2}, \frac{1}{3}) & = (\frac{6}{6}, \frac{3}{6}, \frac{2}{6}) \\
\end{align*}
\]

\(\hat{=}\) (1) \\
\(\hat{=}\) (2, 1)

Not a pure generator! Purify by multiplication. Works only for finite length!
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

<table>
<thead>
<tr>
<th>Score</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1))</td>
<td>(\hat{=} (1))</td>
</tr>
<tr>
<td>((1, \frac{1}{2}))</td>
<td>(\hat{=} \left(\frac{2}{2}, \frac{1}{2}\right))</td>
</tr>
<tr>
<td>((1, \frac{1}{2}, \frac{1}{3}))</td>
<td>(\hat{=} \left(\frac{6}{6}, \frac{3}{6}, \frac{2}{6}\right))</td>
</tr>
</tbody>
</table>

Not a pure generator! Purify by multiplication. Works only for finite length!
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[
\begin{align*}
(1) & = (1) \\
(1, \frac{1}{2}) & = (\frac{2}{2}, \frac{1}{2}) \quad \hat{=} (1) \\
(1, \frac{1}{2}, \frac{1}{3}) & = (\frac{6}{6}, \frac{3}{6}, \frac{2}{6}) \quad \hat{=} (2, 1) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}) & = (\frac{12}{12}, \frac{6}{12}, \frac{4}{12}, \frac{3}{12}) \quad \hat{=} (6, 3, 2)
\end{align*}
\]
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[
\begin{align*}
(1, \frac{1}{2}) & = (\frac{2}{2}, \frac{1}{2}) \\
(1, \frac{1}{2}, \frac{1}{3}) & = (\frac{6}{6}, \frac{3}{6}, \frac{2}{6}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}) & = (\frac{12}{12}, \frac{6}{12}, \frac{4}{12}, \frac{3}{12})
\end{align*}
\]

\(\hat{=} (1)\)

\(\hat{=} (2, 1)\)

\(\hat{=} (6, 3, 2)\)
The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[(1)\]
\[(1, \frac{1}{2}) \equiv (\frac{2}{2}, \frac{1}{2})\]
\[(1, \frac{1}{2}, \frac{1}{3}) \equiv (\frac{6}{6}, \frac{3}{6}, \frac{2}{6})\]
\[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}) \equiv (\frac{12}{12}, \frac{6}{12}, \frac{4}{12}, \frac{3}{12})\]

Not a pure generator!

Purify by multiplication
Works only for finite length!
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[
\begin{align*}
(1) & \equiv (1) \\
(1, \frac{1}{2}) & = (\frac{2}{2}, \frac{1}{2}) \\
(1, \frac{1}{2}, \frac{1}{3}) & = (\frac{6}{6}, \frac{3}{6}, \frac{2}{6}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}) & = (\frac{12}{12}, \frac{6}{12}, \frac{4}{12}, \frac{3}{12}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}) & \equiv (12, 6, 4, 3)
\end{align*}
\]
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[(1)\]
\[(1, \frac{1}{2})\]
\[(1, \frac{1}{2}, \frac{1}{3})\]
\[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4})\]
\[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5})\]
\[= \left(\frac{2}{2}, \frac{1}{2}\right)\]
\[= \left(\frac{6}{6}, \frac{3}{6}, \frac{2}{6}\right)\]
\[= \left(\frac{12}{12}, \frac{6}{12}, \frac{4}{12}, \frac{3}{12}\right)\]
\[= \left(\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}\right)\]
\[\hat{=} (1)\]
\[\hat{=} (2, 1)\]
\[\hat{=} (6, 3, 2)\]
\[\hat{=} (12, 6, 4, 3)\]
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[
\begin{align*}
(1) & \Rightarrow (1) \\
(1, \frac{1}{2}) & \Rightarrow (\frac{2}{2}, \frac{1}{2}) \\
(1, \frac{1}{2}, \frac{1}{3}) & \Rightarrow (\frac{6}{6}, \frac{3}{6}, \frac{2}{6}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}) & \Rightarrow (\frac{12}{12}, \frac{6}{12}, \frac{4}{12}, \frac{3}{12}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}) & \Rightarrow (\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}) \\
\end{align*}
\]

Not a pure generator!

Purify by multiplication
Works only for finite length!
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[
\begin{align*}
(1) & \\
(1, \frac{1}{2}) & = (\frac{2}{2}, \frac{1}{2}) \\
(1, \frac{1}{2}, \frac{1}{3}) & = (\frac{6}{6}, \frac{3}{6}, \frac{2}{6}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}) & = (\frac{12}{12}, \frac{6}{12}, \frac{4}{12}, \frac{3}{12}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}) & = (\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}) & \\
\end{align*}
\]

\(\hat{=} (1)\)

\(\hat{=} (1, \frac{1}{2})\)

\(\hat{=} (2, 1)\)

\(\hat{=} (6, 3, 2)\)

\(\hat{=} (12, 6, 4, 3)\)

\(\hat{=} (60, 30, 20, 15, 12)\)
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[
\begin{align*}
(1) & \quad = (\frac{2}{2}, \frac{1}{1}) \\
(1, \frac{1}{2}) & \quad = (\frac{2}{2}, \frac{1}{1}) \\
(1, \frac{1}{2}, \frac{1}{3}) & \quad = (\frac{6}{6}, \frac{3}{3}, \frac{2}{2}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}) & \quad = (\frac{12}{12}, \frac{6}{6}, \frac{4}{4}, \frac{3}{3}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}) & \quad = (\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}) & \quad = (\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}, \frac{10}{60})
\end{align*}
\]

\[\wedge (1) \quad \wedge (2, 1) \quad \wedge (6, 3, 2) \quad \wedge (12, 6, 4, 3) \quad \wedge (60, 30, 20, 15, 12)\]
Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[
\begin{align*}
(1) & = (\frac{2}{2}, \frac{1}{2}) \\
(1, \frac{1}{2}) & = (\frac{2}{6}, \frac{3}{6}, \frac{2}{6}) \\
(1, \frac{1}{2}, \frac{1}{3}) & = (\frac{12}{12}, \frac{6}{12}, \frac{4}{12}, \frac{3}{12}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}) & = (\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}) & = (\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}, \frac{10}{60}) \\
\end{align*}
\]

\(\wedge (1)\)

\(\wedge (2, 1)\)

\(\wedge (6, 3, 2)\)

\(\wedge (12, 6, 4, 3)\)

\(\wedge (60, 30, 20, 15, 12)\)

\(\wedge (60, 30, 20, 15, 12, 10)\)

Not a pure generator!

Works only for finite length!
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[
\begin{align*}
(1) \\
(1, \frac{1}{2}) & = \left(\frac{2}{2}, \frac{1}{2}\right) \\
(1, \frac{1}{2}, \frac{1}{3}) & = \left(\frac{6}{6}, \frac{3}{6}, \frac{2}{6}\right) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}) & = \left(\frac{12}{12}, \frac{6}{12}, \frac{4}{12}, \frac{3}{12}\right) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}) & = \left(\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}\right) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}) & = \left(\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}, \frac{10}{60}\right)
\end{align*}
\]

Not a pure generator!
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[
\begin{align*}
(1) \\
(1, \frac{1}{2}) &= \left(\frac{2}{2}, \frac{1}{2}\right) \\
(1, \frac{1}{2}, \frac{1}{3}) &= \left(\frac{6}{6}, \frac{3}{6}, \frac{2}{6}\right) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}) &= \left(\frac{12}{12}, \frac{6}{12}, \frac{4}{12}, \frac{3}{12}\right) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}) &= \left(\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}\right) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}) &= \left(\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}, \frac{10}{60}\right)
\end{align*}
\]

\(\hat{=} (60)\)

\(\hat{=} (60, 30)\)

\(\hat{=} (60, 30, 20)\)

\(\hat{=} (60, 30, 20, 15)\)

\(\hat{=} (60, 30, 20, 15, 12)\)

\(\hat{=} (60, 30, 20, 15, 12, 10)\)

Not a pure generator!

- Purify by multiplication
Missing: The naturals are not enough

Dowdall System
Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[
\begin{align*}
(1) &= (\frac{2}{2}, \frac{1}{2}) \\
(1, \frac{1}{2}) &= (\frac{6}{6}, \frac{3}{6}, \frac{2}{6}) \\
(1, \frac{1}{2}, \frac{1}{3}) &= (\frac{12}{12}, \frac{6}{12}, \frac{4}{12}, \frac{3}{12}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}) &= (\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}) &= (\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}, \frac{10}{60}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}) &= (\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}, \frac{10}{60}, \frac{9}{60}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}) &= (\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}, \frac{10}{60}, \frac{9}{60}, \frac{8}{60})
\end{align*}
\]

\(\hat{=} (60)\)
\(\hat{=} (60, 30)\)
\(\hat{=} (60, 30, 20)\)
\(\hat{=} (60, 30, 20, 15)\)
\(\hat{=} (60, 30, 20, 15, 12)\)
\(\hat{=} (60, 30, 20, 15, 12, 10)\)

Not a pure generator!

- Purify by multiplication
- Works only for finite length!
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots) \)

Dowdall with natural numbers?

\[
\begin{align*}
(1) & \\
(1, \frac{1}{2}) & = (\frac{2}{2}, \frac{1}{2}) \\
(1, \frac{1}{2}, \frac{1}{3}) & = (\frac{6}{6}, \frac{3}{6}, \frac{2}{6}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}) & = (\frac{12}{12}, \frac{6}{12}, \frac{4}{12}, \frac{3}{12}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}) & = (\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}) & = (\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}, \frac{10}{60}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}) & = (\frac{420}{420}, \frac{210}{420}, \frac{140}{420}, \frac{105}{420}, \frac{84}{420}, \frac{70}{420}, \frac{60}{420})
\end{align*}
\]

\(\hat{=} \) (60)

\(\hat{=} \) (60, 30)

\(\hat{=} \) (60, 30, 20)

\(\hat{=} \) (60, 30, 20, 15)

\(\hat{=} \) (60, 30, 20, 15, 12)

\(\hat{=} \) (60, 30, 20, 15, 12, 10)

Not a pure generator!

- Purify by multiplication
- Works only for finite length!
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[
\begin{align*}
(1) & \\
(1, \frac{1}{2}) & = (\frac{2}{2}, \frac{1}{2}) \\
(1, \frac{1}{2}, \frac{1}{3}) & = (\frac{6}{6}, \frac{3}{6}, \frac{2}{6}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}) & = (\frac{12}{12}, \frac{6}{12}, \frac{4}{12}, \frac{3}{12}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}) & = (\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}) & = (\frac{420}{420}, \frac{210}{420}, \frac{140}{420}, \frac{105}{420}, \frac{84}{420}, \frac{70}{420}, \frac{60}{420}) \\
\end{align*}
\]

\[\hat{=} (60)\]
\[\hat{=} (60, 30)\]
\[\hat{=} (60, 30, 20)\]
\[\hat{=} (60, 30, 20, 15)\]
\[\hat{=} (60, 30, 20, 15, 12)\]
\[\hat{=} (60, 30, 20, 15, 12, 10)\]
\[\hat{=} (420, 210, 140, 105, 84, 70, 60)\]

Not a pure generator!

- Purify by multiplication
- Works only for finite length!
Missing: The naturals are not enough

Dowdall System

Scores \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)\)

Dowdall with natural numbers?

\[
\begin{align*}
(1) & \cong (60) \\
(1, \frac{1}{2}) & = (\frac{2}{2}, \frac{1}{2}) \\
(1, \frac{1}{2}, \frac{1}{3}) & = (\frac{6}{6}, \frac{3}{6}, \frac{2}{6}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}) & = (\frac{12}{12}, \frac{6}{12}, \frac{4}{12}, \frac{3}{12}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}) & = (\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}) & = (\frac{60}{60}, \frac{30}{60}, \frac{20}{60}, \frac{15}{60}, \frac{12}{60}, \frac{10}{60}) \\
(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}) & = (\frac{420}{420}, \frac{210}{420}, \frac{140}{420}, \frac{105}{420}, \frac{84}{420}, \frac{70}{420}, \frac{60}{420})
\end{align*}
\]

Not a pure generator!

- Purify by multiplication
- Works only for finite length!

Dowdall cannot be expressed with natural numbers.
Consequence

When we require purity:

- Universe for coefficients matters (\(\mathbb{Q}, \mathbb{Z}, \mathbb{N}\))
- Choosing coefficients from \(\mathbb{N}\) is a proper restriction
Expressivity

Consequence

When we require purity:
- Universe for coefficients matters (\mathbb{Q}, \mathbb{Z}, \mathbb{N})
- Choosing coefficients from \mathbb{N} is a proper restriction

Other two Assumptions?
- Last coefficient 0?
- Greatest common divisor of (non-zero) coefficients always 1?
Expressivity

Consequence

When we require purity:

- Universe for coefficients matters ($\mathbb{Q}, \mathbb{Z}, \mathbb{N}$)
- Choosing coefficients from \mathbb{N} is a proper restriction

Other two Assumptions?

- Last coefficient 0?
- Greatest common divisor of (non-zero) coefficients always 1?

Both incompatible with purity.
Theorem: A missing Generator

For some pure generator f_1 there is no pure generator f_2 with

- f_1 and f_2 equivalent, and
- f_2 has last coefficient zero.
Theorem: A missing Generator

For some pure generator f_1 there is no pure generator f_2 with

- f_1 and f_2 equivalent, and
- f_2 has last coefficient zero.

Proof

$f_1(1) = (5)$
Theorem: A missing Generator

For some pure generator f_1 there is no pure generator f_2 with

- f_1 and f_2 equivalent, and
- f_2 has last coefficient zero.

Proof

$f_1(2) = (6, 5)$
Last Coefficient 0 is a restriction

Theorem: A missing Generator

For some **pure** generator f_1 there is no **pure** generator f_2 with

- f_1 and f_2 equivalent, and
- f_2 has last coefficient zero.

Proof

$f_1(3) = (7, 6, 5)$
Theorem: A missing Generator

For some pure generator f_1 there is no pure generator f_2 with

- f_1 and f_2 equivalent, and
- f_2 has last coefficient zero.

Proof

$f_1(4) = (8, 7, 6, 5)$
Theorem: A missing Generator

For some pure generator \(f_1 \) there is no pure generator \(f_2 \) with

- \(f_1 \) and \(f_2 \) equivalent, and
- \(f_2 \) has last coefficient zero.

Proof

\[f_1(5) = (8, 7, 6, 5, 0) \]
Theorem: A missing Generator

For some pure generator f_1 there is no pure generator f_2 with
- f_1 and f_2 equivalent, and
- f_2 has last coefficient zero.

Proof

$f_1(5) = (8, 7, 6, 5, 0)$

Assume there is an equivalent normalized f_2.
Last Coefficient 0 is a restriction

Theorem: A missing Generator

For some pure generator f_1 there is no pure generator f_2 with
- f_1 and f_2 equivalent, and
- f_2 has last coefficient zero.

Proof

$f_1(5) = (8, 7, 6, 5, 0)$

Assume there is an equivalent normalized f_2.

- $f_1(4) = (8, 7, 6, 5)$
Last Coefficient 0 is a restriction

Theorem: A missing Generator

For some pure generator f_1 there is no pure generator f_2 with

- f_1 and f_2 equivalent, and
- f_2 has last coefficient zero.

Proof

Assume there is an equivalent normalized f_2.

- $f_1(4) = (8, 7, 6, 5)$
- $f_2(4) = (3k, 2k, k, 0)$
Last Coefficient 0 is a restriction

Theorem: A missing Generator

For some **pure** generator f_1 there is no **pure** generator f_2 with
- f_1 and f_2 equivalent, and
- f_2 has last coefficient zero.

Proof

$f_1(5) = (8, 7, 6, 5, 0)$

Assume there is an equivalent normalized f_2.

- $f_1(4) = (8, 7, 6, 5)$
- $f_2(4) = (3k, 2k, k, 0)$
- $f_1(5) = (8, 7, 6, 5, 0)$
Last Coefficient 0 is a restriction

Theorem: A missing Generator

For some pure generator f_1 there is no pure generator f_2 with

- f_1 and f_2 equivalent, and
- f_2 has last coefficient zero.

Proof

$f_1(5) = (8, 7, 6, 5, 0)$

Assume there is an equivalent normalized f_2.

- $f_1(4) = (8, 7, 6, 5)$
- $f_2(4) = (3k, 2k, k, 0)$
- $f_1(5) = (8, 7, 6, 5, 0)$
- $f_2(5) = (3k, 2k, k, 0)$
Last Coefficient 0 is a restriction

Theorem: A missing Generator

For some pure generator \(f_1 \) there is no pure generator \(f_2 \) with
- \(f_1 \) and \(f_2 \) equivalent, and
- \(f_2 \) has last coefficient zero.

Proof

\[
f_1(5) = (8, 7, 6, 5, 0)
\]

Assume there is an equivalent normalized \(f_2 \).

- \(f_1(4) = (8, 7, 6, 5) \)
- \(f_2(4) = (3k, 2k, k, 0) \)
- \(f_1(5) = (8, 7, 6, 5, 0) \)
- \(f_2(5) = (?, 3k, 2k, k, 0) \)
Theorem: A missing Generator

For some pure generator f_1 there is no pure generator f_2 with

- f_1 and f_2 equivalent, and
- f_2 has last coefficient zero.

Proof

$f_1(5) = (8, 7, 6, 5, 0)$

Assume there is an equivalent normalized f_2.

- $f_1(4) = (8, 7, 6, 5)$
- $f_2(4) = (3k, 2k, k, 0)$
- $f_1(5) = (8, 7, 6, 5, 0)$
- $f_2(5) = (3k, ?, 2k, k, 0)$
Theorem: A missing Generator

For some pure generator f_1 there is no pure generator f_2 with

- f_1 and f_2 equivalent, and
- f_2 has last coefficient zero.

Proof

$f_1(5) = (8, 7, 6, 5, 0)$

Assume there is an equivalent normalized f_2.

- $f_1(4) = (8, 7, 6, 5)$
- $f_2(4) = (3k, 2k, k, 0)$
- $f_1(5) = (8, 7, 6, 5, 0)$
- $f_2(5) = (3k, 2k, ?, k, 0)$
Last Coefficient 0 is a restriction

Theorem: A missing Generator

For some **pure** generator f_1 there is no **pure** generator f_2 with
- f_1 and f_2 equivalent, and
- f_2 has last coefficient zero.

Proof

$f_1(5) = (8, 7, 6, 5, 0)$

Assume there is an equivalent normalized f_2.

- $f_1(4) = (8, 7, 6, 5)$
- $f_2(4) = (3k, 2k, k, 0)$

- $f_1(5) = (8, 7, 6, 5, 0)$
- $f_2(5) = (3k, 2k, k, ?, 0)$
Last Coefficient 0 is a restriction

Theorem: A missing Generator

For some **pure** generator f_1 there is no **pure** generator f_2 with

- f_1 and f_2 equivalent, and
- f_2 has last coefficient zero.

Proof

$f_1(5) = (8, 7, 6, 5, 0)$

Assume there is an equivalent normalized f_2.

- $f_1(4) = (8, 7, 6, 5)$
- $f_2(4) = (3k, 2k, k, 0)$
- $f_1(5) = (8, 7, 6, 5, 0)$
- $f_2(5) = (3k, 2k, k, 0, ?)$
Last Coefficient 0 is a restriction

Theorem: A missing Generator

For some pure generator f_1 there is no pure generator f_2 with
- f_1 and f_2 equivalent, and
- f_2 has last coefficient zero.

Proof

$f_1(5) = (8, 7, 6, 5, 0)$

Assume there is an equivalent normalized f_2.

- $f_1(4) = (8, 7, 6, 5)$
- $f_2(4) = (3k, 2k, k, 0)$
- $f_1(5) = (8, 7, 6, 5, 0)$
- $f_2(5) = (3k, 2k, k, 0, ?)$

f_2 is different on elections with 5 candidates already.
Purity Condition

Just Seen: Normalization kills purity

Consequence: Purity is too strong.
Purity Condition

Just Seen: Normalization kills purity

Consequence: Purity is too strong.

New Purity Condition

Generator f **flexible**: for each n, $f(n+1)$ obtained from $f(n)$ by
- applying affine transformation,
- adding new coefficient.
Purity Condition

Just Seen: Normalization kills purity

Consequence: Purity is too strong.

New Purity Condition

Generator f **flexible**: for each n, $f(n + 1)$ obtained from $f(n)$ by
- applying affine transformation,
- adding new coefficient.

Consequence
- Normalization built-in
- Looking at natural numbers is enough
Purity Condition

Just Seen: Normalization kills purity

Consequence: Purity is too strong.

New Purity Condition

Generator f **flexible**: for each n, $f(n + 1)$ obtained from $f(n)$ by
- applying affine transformation,
- adding new coefficient.

Consequence

- Normalization built-in
- Looking at natural numbers is enough

From now on

We study flexible generators with coefficients from \mathbb{N}.
Overview

1 Introduction: Elections and Control

2 The Complexity of the Control Problem

3 A Class of Election Systems: Scoring Rules

4 The Price of Purity

5 A Dichotomy Theorem
 - Polynomial Time Results
 - Hardness Results

6 Conclusion
Complexity Classification

Consequence

Flexible generators capture all systems we want to.
Complexity Classification

Consequence
Flexible generators capture all systems we want to.

Theorem
CCAV for the following f (and equivalent) is solvable in PTIME:

- for $k \leq 3$:
 - k-Approval:
 $$f(n) = (1, ..., 1, n-k, 0, ..., 0)$$
 - k-Veto:
 $$f(n) = (k, 1, ..., 1, n-k, 0, ..., 0)$$

- Gen. 2-App.:
 $$f(n) = (\alpha, \beta, 0, ..., 0)$$

- Appr/Veto:
 $$f(n) = (2, 1, 1, ..., 1, 0)$$

For all flexible generators f not equivalent to one of these, f-CCAV is NP-complete.
Complexity Classification

Consequence

Flexible generators capture all systems we want to.

Theorem

CCAV for the following f (and equivalent) is solvable in PTIME:

k-Approval , $k \leq 3$: $f(n) = (1, \ldots, 1, 0, \ldots, 0)$
Complexity Classification

Consequence
Flexible generators capture all systems we want to.

Theorem
CCAV for the following f (and equivalent) is solvable in PTIME:

- k-Approval, $k \leq 3$: $f(n) = (1, \ldots, 1, 0, \ldots, 0)$
- k-Veto, $k \leq 2$: $f(n) = (1, \ldots, 1, 0, \ldots, 0)$
Complexity Classification

Consequence
Flexible generators capture all systems we want to.

Theorem

CCAV for the following f (and equivalent) is solvable in PTIME:

- k-Approval, $k \leq 3$: $f(n) = (1, \ldots, 1, 0, \ldots, 0)$
- k-Veto, $k \leq 2$: $f(n) = (1, \ldots, 1, 0, \ldots, 0)$
- Gen. 2-App. $f(n) = (\alpha, \beta, 0, \ldots, 0)$ for fixed α, β
Complexity Classification

Consequence
Flexible generators capture all systems we want to.

Theorem

CCAV for the following f (and equivalent) is solvable in PTIME:

- k-Approval, $k \leq 3$: $f(n) = (1, \ldots, 1, 0, \ldots, 0)$
- k-Veto, $k \leq 2$: $f(n) = (1, \ldots, 1, 0, \ldots, 0)$
- Gen. 2-App. $f(n) = (\alpha, \beta, 0, \ldots, 0)$ for fixed α, β
- Appr/Veto $f(n) = (2, 1, \ldots, 1, 0)$
Complexity Classification

Consequence
Flexible generators capture all systems we want to.

Theorem

CCAV for the following \(f \) (and equivalent) is solvable in PTIME:

- **k-Approval**, \(k \leq 3 \):
 \[f(n) = (1, \ldots, 1, 0, \ldots, 0) \]

- **k-Veto**, \(k \leq 2 \):
 \[f(n) = (1, \ldots, 1, 0, \ldots, 0) \]

- **Gen. 2-App.**
 \[f(n) = (\alpha, \beta, 0, \ldots, 0) \text{ for fixed } \alpha, \beta \]

- **Appr/Veto**
 \[f(n) = (2, 1, \ldots, 1, 0) \]

For all flexible generators \(f \) not equivalent to one of these, \(f \)-CCAV is NP-complete.
Overview

1. Introduction: Elections and Control
2. The Complexity of the Control Problem
3. A Class of Election Systems: Scoring Rules
4. The Price of Purity
5. A Dichotomy Theorem
 - Polynomial Time Results
 - Hardness Results
6. Conclusion
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.

3-Approval: \((1, 1, 1, 0, \ldots, 0)\)
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.

3-Approval: \((1, 1, 1, 0, \ldots, 0)\)

Proof

Task: Given voters \(R\) and \(U\), candidate \(p\), number \(k\)
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.

3-Approval: \((1, 1, 1, 0, \ldots, 0) \)

Proof

Task: Given voters \(R \) and \(U \), candidate \(p \), number \(k \)

Find \(U' \subseteq U \) with \(|U'| \leq k\) such that \(p \) wins if \(R \cup U' \) vote
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.

3-Approval: $(1, 1, 1, 0, \ldots, 0)$

Proof

Task: Given voters R and U, candidate p, number k

Find $U' \subseteq U$ with $|U'| \leq k$ such that p wins if $R \cup U'$ vote

- Vote $(c_1, c_2, c_3, \ldots, c_n)$ **approves** c_1, c_2 and c_3
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.

3-Approval: $(1, 1, 1, 0, \ldots, 0)$

Proof

Task: Given voters R and U, candidate p, number k

Find $U' \subseteq U$ with $|U'| \leq k$ such that p wins if $R \cup U'$ vote

- Vote $(c_1, c_2, c_3, \ldots, c_n)$ **approves** c_1, c_2 and c_3
- Only choose votes that approve p
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.

3-Approval: $(1, 1, 1, 0, \ldots, 0)$

Proof

Task: Given voters R and U, candidate p, number k

Find $U' \subseteq U$ with $|U'| \leq k$ such that p wins if $R \cup U'$ vote

- Vote $(c_1, c_2, c_3, \ldots, c_n)$ **approves** c_1, c_2 and c_3
- Only choose votes that approve p
- Forget about all other votes
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.

3-Approval: \((1, 1, 1, 0, \ldots, 0)\)

Proof

Task: Given voters \(R\) and \(U\), candidate \(p\), number \(k\)
Find \(U' \subseteq U\) with \(|U'| \leq k\) such that \(p\) wins if \(R \cup U'\) vote

- Vote \((c_1, c_2, c_3, \ldots, c_n)\) **approves** \(c_1, c_2\) and \(c_3\)
- Only choose votes that approve \(p\)
- Forget about all other votes
- W.l.o.g.: add exactly \(k\) votes
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.

3-Approval: $(1, 1, 1, 0, \ldots, 0)$

Proof

Task: Given voters R and U, candidate p, number k

Find $U' \subseteq U$ with $|U'| \leq k$ such that p wins if $R \cup U'$ vote

- Vote $(c_1, c_2, c_3, \ldots, c_n)$ **approves** c_1, c_2 and c_3
- Only choose votes that approve p
- Forget about all other votes
- W.l.o.g.: add exactly k votes

\rightarrow final score of p: $\text{final}_p = \text{current}_p + k$
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.

3-Approval: \((1, 1, 1, 0, \ldots, 0)\)

Proof

Task: Given voters \(R\) and \(U\), candidate \(p\), number \(k\)
Find \(U' \subseteq U\) with \(|U'| \leq k\) such that \(p\) wins if \(R \cup U'\) vote

- Vote \((c_1, c_2, c_3, \ldots, c_n)\) **approves** \(c_1, c_2\) and \(c_3\)
- Only choose votes that approve \(p\)
- Forget about all other votes
- W.l.o.g.: add exactly \(k\) votes

\(\rightarrow\) final score of \(p\): \(\text{final}_p = \text{current}_p + k\)

\(\rightarrow\) each \(c \neq p\): may gain at most \(\text{maxgain}_c = \text{final}_p - \text{current}_c\)
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.

Proof (continued)

Situation:

- we add \(k \) voters
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.

Proof (continued)

Situation:

- we add \(k \) voters
- each approves \(p \) and two others
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.

Proof (continued)

Situation:
- we add k voters
- each approves p and two others
- each candidate $c \neq p$ may gain at most maxgain_c points
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.

Proof (continued)

Situation:
- we add k voters
- each approves p and two others
- each candidate $c \neq p$ may gain at most maxgain_c points

![Image of colored figures with numerical values below]

- ≤ 10
- ≤ 7
- ≤ 6
- ≤ 1
- ≤ 0
- ≤ -1
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.

Proof (continued)

Situation:

- we add k voters
- each approves p and two others
- each candidate $c \neq p$ may gain at most maxgain_c points
A polynomial-time result

Theorem

CCAV for 3-Approval can be solved in polynomial time.

Proof (continued)

Situation:
- we add k voters
- each approves p and two others
- each candidate $c \neq p$ may gain at most $\max \text{gain}_c$ points
A polynomial-time result: Edge Matching algorithm

Votes
A polynomial-time result: Edge Matching algorithm

Votes

- $p > c_1 > c_3 > \ldots$

Graph

- c_1 to c_3
- c_3 to c_4
- c_4 to c_5
- c_5 to c_6
- c_6 to c_7

Other systems

- 2-Veto $(1, 1, \ldots, 1, 0, 0)$: similar.
- $(\alpha, \beta, 0, \ldots, 0)$: similar.
A polynomial-time result: Edge Matching algorithm

Votes
- \(p > c_1 > c_3 > \ldots \)
- \(p > c_2 > c_4 > \ldots \)

Graph

\begin{align*}
&c_1 & c_2 \\
&| & |
\end{align*}

\begin{align*}
&c_7 \\
&| & |
\end{align*}

\begin{align*}
&c_3 \\
&| & |
\end{align*}

\begin{align*}
&c_4
\end{align*}

\begin{align*}
&c_5 \\
&| & |
\end{align*}

\begin{align*}
&c_6
\end{align*}
A polynomial-time result: Edge Matching algorithm

Votes
- $p > c_1 > c_3 > \ldots$
- $p > c_2 > c_4 > \ldots$
- $p > c_2 > c_3 > \ldots$

Graph

- $c_1 \rightarrow c_2$
- $c_1 \rightarrow c_3$
- $c_2 \rightarrow c_4$
- $c_3 \rightarrow c_6$
- $c_4 \rightarrow c_7$
- $c_5 \rightarrow c_6$
A polynomial-time result: Edge Matching algorithm

Votes
- \(p > c_1 > c_3 > \ldots \)
- \(p > c_2 > c_4 > \ldots \)
- \(p > c_2 > c_3 > \ldots \)
- \(p > c_5 > c_4 > \ldots \)

Graph

\(c_1 \) \(c_2 \) \(c_3 \) \(c_4 \) \(c_5 \) \(c_6 \) \(c_7 \)
A polynomial-time result: Edge Matching algorithm

Votes
- \(p > c_1 > c_3 > \ldots \)
- \(p > c_2 > c_4 > \ldots \)
- \(p > c_2 > c_3 > \ldots \)
- \(p > c_5 > c_4 > \ldots \)
- \(p > c_6 > c_3 > \ldots \)
A polynomial-time result: Edge Matching algorithm

Votes
- \(p > c_1 > c_3 > \ldots \)
- \(p > c_2 > c_4 > \ldots \)
- \(p > c_2 > c_3 > \ldots \)
- \(p > c_5 > c_4 > \ldots \)
- \(p > c_6 > c_3 > \ldots \)
- \(p > c_7 > c_1 > \ldots \)

Graph
A polynomial-time result: Edge Matching algorithm

<table>
<thead>
<tr>
<th>Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• p > c₁ > c₃ > ...</td>
</tr>
<tr>
<td>• p > c₂ > c₄ > ...</td>
</tr>
<tr>
<td>• p > c₂ > c₃ > ...</td>
</tr>
<tr>
<td>• p > c₅ > c₄ > ...</td>
</tr>
<tr>
<td>• p > c₆ > c₃ > ...</td>
</tr>
<tr>
<td>• p > c₇ > c₁ > ...</td>
</tr>
<tr>
<td>• p > c₆ > c₇ > ...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₃ → C₁, C₄ → C₂, C₇ → C₆, C₅ → C₃</td>
</tr>
</tbody>
</table>

Graph: C₇, C₆, C₅, C₄, C₃, C₂, C₁

Other systems: 2-Veto (1, 1, ..., 1, 0, 0); similar. (α, β, 0, ..., 0); similar.
A polynomial-time result: Edge Matching algorithm

Votes
- \(p > c_1 > c_3 > \ldots \)
- \(p > c_2 > c_4 > \ldots \)
- \(p > c_2 > c_3 > \ldots \)
- \(p > c_5 > c_4 > \ldots \)
- \(p > c_6 > c_3 > \ldots \)
- \(p > c_7 > c_1 > \ldots \)
- \(p > c_6 > c_7 > \ldots \)
- \(p > c_3 > c_6 > \ldots \)

Graph

\[
\begin{align*}
C_1 &\rightarrow C_3 \\
C_1 &\rightarrow C_4 \\
C_2 &\rightarrow C_3 \\
C_2 &\rightarrow C_4 \\
C_3 &\rightarrow C_5 \\
C_5 &\rightarrow C_6 \\
C_7 &\rightarrow C_4 \\
C_6 &\rightarrow C_7 \\
\end{align*}
\]
A polynomial-time result: Edge Matching algorithm

<table>
<thead>
<tr>
<th>Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p > c_1 > c_3 > \ldots)</td>
</tr>
<tr>
<td>(p > c_2 > c_4 > \ldots)</td>
</tr>
<tr>
<td>(p > c_2 > c_3 > \ldots)</td>
</tr>
<tr>
<td>(p > c_5 > c_4 > \ldots)</td>
</tr>
<tr>
<td>(p > c_6 > c_3 > \ldots)</td>
</tr>
<tr>
<td>(p > c_7 > c_1 > \ldots)</td>
</tr>
<tr>
<td>(p > c_6 > c_7 > \ldots)</td>
</tr>
<tr>
<td>(p > c_3 > c_6 > \ldots)</td>
</tr>
<tr>
<td>(p > c_3 > c_5 > \ldots)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1) (\rightarrow) (c_2) (\rightarrow) (c_3) (\rightarrow) (c_4) (\rightarrow) (c_7) (\rightarrow) (c_6) (\rightarrow) (c_5)</td>
</tr>
<tr>
<td>(c_3) (\rightarrow) (c_7) (\rightarrow) (c_6) (\rightarrow) (c_5) (\rightarrow) (c_3)</td>
</tr>
<tr>
<td>(p > c_1 > c_3 > \ldots)</td>
</tr>
<tr>
<td>(p > c_2 > c_4 > \ldots)</td>
</tr>
<tr>
<td>(p > c_2 > c_3 > \ldots)</td>
</tr>
<tr>
<td>(p > c_5 > c_4 > \ldots)</td>
</tr>
<tr>
<td>(p > c_6 > c_3 > \ldots)</td>
</tr>
<tr>
<td>(p > c_7 > c_1 > \ldots)</td>
</tr>
<tr>
<td>(p > c_6 > c_7 > \ldots)</td>
</tr>
<tr>
<td>(p > c_3 > c_6 > \ldots)</td>
</tr>
<tr>
<td>(p > c_3 > c_5 > \ldots)</td>
</tr>
</tbody>
</table>
A polynomial-time result: Edge Matching algorithm

Votes
- $p > c_1 > c_3 > \ldots$
- $p > c_2 > c_4 > \ldots$
- $p > c_2 > c_3 > \ldots$
- $p > c_5 > c_4 > \ldots$
- $p > c_6 > c_3 > \ldots$
- $p > c_7 > c_1 > \ldots$
- $p > c_6 > c_7 > \ldots$
- $p > c_3 > c_6 > \ldots$
- $p > c_3 > c_5 > \ldots$

Graph

![Graph](image)

Situation
- choose k votes
- (edges)
A polynomial-time result: Edge Matching algorithm

Votes
- \(p > c_1 > c_3 > \ldots \)
- \(p > c_2 > c_4 > \ldots \)
- \(p > c_2 > c_3 > \ldots \)
- \(p > c_5 > c_4 > \ldots \)
- \(p > c_6 > c_3 > \ldots \)
- \(p > c_7 > c_1 > \ldots \)
- \(p > c_6 > c_7 > \ldots \)
- \(p > c_3 > c_6 > \ldots \)
- \(p > c_3 > c_5 > \ldots \)

Graph

Situation
- choose \(k \) votes (edges)
- each candidate \(c_i \neq p \): bound on gained points
A polynomial-time result: Edge Matching algorithm

<table>
<thead>
<tr>
<th>Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• (p > c_1 > c_3 > \ldots)</td>
</tr>
<tr>
<td>• (p > c_2 > c_4 > \ldots)</td>
</tr>
<tr>
<td>• (p > c_2 > c_3 > \ldots)</td>
</tr>
<tr>
<td>• (p > c_5 > c_4 > \ldots)</td>
</tr>
<tr>
<td>• (p > c_6 > c_3 > \ldots)</td>
</tr>
<tr>
<td>• (p > c_7 > c_1 > \ldots)</td>
</tr>
<tr>
<td>• (p > c_6 > c_7 > \ldots)</td>
</tr>
<tr>
<td>• (p > c_3 > c_6 > \ldots)</td>
</tr>
<tr>
<td>• (p > c_3 > c_5 > \ldots)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Diagram showing a graph with labeled candidates: (c_1, c_2, c_3, c_4, c_5, c_6, c_7)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• choose (k) votes (edges)</td>
</tr>
<tr>
<td>• each candidate (c_i \neq p): bound on gained points</td>
</tr>
</tbody>
</table>

PTIME-solvable Matching Problem

Problem: Simple \(b\)-edge matching of multigraphs

Input: Multigraph \(G = (E, V)\), function \(b: V \rightarrow \mathbb{N}\), number \(k\)

Question:
A polynomial-time result: Edge Matching algorithm

Votes
- $p > c_1 > c_3 > \ldots$
- $p > c_2 > c_4 > \ldots$
- $p > c_2 > c_3 > \ldots$
- $p > c_5 > c_4 > \ldots$
- $p > c_6 > c_3 > \ldots$
- $p > c_7 > c_1 > \ldots$
- $p > c_6 > c_7 > \ldots$
- $p > c_3 > c_6 > \ldots$
- $p > c_3 > c_5 > \ldots$

Graph

Situation
- choose k votes (edges)
- each candidate $c_i \neq p$: bound on gained points

PTIME-solvable Matching Problem

Problem: Simple b-edge matching of multigraphs

Input: Multigraph $G = (E, V)$, function $b: V \rightarrow \mathbb{N}$, number k

Question: Is there $E' \subseteq E$ with $|E'| = k$ and each $v \in V$ is incident to at most $b(v)$ edges in E'?
A polynomial-time result: Edge Matching algorithm

Votes
- \(p > c_1 > c_3 > \ldots \)
- \(p > c_2 > c_4 > \ldots \)
- \(p > c_2 > c_3 > \ldots \)
- \(p > c_5 > c_4 > \ldots \)
- \(p > c_6 > c_3 > \ldots \)
- \(p > c_7 > c_1 > \ldots \)
- \(p > c_6 > c_7 > \ldots \)
- \(p > c_3 > c_6 > \ldots \)
- \(p > c_3 > c_5 > \ldots \)

Situation
- choose \(k \) votes (edges)
- each candidate \(c_i \neq p \): bound on gained points

Graph

PTIME-solvable Matching Problem

Problem: Simple \(b \)-edge matching of multigraphs

Input: Multigraph \(G = (E, V) \), function \(b: V \rightarrow \mathbb{N} \), number \(k \)

Question: Is there \(E' \subseteq E \) with \(|E'| = k \) and each \(v \in V \) is incident to at most \(b(v) \) edges in \(E' \)?

Other systems

2-Veto \((1, 1, \ldots, 1, 0, 0)\): similar.
A polynomial-time result: Edge Matching algorithm

Votes
- \(p > c_1 > c_3 > \ldots \)
- \(p > c_2 > c_4 > \ldots \)
- \(p > c_2 > c_3 > \ldots \)
- \(p > c_5 > c_4 > \ldots \)
- \(p > c_6 > c_3 > \ldots \)
- \(p > c_7 > c_1 > \ldots \)
- \(p > c_6 > c_7 > \ldots \)
- \(p > c_3 > c_6 > \ldots \)
- \(p > c_3 > c_5 > \ldots \)

Graph

Situation
- choose \(k \) votes (edges)
- each candidate \(c_i \neq p \): bound on gained points

PTIME-solvable Matching Problem

Problem: Simple \(b \)-edge matching of multigraphs
Input: Multigraph \(G = (E, V) \), function \(b: V \rightarrow \mathbb{N} \), number \(k \)
Question: Is there \(E' \subseteq E \) with \(|E'| = k \) and each \(v \in V \) is incident to at most \(b(v) \) edges in \(E' \)?

Other systems

2-Veto \((1, 1, \ldots, 1, 0, 0)\): similar.
\((\alpha, \beta, 0, \ldots, 0)\): similar.
Second polynomial-time result

“Hybrid” between 1-Approval and 1-Veto

Generator $(2, 1, \ldots, 1, 0)$
 or $(1, 0, \ldots, 0, -1)$
Second polynomial-time result

“Hybrid” between 1-Approval and 1-Veto

Generator $(2, 1, \ldots, 1, 0)$ or $(1, 0, \ldots, 0, -1)$

- Approve of 1 candidate
- Veto another

Proof

Favourite candidate p, voters R and U, k voters can be added
Second polynomial-time result

“Hybrid” between 1-Approval and 1-Veto

Generator \((2, 1, \ldots, 1, 0)\) or \((1, 0, \ldots, 0, -1)\)
- Approve of 1 candidate
- Veto another

Proof

Favourite candidate \(p\), voters \(R\) and \(U\), \(k\) voters can be added
- Add no voter with \(p\) in last place
Second polynomial-time result

“Hybrid” between 1-Approval and 1-Veto

Generator $(2, 1, \ldots, 1, 0)$
or $(1, 0, \ldots, 0, -1)$

- Approve of 1 candidate
- Veto another

Proof

Favourite candidate p, voters R and U, k voters can be added

- Add no voter with p in last place
- Add all voters with p in first place
 - Greedy strategy if we can’t use all
Second polynomial-time result

“Hybrid” between 1-Approval and 1-Veto

Generator \((2, 1, \ldots, 1, 0)\)
\text{or} \((1, 0, \ldots, 0, -1)\)

- Approve of 1 candidate
- Veto another

Proof

Favourite candidate \(p\), voters \(R\) and \(U\), \(k\) voters can be added

- Add no voter with \(p\) in last place
- Add all voters with \(p\) in first place
 - Greedy strategy if we can’t use all
- After this step: only votes \(c_1 > \cdots > c_2\) with \(p \notin \{c_1, c_2\}\).
Second polynomial-time result: \((1, 0, \ldots, 0, -1)\)

Situation
- Only votes \(c_1 > \cdots > c_2\) for \(p \notin \{c_1, c_2\}\)
- Select at most \(k'\) of these
Second polynomial-time result: \((1, 0, \ldots, 0, -1)\)

<table>
<thead>
<tr>
<th>Situation</th>
<th>Effect of Vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Only votes (c_1 > \cdots > c_2) for (p \notin {c_1, c_2})</td>
<td>Adding voter (c_1 > \cdots > c_2):</td>
</tr>
<tr>
<td>• Select at most (k') of these</td>
<td>• adds point to (c_1)</td>
</tr>
<tr>
<td></td>
<td>• subtracts point from (c_2)</td>
</tr>
</tbody>
</table>
Second polynomial-time result: \((1, 0, \ldots, 0, -1)\)

Situation
- Only votes \(c_1 > \cdots > c_2\) for \(p \notin \{c_1, c_2\}\)
- Select at most \(k'\) of these

Effect of Vote
Adding voter \(c_1 > \cdots > c_2\):
- adds point to \(c_1\)
- subtracts point from \(c_2\)
\(\leadsto\) “transfers” point from \(c_2\) to \(c_1\)
Second polynomial-time result: \((1, 0, \ldots, 0, -1)\)

Situation
- Only votes \(c_1 > \cdots > c_2\) for \(p \notin \{c_1, c_2\}\)
- Select at most \(k'\) of these

Effect of Vote
Adding voter \(c_1 > \cdots > c_2\):
- adds point to \(c_1\)
- subtracts point from \(c_2\)
\(\sim\) "transfers" point from \(c_2\) to \(c_1\)

Approach
- Vote additions “transfer” points between candidates
- Score of \(p\) is fixed (after preprocessing)
- **Goal**: For each \(c_i \neq p\), shift surplus points away
Polynomial Time via Network Flow: \((1, 0, \ldots, 0, -1)\)

Network Setup
- one node for each \(c_i \neq p\)
- source, target nodes \(S\) and \(T\)
Polynomial Time via Network Flow: $\langle 1, 0, \ldots, 0, -1 \rangle$

Network Setup
- one node for each $c_i \neq p$
- source, target nodes S and T

Flows in Network
- each c_i: gets $\text{score}(c_i)$ points
Network Setup
- one node for each $c_i \neq p$
- source, target nodes S and T

Flows in Network
- each c_i: gets $score(c_i)$ points
- each potential vote allows to “move” one point
 - This costs one “unit”
Polynomial Time via Network Flow: $(1, 0, \ldots, 0, -1)$

Network Setup
- one node for each $c_i \neq p$
- source, target nodes S and T

Flows in Network
- each c_i: gets $\text{score}(c_i)$ points
- each potential vote allows to “move” one point
 - This costs one “unit”
- each $c_i \neq p$: at most $\text{score}(p)$ points in the end
Polynomial Time via Network Flow

Votes

Graph

Construction Votes: Allow to "move" points

Each c_i: points from votes

In the end: $\leq \text{score}(p)$ points

Control with $\leq k$ voters \iff flow with cost $\leq k$, value $\sum c_i \neq p$ score(c_i) exists.
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$

Graph

Construction
- Votes: Allow to "move" points
Polynomial Time via Network Flow

Votes
- \(c_5 > \cdots > c_1\)
- \(c_3 > \cdots > c_1\)

Graph

![Diagram showing a graph with nodes labeled S, C1, C2, C3, C4, C5, C6, C7, and T, with edges labeled 1 and cost 1.]

Construction
- Votes: Allow to “move” points
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$

Graph

Construction
- Votes: Allow to “move” points
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$

Graph

Construction
- Votes: Allow to “move” points
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$

Graph

Construction
- Votes: Allow to “move” points

Edith Hemaspaandra, Lane Hemaspaandra, Henning Schnoor - A Control Dichotomy for Pure Scoring Rules
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$

Graph
![Graph Diagram]

Construction
- Votes: Allow to “move” points
Polynomial Time via Network Flow

Votes
- \(c_5 > \cdots > c_1 \)
- \(c_3 > \cdots > c_1 \)
- \(c_7 > \cdots > c_4 \)
- \(c_2 > \cdots > c_4 \)
- \(c_2 > \cdots > c_6 \)
- \(c_5 > \cdots > c_6 \)
- \(c_1 > \cdots > c_2 \)

Graph

Construction
- Votes: Allow to “move” points
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$

Graph

Construction
- Votes: Allow to “move” points

Example:
- Graph with nodes S, T, and edges with weights.
- Example construction:
 - Allow to “move” points from one candidate to another.
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$

Construction
- Votes: Allow to “move” points
Polynomial Time via Network Flow

Votes

- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$

Graph

Construction

- Votes: Allow to “move” points
Constructing Votes: Allow to “move” points

Votes
- \(c_5 > \cdots > c_1\)
- \(c_3 > \cdots > c_1\)
- \(c_7 > \cdots > c_4\)
- \(c_2 > \cdots > c_4\)
- \(c_2 > \cdots > c_6\)
- \(c_5 > \cdots > c_6\)
- \(c_1 > \cdots > c_2\)
- \(c_3 > \cdots > c_2\)
- \(c_5 > \cdots > c_6\)
- \(c_3 > \cdots > c_2\)
- \(c_5 > \cdots > c_6\)

Graph

[Diagram of a network flow graph]

Construction

- **Votes**: Allow to “move” points
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$

Construction
- Votes: Allow to “move” points
- Each c_i: points from votes

Graph
- In the end: $\leq \text{score}(p)$ points
- Control with $\leq k$ voters \Leftrightarrow flow with cost $\leq k$, value $\sum c_i \neq p \text{ score}(c_i)$ exists.
Polynomial Time via Network Flow

Votes
- \(c_5 > \cdots > c_1 \)
- \(c_3 > \cdots > c_1 \)
- \(c_7 > \cdots > c_4 \)
- \(c_2 > \cdots > c_4 \)
- \(c_2 > \cdots > c_6 \)
- \(c_5 > \cdots > c_6 \)
- \(c_1 > \cdots > c_2 \)
- \(c_3 > \cdots > c_2 \)
- \(c_5 > \cdots > c_6 \)
- \(c_3 > \cdots > c_2 \)
- \(c_5 > \cdots > c_6 \)

Graph

Construction
- Votes: Allow to “move” points
- Each \(c_i \): points from votes
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$

Graph

```
S ---> score(c_5) 1 --> c_5 1 --> c_2 1 --> 1---> c_6 1 --> c_4 2 --> 1---> c_3 1---> score(c_3) 1 --> c_3
```

```
T
```

Construction
- Votes: Allow to “move” points
- Each c_i: points from votes

Edith Hemaspaandra, Lane Hemaspaandra, Henning Schnoor - A Control Dichotomy for Pure Scoring Rules
Votes
- \(c_5 > \cdots > c_1 \)
- \(c_3 > \cdots > c_1 \)
- \(c_7 > \cdots > c_4 \)
- \(c_2 > \cdots > c_4 \)
- \(c_2 > \cdots > c_6 \)
- \(c_5 > \cdots > c_6 \)
- \(c_1 > \cdots > c_2 \)
- \(c_3 > \cdots > c_2 \)
- \(c_5 > \cdots > c_6 \)
- \(c_3 > \cdots > c_2 \)
- \(c_5 > \cdots > c_6 \)

Construction
- Votes: Allow to “move” points
- Each \(c_i \): points from votes

Graph

In the end: \(\leq \) score(\(p \)) points

Control with \(\leq k \) voters \(\iff \) flow with cost \(\leq k \), value \(\sum c_i \neq p \) score(\(c_i \)) exists.

\(S \) → cost 1
\(T \) → cost 0
Polynomial Time via Network Flow

VOTES

- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$

GRAPH

Construction

- Votes: Allow to “move” points
- Each c_i: points from votes
- In the end: $\leq \text{score}(p)$ points
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$

Construction
- Votes: Allow to “move” points
- Each c_i: points from votes
- In the end: $\leq \text{score}(p)$ points

Graph

- S to T
- S to $score(p)$
- T to $score(p)$
- $score(c_3)$ to $score(c_7)$
- $score(c_1)$ to $score(c_5)$
- $score(c_4)$ to $score(c_2)$
- $score(c_6)$ to $score(c_1)$
- c_1 to c_2
- c_2 to c_4
- c_4 to c_7
- c_7 to c_5
- c_5 to c_6
- c_6 to c_7
- c_1 to 1
- c_2 to 2
- c_3 to 1
- c_4 to 1
- c_5 to 1
- c_6 to 3
- c_7 to 1

- \rightarrow cost 1
- \rightarrow cost 0

Construction with $\leq k$ voters \iff flow with cost $\leq k$, value $\sum c_i \neq p$ exists.
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$

Graph

Construction
- Votes: Allow to “move” points
- Each c_i: points from votes
- In the end: $\leq \text{score}(p)$ points
Polynomial Time via Network Flow

Votes
- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$

Graph

Construction
- Votes: Allow to “move” points
- Each c_i: points from votes
- In the end: $\leq \text{score}(p)$ points
Polynomial Time via Network Flow

Votes

- $c_5 > \cdots > c_1$
- $c_3 > \cdots > c_1$
- $c_7 > \cdots > c_4$
- $c_2 > \cdots > c_4$
- $c_2 > \cdots > c_6$
- $c_5 > \cdots > c_6$
- $c_1 > \cdots > c_2$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$
- $c_3 > \cdots > c_2$
- $c_5 > \cdots > c_6$

Graph

- Construction
 - Votes: Allow to “move” points
 - Each c_i: points from votes
 - In the end: $\leq \text{score}(p)$ points

Control with $\leq k$ voters \iff
flow with cost $\leq k$, value
$\sum_{c_i \neq p} \text{score}(c_i)$ exists.
Overview

1. Introduction: Elections and Control
2. The Complexity of the Control Problem
3. A Class of Election Systems: Scoring Rules
4. The Price of Purity
5. A Dichotomy Theorem
 - Polynomial Time Results
 - Hardness Results
6. Conclusion
Dichotomy

Halfway There
We proved all polynomial-time cases.
Dichotomy

Halfway There

We proved all polynomial-time cases.

Polynomial-Time

- \((1, 1, 1, 0, \ldots, 0) \)
- \((\alpha, \beta, 0, \ldots, 0) \)
- \((2, 1, \ldots, 1, 0) \)
- \((1, \ldots, 1, 0) \)
- \((1, \ldots, 1, 0, 0) \)
Dichotomy

Halfway There
We proved all polynomial-time cases.

<table>
<thead>
<tr>
<th>Polynomial-Time</th>
<th>NP-Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1, 1, 1, 0, \ldots, 0))</td>
<td>Generators not equivalent to one of these.</td>
</tr>
<tr>
<td>((\alpha, \beta, 0, \ldots, 0))</td>
<td>- no affine transformation</td>
</tr>
<tr>
<td>((2, 1, \ldots, 1, 0))</td>
<td>⇔ different result for some election.</td>
</tr>
<tr>
<td>((1, \ldots, 1, 0))</td>
<td>CCAV is NP-hard for all of these.</td>
</tr>
<tr>
<td>((1, \ldots, 1, 0, 0))</td>
<td></td>
</tr>
</tbody>
</table>
Dichotomy

Halfway There

We proved all polynomial-time cases.

<table>
<thead>
<tr>
<th>Polynomial-Time</th>
<th>NP-Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 1, 1, 0, \ldots, 0)</td>
<td>Generators not equivalent to one of these.</td>
</tr>
<tr>
<td>(\alpha, \beta, 0, \ldots, 0)</td>
<td>- no affine transformation</td>
</tr>
<tr>
<td>(2, 1, \ldots, 1, 0)</td>
<td>\iff different result for some election.</td>
</tr>
<tr>
<td>(1, \ldots, 1, 0)</td>
<td>CCAV is NP-hard for all of these.</td>
</tr>
<tr>
<td>(1, \ldots, 1, 0, 0)</td>
<td></td>
</tr>
</tbody>
</table>

Hardness Proof

Some individual cases and a general construction.
Theorem

f-CCAV is NP-hard for

- $(\alpha, \beta, \gamma, 0, \ldots, 0)$ for $\alpha \geq \beta \geq \gamma > 0$
Case Distinction

Theorem

\(f \)-CCAV is NP-hard for

- \((\alpha, \beta, \gamma, 0, \ldots, 0)\) for \(\alpha \geq \beta \geq \gamma > 0\)
- \((\alpha_1, \alpha_2, \alpha_3, \alpha_4, \ldots, \alpha_4, \alpha_5, 0)\) with \(\alpha_2 > \alpha_4 > 0\).
Case Distinction

Theorem

f-CCAV is NP-hard for

- $(\alpha, \beta, \gamma, 0, \ldots, 0)$ for
 $\alpha \geq \beta \geq \gamma > 0$
- $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \ldots, \alpha_4, \alpha_5, 0)$
 with $\alpha_2 > \alpha_4 > 0$.
- $(\alpha_1, \alpha_2, \ldots, \alpha_2, 0)$ with
 $\alpha_1 \notin \{\alpha_2, 2\alpha_2\}$, $\alpha_2 > 0$.
Case Distinction

Theorem

\(f\)-CCAV is NP-hard for

- \((\alpha, \beta, \gamma, 0, \ldots, 0)\) for \(\alpha \geq \beta \geq \gamma > 0\)
- \((\alpha_1, \alpha_2, \alpha_3, \alpha_4, \ldots, \alpha_4, \alpha_5, 0)\) with \(\alpha_2 > \alpha_4 > 0\).
- \((\alpha_1, \alpha_2, \ldots, \alpha_2, 0)\) with \(\alpha_1 \notin \{2\alpha_2\}, \alpha_2 > 0\).
- \((\alpha_1, \alpha_2, \ldots, \alpha_2, \alpha_5, 0)\) with \(\alpha_1 > \alpha_2 > \alpha_5\).
Case Distinction

Theorem

f-CCAV is NP-hard for

- $(\alpha, \beta, \gamma, 0, \ldots, 0)$ for $\alpha \geq \beta \geq \gamma > 0$
- $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \ldots, \alpha_4, \alpha_5, 0)$ with $\alpha_2 > \alpha_4 > 0$.
- $(\alpha_1, \alpha_2, \ldots, \alpha_2, 0)$ with $\alpha_1 \notin \{\alpha_2, 2\alpha_2\}$, $\alpha_2 > 0$.
- $(\alpha_1, \alpha_2, \ldots, \alpha_2, \alpha_5, 0)$ with $\alpha_1 > \alpha_2 > \alpha_5$.
- $(\alpha_1, \ldots, \alpha_1, \alpha_5, 0)$ with $\alpha_1 > \alpha_5 > 0$.

Corollary

For a generator f with f is not equivalent to a generator in the list, f uses at most 6 different coefficients f-CCAV is NP-complete.
Case Distinction

Theorem

\(f \)-CCAV is NP-hard for

- \((\alpha, \beta, \gamma, 0, \ldots, 0)\) for
 \(\alpha \geq \beta \geq \gamma > 0\)
- \((\alpha_1, \alpha_2, \alpha_3, \alpha_4, \ldots, \alpha_4, \alpha_5, 0)\) with \(\alpha_2 > \alpha_4 > 0\).
- \((\alpha_1, \alpha_2, \ldots, \alpha_2, 0)\) with \(\alpha_1 \not\in \{ \alpha_2, 2\alpha_2 \}, \alpha_2 > 0\).
- \((\alpha_1, \alpha_2, \ldots, \alpha_2, \alpha_5, 0)\) with \(\alpha_1 > \alpha_2 > \alpha_5\).
- \((\alpha_1, \ldots, \alpha_1, \alpha_5, 0)\) with \(\alpha_1 > \alpha_5 > 0\).

Corollary

For a generator \(f \) with

- \(f \) is not equivalent to a generator in the list,
- \(f \) uses at most 6 different coefficients

\(f \)-CCAV is NP-complete.
Theorem

f-CCAV is NP-hard for

1. $(\alpha, \beta, \gamma, 0, \ldots, 0)$ for $\alpha \geq \beta \geq \gamma > 0$
2. $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \ldots, \alpha_4, \alpha_5, 0)$ with $\alpha_2 > \alpha_4 > 0$.
3. $(\alpha_1, \alpha_2, \ldots, \alpha_2, 0)$ with $\alpha_1 \notin \{\alpha_2, 2\alpha_2\}$, $\alpha_2 > 0$.
4. $(\alpha_1, \alpha_2, \ldots, \alpha_2, \alpha_5, 0)$ with $\alpha_1 > \alpha_2 > \alpha_5$.
5. $(\alpha_1, \ldots, \alpha_1, \alpha_5, 0)$ with $\alpha_1 > \alpha_5 > 0$.

Corollary

For a generator f with

1. f is not equivalent to a generator in the list,
2. f uses at most 6 different coefficients

f-CCAV is NP-complete.

Direct reductions, point counting, combinatorics.
What happens with more than six values?

Remember “purity” condition!

- all coefficients from $f(n)$ appear in $f(n + 1)$.
What happens with more than six values?

Remember “purity” condition!

- all coefficients from \(f(n) \) appear in \(f(n + 1) \).
- 7 different coefficients appear together in \(f(n) \) (for large enough \(n \))
What happens with more than six values?

Remember “purity” condition!

- all coefficients from $f(n)$ appear in $f(n + 1)$.
- 7 different coefficients appear together in $f(n)$ (for large enough n)
 - Affine transformations of different values remain different

Analysis

$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \ldots, \alpha_{n-2}, \alpha_{n-1}, \alpha_n)$$
What happens with more than six values?

Remember “purity” condition!

- all coefficients from $f(n)$ appear in $f(n + 1)$.
- 7 different coefficients appear together in $f(n)$ (for large enough n)
 - Affine transformations of different values remain different

Analysis

$(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \ldots, \alpha_{n-2}, \alpha_{n-1}, \alpha_n)$

- 7 values: $\alpha_4 \neq \alpha_{n-2}$
- top four positions “better” than lowest three.
- (middle positions can be “good” or “bad.”)
What happens with more than six values?

Remember “purity” condition!

- all coefficients from $f(n)$ appear in $f(n + 1)$.
- 7 different coefficients appear together in $f(n)$ (for large enough n)
 - Affine transformations of different values remain different

Analysis

$($α_1, α_2, α_3, α_4, \ldots, α_{n-2}, α_{n-1}, α_n)$

- 7 values: $α_4 \neq α_{n-2}$
- top four positions “better” than lowest three.
- (middle positions can be “good” or “bad.”)
A Reduction

Set Cover Problem

\[M \subseteq X \times Y \times Z \]

with \(|X| = |Y| = |Z| \)
A Reduction

Set Cover Problem

\[M \subseteq X \times Y \times Z \]
with \(|X| = |Y| = |Z| \)

Choose \(|X| \) elements from \(M \) that agree in no component
A Reduction

Set Cover Problem

$M \subseteq X \times Y \times Z$

with $|X| = |Y| = |Z|$

Choose $|X|$ elements from M
that agree in no component

Control Problem

Points from registered voters,
Voters U, all vote p first
A Reduction

Set Cover Problem

\[M \subseteq X \times Y \times Z \]
with \(|X| = |Y| = |Z|\)

Choose \(|X|\) elements from \(M\) that agree in no component

Control Problem

Points from registered voters, Voters \(U\), all vote \(p\) first

Choose \(k\) \(U\)-votes such that nobody has more points than \(p\)
A Reduction

<table>
<thead>
<tr>
<th>Set Cover Problem</th>
<th>Control Problem</th>
</tr>
</thead>
</table>
| $M \subseteq X \times Y \times Z$
with $|X| = |Y| = |Z|$
Choose $|X|$ elements from M
that agree in no component | Points from registered voters,
Voters U, all vote p first
Choose k U-votes such that
nobody has more points than p |

<table>
<thead>
<tr>
<th>Instance</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1, y_1, z_1)</td>
<td>$p > x_1 > y_1 > z_1 > \ldots$</td>
</tr>
</tbody>
</table>
A Reduction

Set Cover Problem

\[M \subseteq X \times Y \times Z \]

with \(|X| = |Y| = |Z| \)

Choose \(|X| \) elements from \(M \) that agree in no component

Control Problem

Points from registered voters, Voters \(U \), all vote \(p \) first

Choose \(k \) \(U \)-votes such that nobody has more points than \(p \)

Instance

- \((x_1, y_1, z_1)\)
- \((x_2, y_2, z_2)\)

Instance

- \(p > x_1 > y_1 > z_1 > \ldots \)
- \(p > x_2 > y_2 > z_2 > \ldots \)
A Reduction

Set Cover Problem

- **Problem:**
 - \(M \subseteq X \times Y \times Z \)
 - \(|X| = |Y| = |Z|\)
 - Choose \(|X|\) elements from \(M \) that agree in no component

Control Problem

- **Problem:**
 - Points from registered voters, Voters \(U \), all vote \(p \) first
 - Choose \(k \) \(U \)-votes such that nobody has more points than \(p \)

Instance

<table>
<thead>
<tr>
<th>Set Cover Problem</th>
<th>Control Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x_1, y_1, z_1))</td>
<td>(p > x_1 > y_1 > z_1 > \ldots)</td>
</tr>
<tr>
<td>((x_2, y_2, z_2))</td>
<td>(p > x_2 > y_2 > z_2 > \ldots)</td>
</tr>
<tr>
<td>((x_1, y_3, z_2))</td>
<td>(p > x_1 > y_3 > z_2 > \ldots)</td>
</tr>
</tbody>
</table>
A Reduction

Set Cover Problem

\[M \subseteq X \times Y \times Z \]

with \(|X| = |Y| = |Z|\)

Choose \(|X|\) elements from \(M\) that agree in no component

Control Problem

Points from registered voters, Voters \(U\), all vote \(p\) first

Choose \(k\) \(U\)-votes such that nobody has more points than \(p\)

Instance

- \((x_1, y_1, z_1)\)
- \((x_2, y_2, z_2)\)
- \((x_1, y_3, z_2)\)
- \((x_4, y_3, z_4)\)

Instance

- \(p > x_1 > y_1 > z_1 > \ldots\)
- \(p > x_2 > y_2 > z_2 > \ldots\)
- \(p > x_1 > y_3 > z_2 > \ldots\)
- \(p > x_4 > y_3 > z_4 > \ldots\)
A Reduction

Set Cover Problem

\[M \subseteq X \times Y \times Z \]
with \(|X| = |Y| = |Z|\)

Choose \(|X|\) elements from \(M\) that agree in no component

Control Problem

Points from registered voters, Voters \(U\), all vote \(p\) first

Choose \(k\) \(U\)-votes such that nobody has more points than \(p\)

Instance

- \((x_1, y_1, z_1)\)
- \((x_2, y_2, z_2)\)
- \((x_1, y_3, z_2)\)
- \((x_4, y_3, z_4)\)

Instance

- \(p > x_1 > y_1 > z_1 > \ldots\)
- \(p > x_2 > y_2 > z_2 > \ldots\)
- \(p > x_1 > y_3 > z_2 > \ldots\)
- \(p > x_4 > y_3 > z_4 > \ldots\)

Set up points: • Each candidate may be voted only once in “good spot.”
A Reduction

Set Cover Problem

INSTANCE

\[M \subseteq X \times Y \times Z \]

with \(|X| = |Y| = |Z| \)

Choose \(|X| \) elements from \(M \) that agree in no component.

Control Problem

INSTANCE

Choose \(k \) \(U \)-votes such that nobody has more points than \(p \).

Instance

- \((x_1, y_1, z_1)\)
- \((x_2, y_2, z_2)\)
- \((x_1, y_3, z_2)\)
- \((x_4, y_3, z_4)\)

Set up points:
- Each candidate may be voted only once in “good spot.”
- \(|X|\) votes required for \(p \) to win against “dummy”
- Construction needs careful “padding”
Overview

1 Introduction: Elections and Control
2 The Complexity of the Control Problem
3 A Class of Election Systems: Scoring Rules
4 The Price of Purity
5 A Dichotomy Theorem
 • Polynomial Time Results
 • Hardness Results
6 Conclusion
Conclusion

Contributions

- Flexible Generators: Ensures we get all cases
Conclusion

Contributions

- **Flexible Generators**: Ensures we get all cases
- **Dichotomy**: Complexity of f-CCAV for flexible generators f
 - solvable in polynomial time, or
 - NP-complete
Conclusion

Contributions

- Flexible Generators: Ensures we get all cases
- Dichotomy: Complexity of f-CCA\(V\) for flexible generators f
 - solvable in polynomial time, or
 - NP-complete

Open Questions

- Complexity of CCA\(V\) for other voting systems?
Conclusion

Contributions

- Flexible Generators: Ensures we get all cases
- Dichotomy: Complexity of f-CCAV for flexible generators f
 - solvable in polynomial time, or
 - NP-complete

Open Questions

- Complexity of CCAV for other voting systems?
- Complexity of related problems
 - control by deleting candidates
Conclusion

Contributions

- Flexible Generators: Ensures we get all cases
- Dichotomy: Complexity of f-CCAV for flexible generators f
 - solvable in polynomial time, or
 - NP-complete

Open Questions

- Complexity of CCAV for other voting systems?
- Complexity of related problems
 - control by deleting candidates
 - bribery

Edith Hemaspaandra, Lane Hemaspaandra, Henning Schnoor - A Control Dichotomy for Pure Scoring Rules
Conclusion

Contributions

- Flexible Generators: Ensures we get all cases
- Dichotomy: Complexity of f-CCAV for flexible generators f
 - solvable in polynomial time, or
 - NP-complete

Open Questions

- Complexity of CCAV for other voting systems?
- Complexity of related problems
 - control by deleting candidates
 - bribery
 - manipulation
Conclusion

Contributions

- Flexible Generators: Ensures we get all cases
- Dichotomy: Complexity of f-CCAV for flexible generators f
 - solvable in polynomial time, or
 - NP-complete

Open Questions

- Complexity of CCAV for other voting systems?
- Complexity of related problems
 - control by deleting candidates
 - bribery
 - manipulation

Thank You!