Index

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>∧</td>
<td>124</td>
</tr>
<tr>
<td>∥A∥</td>
<td>124</td>
</tr>
<tr>
<td>Δ</td>
<td>124</td>
</tr>
<tr>
<td>∅</td>
<td>123</td>
</tr>
<tr>
<td>=_{k-rt}</td>
<td>98, 99</td>
</tr>
<tr>
<td>≥_{lex}</td>
<td>82</td>
</tr>
<tr>
<td>⊕</td>
<td>124</td>
</tr>
<tr>
<td>[a]</td>
<td>123</td>
</tr>
<tr>
<td>≤_{p-rt}</td>
<td>74, 75, 88, 90, 95</td>
</tr>
<tr>
<td>≤_{p-rt}</td>
<td>96, 103</td>
</tr>
<tr>
<td>≤_{prot}</td>
<td>94, 116</td>
</tr>
<tr>
<td>≤_{f}</td>
<td>21–29, 88–91, 95, 99, 101, 124</td>
</tr>
<tr>
<td>≤_{γ}</td>
<td>74, 75, 115</td>
</tr>
<tr>
<td>≤_{g(n)-T}</td>
<td>115</td>
</tr>
<tr>
<td>≤_{p-T}</td>
<td>100</td>
</tr>
<tr>
<td>≤_{k-rt}</td>
<td>72, 73, 98, 116</td>
</tr>
<tr>
<td>≤_{lex}</td>
<td>82</td>
</tr>
<tr>
<td>≤_{p-na}</td>
<td>2, 4, 5, 8, 29, 30, 46, 61, 66, 73, 74, 85, 105–107, 115, 117</td>
</tr>
<tr>
<td>≤_{p-polynomial}</td>
<td>115</td>
</tr>
<tr>
<td>≤_{p-iteration}</td>
<td>8, 81, 85, 86, 88, 115</td>
</tr>
<tr>
<td>≤_{p-time}</td>
<td>8, 85, 86, 116</td>
</tr>
<tr>
<td>≤_{p}</td>
<td>8, 61, 85, 94, 117, 118, 122</td>
</tr>
<tr>
<td>≤_{p}</td>
<td>115</td>
</tr>
<tr>
<td>≤_{p}</td>
<td>2, 8, 27, 42, 44, 67, 68, 76, 99, 115</td>
</tr>
<tr>
<td>≤_{p}</td>
<td>42, 44, 116</td>
</tr>
<tr>
<td>≤_{p}</td>
<td>8, 61, 62, 65–70, 94, 108, 116</td>
</tr>
<tr>
<td>≤</td>
<td>124</td>
</tr>
<tr>
<td>∨</td>
<td>124</td>
</tr>
<tr>
<td>≤</td>
<td>124</td>
</tr>
<tr>
<td>∪</td>
<td>124</td>
</tr>
<tr>
<td>∩</td>
<td>124</td>
</tr>
</tbody>
</table>

Abadi 40
advice 19, 20, 24, 27, 28, 30–36, 39, 52, 56, 109
 - ~ for nondeterministically selective sets 32
 - ~ for P-selective sets 17, 20
 - ~ interpreter see interpreter, advice
 - class of ~ interpreters 31
 - improvement below linear ~ for recognition of P-selective sets 31
 - length-bounded ~ 19
 - linear ~ 24, 26, 30, 31, 39
 - logarithmic ~ 39
 - lying ~ 33
 - polynomial ~ 19, 39
 - quadratic ~ 30
 - recursive ~ 39
 - small ~ 3
 - strong ~ 35–37
Agrawal 77, 113
algorithm 16, 17, 24, 26, 30, 47, 52, 64, 70, 72, 86, 90, 92–94
 - ~ finding the king of a tournament 63
 - deterministic polynomial-time ~ v, 1, 2, 5, 29, 30, 64–66, 69, 72, 89
 - intelligent ~ vi
 - linear-exponential-time ~ 27
 - nondeterministic polynomial-time ~ 14, 90, 93
 - nondeterministic recursive ~ 92
 - output of a polynomial-time ~ v
 - P-time decoding ~ for advice 23
 - polynomial-time membership ~ 2
 - recursive ~ v
 - semi-membership ~ s 2
 - smart ~ vi
 - standard brute-force conversion of a nondeterministic ~ to a deterministic ~ 26
 - theory of semi-feasible ~ s iii
Allender vii, viii, 58, 59
ambiguity
 - polynomial ~ 119
Amir 59
analog
 - complexity-theoretic ~ 1, 1
- complexity-theoretic ~ of the low and high hierarchies from recursive function theory | 58
- nondeterministic ~ of P | 9
- nondeterministic ~ to standard deterministic results on self-reducibility | 75
- Appel | 16
- approximability | 105
- bounded ~ | 113

APT
- almost polynomial time | 2, 16
- argument | 1, 4, 10, 17, 23, 32, 33, 63, 69, 76, 84, 93, 106, 108
- counting ~ | 22
- divide and conquer ~ | 54, 57
- Arvind | 77, 113
- assignment
 - collection of ~s | 72, 73
 - nondeterministic selection of one ~ | 38
 - satisfying ~ | 72
- associativity | 105, 111–113
- assumption | 2, 29, 30, 32, 35, 37, 46, 67, 74, 94, 101
- complexity-theoretic ~s | 2

- Babai | 59
- Balcazar vii, 58, 59
- hAPP | 113
- Barrington | 16, 39
- Beigel | 59, 76, 77, 103, 113
- bit | 17, 19, 23, 24, 27, 29, 31, 33, 66, 70–73, 82, 86, 87, 91, 97–99, 116
- ~s of advice | 19, 20
- input ~s | 18
- nondeterministic guess ~ | 62, 69

- bitflip | 99
- bitstring | 29, 71, 97, 98, 109, 116
- Book | 16, 58, 59
- bound | 24, 32, 46, 48, 51
 - absolute lower ~ on lowness | 46
 - absolute upper ~s | 46
 - adjacent upper and lower ~s | 46
 - length ~ | 24
 - lower ~ | 20, 30–32, 39, 46, 48, 58, 59
 - nontrivial lower ~ on lowness | 48
 - polynomial ~ | 47
 - query ~ | 43
 - relativized lower ~s on lowness | 58
 - time ~ | 16, 26, 96
 - upper ~ | 17, 20, 21, 25, 28, 32, 34, 46, 49, 51, 53, 55, 57–59

- upper ~s on the amount of advice
 - for P-selective sets | 21
 - upper and lower ~s | 49
 - upper and lower ~s on lowness | 46
- Bovet vii
- BPP | 122
- Brauer viii
- Buhrman vii, viii, 76, 77, 103
- Burtschick | 39, 76

- Cai viii, 39, 40, 59, 76, 77, 113
- certificate | 33
- ~ certifying the guessed answer | 12
- advice ~ | 34
- membership ~ | 33, 34
- succinct ~ | 12
- Chakaravarthy | 40
- Chang | 59
- characterization
 - complete ~ of the P-selective sets | 6
 - complete ~ of the semi-recursive sets | 6
- Chari | 59
- circuit | 18, 19
- ~ for a P-selective set | 18
- ~ for an arbitrary language | 18
- ~ for Σ^* | 18
- ~ recognizing a sparse set | 17
- collection of ~s | 18
- encoding of a ~ | 18
- exponential-size ~s | 18
- families of ~s | 17
- polynomial-size ~s | 19
- polynomial-sized family of ~s for P-selective sets | 18
- size-bounded ~s | 19
- small ~s | 3, 18, 107
- claim | 4, 13, 24, 25, 45, 48, 52, 63, 68, 74, 96, 103
 - relatively typical optimal lowness ~ | 48
 - relativizable ~ | 13
- class | 11, 12, 41, 43, 48, 105, 106, 113
 - ~ closed under composition with logspace functions | 20
 - ~ containing Turing self-reducible complete sets | 75
 - ~ known as MAEXP | 76
 - ~ of advice interpreters | 31
 - ~ of functions | 121
 - ~ of functions computable via $O(\log n)$ Turing queries to NP | 68
- ~ of functions computable via polynomial-time truth-table access to NP 68
- ~ of languages 120, 121, 123
- ~ of oracles 121
- ~ of P-selective sets 81
- ~ of sets having interactive proofs 59
- ~ of sets reducible to P-sel 26
- ~ of the form $C = \text{poly}^3$ in the extended low hierarchy 45
- ~ es of nondeterministically selective sets 49
- ~ es that are not subsets of P/poly 76
- ~ es that lack hard P-selective sets 61
- advice ~ 19, 34
- advice upper bounds for reductions to selectivity ~ 22
- advice upper bounds for selectivity ~ 21
- arbitrary ~ of selector functions 9
- classic low ~ 41
- collapse of ~ es 12, see collapse
- complement of a ~ 11
- complexity ~ 3, 8, 16, 19, 41, 61, 62, 79, 116, 117, 119
- complexity ~ es near polynomial time 2
- degree of organizational simplicity of selectivity ~ es 43
- EL$_{\Delta^p_k}$ ~ es 58
- EL$_{\Sigma^p_k}$ ~ es 58
- EL$_{\Pi^p_k}$ ~ es 58
- equalities and inequalities of reduction and equivalence ~ es of P-selective sets 103
- equivalence ~ 8, 97, 100, 124
- exponential-time complexity ~ es 7, 16
- first two levels of the high hierarchy are well-known ~ es 42
- function ~ es 19, 119, see function, class of
 - function analog of ~ es 68
 - hardness for complexity ~ es 61
 - high ~ 42
 - inclusion properties of nondeterministic advice ~ es 39
- incomparable ~ es: P-sel and weakly-P-rankable 110
- L$_{\Delta^p_k}$ ~ es 58
- length-based advice ~ 117
- low ~ es 43
- lowness ~ es 43
- L$_{\Sigma^p_k}$ ~ es 43, 58
- L$_{\Pi^p_k}$ ~ es 58
- membership in nondeterministic ~ es 80
- membership in the complexity ~ P 1
- nondeterministic function ~ es 9
- nondeterministic selectivity ~ es 9, 81
- optimal lower bounds for most extended-lowness ~ es 59
- reduction ~ 97
- reduction and equivalence ~ es 94, 95
- refined advice ~ 20
- refinement of multivalued nondeterministic function ~ es 40
- relationships between nondeterministic selectivity ~ es 12, 13
- relativizable ~ 43
- relativized Σ^p_k ~ 43
- selectivity ~ es 10
- semi-recursive sets as a ~ from recursive function theory v
- separation of reduction ~ es from equivalence ~ es 96
- set of equivalence ~ es 7, 124
- set-wise complements of a complexity ~ 116
- structure of polynomial-time complexity ~ es 48
- Θ^p_k ~ es 43
- time-bounded ~ 20
- token-based advice ~ 117
classification
- ~ of sets in NP using the low hierarchy 42
 - clique
- g ~ 63
 - closure
- ~ properties of P-sel 6
 - ~ under 2-ary connectives of P-sel, NPSV$_r$-sel, and NPMV$_r$-sel 84
- ~ under bounded-truth-table reductions of a class 81
under combined self-reducibility and 1-truth-table reductions of P-sel 103
- \sim under complement of $NPMV$-sel 15, 82
- \sim under complement of $NPMV_1$-sel 11, 15, 34
- \sim under complement of $NPSV$-sel and $NPMV_1$-sel 81
- \sim under complement of P-sel 24, 79, 81, 83
- \sim under conjunctive reductions of NP 79
- \sim under connectives of P-sel 102
- \sim under connectives of selectivity classes 83, 84
- \sim under disjunctive reductions of NP 79
- \sim under intersection of P-sel 82
- \sim under k-ary connectives of P-sel, $NPSV_1$-sel, and $NPMV_1$-sel 84
- \sim under many-one reductions of NP 79
- \sim under many-one reductions of the levels of the low hierarchy 46
- \sim under nonpositive reductions of P-sel 79
- \sim under $NXOR$ and XOR of nondeterministic selectivity classes 83
- \sim under positive reductions of P-sel 103
- \sim under positive Turing reductions of P-sel 79, 80
- \sim under reductions of P-sel 80, 85
- \sim under Turing reductions of EXP 79
- boolean \sim of a complexity class 79, 81
- downward \sim of P-selective sets 79
- downward \sim under 1-truth-table reductions 88
- extension of \sim to $NPSV_1$-selectivity 103
- reduction \sim 85, 88
- relativized world \sim, optimal for self-reducible P-selective sets 103
- collapse
- \sim of the boolean hierarchy 76
- \sim of the low hierarchy 48
- \sim of the polynomial hierarchy vi, 2, 10, 38, 40, 42–44, 54, 55, 57, 108, 121
- \sim of the polynomial hierarchy being a consequence of unique solutions for SAT 38
- surprising \sim of complexity classes 61
- unexpected \sim of complexity classes 3
- collection
- \sim of strings 53, 56, 57
- commutativity 111, 112
- comparability
- membership \sim 105, 113
- $O(\log n)$ membership \sim 108
- complement
- \sim of a P-selective set 24, 26, 79
- \sim of a set 124
- \sim of an $NPSV$-selective set 12
- complementation
- \sim and connectives 84
- closure under \sim of $NPMV$-sel 82
- closure under \sim of $NPMV_1$-sel 11, 15
- closure under \sim of $NPSV_1$-sel and $NPMV_1$-sel 81
- closure under \sim of P-sel 5, 24, 79, 81, 83
- completeness 61, 117
- \sim for NP vi
- \sim for NP under many-one reductions 2
- \sim for NP under Turing reductions 2
- \leq_{sn}^P for UP 66
- \leq_{sn}^P for NP 42
- \leq_{sn}^P 61, 117
- \leq_{sn}^P 117
- \leq_{sn}^P 61, 117
- high hierarchy as a hierarchy of generalized \sim notions 43
- NP-\sim 42, 43
- complexity 8
- \sim in terms of deterministic time vi
- advice \sim 111
- arbitrary \sim 8, 17, 39
- capture of \sim v
- computational \sim vii
- computational \sim of a gappy left cut 31
- computational \sim of a P-selective set 18
- computational \sim of a tally set 17
- concept from computational \sim vii
- deterministic time \sim v
left cuts capture the ~ of real numbers
nonuniform ~ 17
semi-membership ~ 1, 3
types of ~ v
computability
~ in deterministic polynomial time 119
~ in FP$^{\text{NP}}$ 70
~ in polynomial time 120
deterministic polynomial-time ~ 119
easy ~ 100
partial polynomial-time ~ 7
polynomial-time ~ v, 6, 62, 88
recursive ~ 31
computation 19, 20, 33, 97, 116, 121
~ of the value of a circuit 18
accepting ~ 93
feasible ~ 2
nondeterministic guess of a ~ 14
polynomial-time ~ 2
semi-feasible ~ v−vii, 1, 2, 16
world of ~ v
computers
~ making smarter vi
computing
~ intuitive ~ vi
coNE 8
connection
~ structural ~ v
connective
~ s and complementation 84
almost-completely degenerate ~ s 80, 83
boolean ~ s 79, 80
complementation as a ~ 84
completely degenerate ~ s 80, 83, 84
degenerate ~ s 84
identity ~ 84
nondegenerate ~ s 83, 84
under which ~ s are P-selective sets closed 79
coNP 12−16, 20−22, 24−26, 32−34, 37, 38, 40, 42, 44, 54−56, 68, 74−76, 78, 82, 88, 90, 116, 117, 120, 122
are nondeterministically selective sets hard for ~ 73
coNP/poly 21, 33, 34
containment
~ nonuniform ~ s 67
coR 123
count
\textbf{EL}_{\Delta^P} \ 45, 46, 48, 58, 118
\textbf{EL}_{\Delta^P}^k \ 48, 118
\textbf{ELH} \ 45, 54, 55, 118
\textbf{EL}_{2k} \ 45-50, 54, 55, 58, 59, 107, 118
\textbf{EL}_{4k} \ 45, 46, 49, 55, 58, 107, 118
\textbf{van Emde Boas} vii, 103
\textbf{enumerability} see \textbf{P-enumerability}
ϵ 123
\textbf{equality} 43, 68
- complete \sim versus weak \sim 16
- notion of \sim for partial functions 16
- equivalence 81, 99
- Turing \sim between tally sets and P-selective sets 17, 30
E_P^T
- $(P\text{-sel})$ 97, 99, 100
E_P^n
- $(P\text{-sel})$ 97, 100
\textbf{example} 2, 3, 5, 6, 8, 9, 13-15, 17, 18,
21, 41, 43, 46, 48, 58, 61, 71, 74-76, 79,
81, 82, 85, 97, 105, 108, 109
- classic \sim of P-selectivity 3
- counter 50
\textbf{EXP} 27, 37, 38, 66, 67, 76, 79, 119
$\textbf{F}\text{-sel}$ 9, 119, 120
$\textbf{fair-S}(k)$ 106
$\textbf{fair-S}(n)$ 106, 107
\textbf{feasibility}
- semi-\sim vii, 1
$\textbf{Feigenbaum}$ 40
\textbf{FewP} 68, 69, 119
\textbf{FEXP} 82, 100
$\textbf{FEXP-sel}$ 82
\textbf{flier}
- taking a \sim vi
\textbf{formula}
- boolean \sim 35, 36
- satisfiable \sim vi, 5, 38, 73
\textbf{Feas} vii, 59, 76
\textbf{FP} 9, 10, 12-15, 32, 68, 70, 71, 77, 88,
96, 111, 112, 115, 119, 121
- relativized \sim 14
$\textbf{FP}^{NP[O(\log n)]}$ 68, 70, 71, 77
\textbf{FPP} 109, 113
\textbf{FP}^k_P 70
\textbf{FP}^k_{NP} 68, 70, 71, 77
\textbf{FP}^X 96
\textbf{fraction}
- dyadic rational \sim 3
\textbf{function}
- \sim computable by a deterministic polynomial-time Turing machine 119
- (A, k)-sort \sim 113
- advice \sim 19, 23
- almost completely degenerate \sim 80
- associative \sim 111
- boolean \sim 79, 83
- characteristic \sim 81, 84
- class of \sim 9, 19, 117, 119
- class of \sim computable via $O(\log n)$
- Turing queries to \textbf{NP} 68
- class of \sim computable via truth-table access to \textbf{NP} 68
- collection of \sim 20, 117
- completely degenerate \sim 80
- complexity-theoretic study of
- one-way \sim 16
- computable \sim 62, 64, 65
- degenerate \sim 80
- deterministic polynomial-time
- computable \sim 119
- \textbf{FPP-selector} \sim 109
- general classes of \sim 16
- logspace \sim 20
- multivalued \sim 122
- multivalued nondeterministic
- polynomial-time \sim 120
- multivalued symmetric \sim 10
- nondegenerate boolean \sim 84
- nondeterministic selector \sim 32
- notion of equality for partial \sim 16
- NPMV \sim 10
- NPMV $_i$ \sim 10
- NPSV \sim 10
- NPSV-selector \sim 32
- NPSV$_i$ \sim 10
- $\textbf{P}\text{-selector}$ \sim 1, 3-7, 21, 23, 25, 26,
28, 31, 32, 35, 49, 63-65, 85, 88, 92,
94-96, 98, 99, 102, 111-113, 124
- partial \sim 16
- partial multivalued \sim 9, 10, 122
- polynomial-time computable \sim 7,
65, 107
- probabilistic selector \sim 105, 109
- ranking \sim 110
- selector \sim v, 7, 10, 32, 53, 57, 81, 90,
92, 96, 98, 105-107, 109, 121
- selector \sim for NPSV$_i$-sel sets 32
- selector \sim sensitive to the order of
the arguments 4
- single-valued \sim 10, 56, 120
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>single-valued deterministic polynomial-time computable</td>
<td>9</td>
<td>Furst</td>
</tr>
<tr>
<td>single-valued nondeterministic polynomial-time</td>
<td>120</td>
<td>Gabarró, Gasarch</td>
</tr>
<tr>
<td>symmetric selector</td>
<td>4, 22, 28, 34</td>
<td>Furst, Gabarró, Gasarch, de Graaf</td>
</tr>
<tr>
<td>total</td>
<td>117, 119</td>
<td>de Graaf, Furst, Gabarró, Gasarch</td>
</tr>
<tr>
<td>total multivalued nondeterministic polynomial-time</td>
<td>120</td>
<td>de Graaf, Furst, Gabarró, Gasarch</td>
</tr>
<tr>
<td>total recursive</td>
<td>96</td>
<td>Furst, Gabarró, Gasarch, de Graaf</td>
</tr>
<tr>
<td>total selector</td>
<td>32</td>
<td>Gabarró, Furst, Gabarró, Gasarch</td>
</tr>
<tr>
<td>total single-valued</td>
<td>119</td>
<td>Furst, Gabarró, Gasarch, de Graaf</td>
</tr>
<tr>
<td>total single-valued nondeterministic polynomial-time</td>
<td>120</td>
<td>Gabarró, Furst, Gabarró, Gasarch</td>
</tr>
<tr>
<td>uncomputable</td>
<td>18</td>
<td>Furst, Gabarró, Gasarch, de Graaf</td>
</tr>
<tr>
<td>Furst</td>
<td>39</td>
<td>Furst</td>
</tr>
<tr>
<td>Gabarró</td>
<td>vii</td>
<td>Gabarró</td>
</tr>
<tr>
<td>Gasarch</td>
<td>59, 113</td>
<td>Gasarch</td>
</tr>
<tr>
<td>gate</td>
<td>18</td>
<td>Gasarch</td>
</tr>
<tr>
<td>and</td>
<td>18</td>
<td>Gasarch</td>
</tr>
<tr>
<td>exponentially many</td>
<td>18</td>
<td>Gasarch</td>
</tr>
<tr>
<td>not</td>
<td>18</td>
<td>Gasarch</td>
</tr>
<tr>
<td>or</td>
<td>18</td>
<td>Gasarch</td>
</tr>
<tr>
<td>polynomial number of</td>
<td>18</td>
<td>Gasarch</td>
</tr>
<tr>
<td>Gavaldà</td>
<td>59</td>
<td>Gavaldà</td>
</tr>
<tr>
<td>generalization</td>
<td>15, 105–110,</td>
<td>Gavaldà</td>
</tr>
<tr>
<td>~s of P-selectivity</td>
<td>105</td>
<td>Gavaldà</td>
</tr>
<tr>
<td>Gill</td>
<td>113</td>
<td>Gavaldà</td>
</tr>
<tr>
<td>Glaßer</td>
<td>76</td>
<td>Glaßer</td>
</tr>
<tr>
<td>Goldsmith</td>
<td>15, 113</td>
<td>Goldsmith</td>
</tr>
<tr>
<td>de Graaf</td>
<td>vii</td>
<td>de Graaf</td>
</tr>
<tr>
<td>guess</td>
<td></td>
<td>de Graaf</td>
</tr>
<tr>
<td>nondeterministic ~ bits</td>
<td>62</td>
<td>de Graaf</td>
</tr>
<tr>
<td>nondeterministic ~ of a computation path</td>
<td>53</td>
<td>de Graaf</td>
</tr>
<tr>
<td>Gundermann</td>
<td>76</td>
<td>Gundermann</td>
</tr>
<tr>
<td>hardness</td>
<td>61, 117</td>
<td>Gundermann</td>
</tr>
<tr>
<td>(\leq^p \cdot_\text{tr})~</td>
<td>66</td>
<td>Gundermann</td>
</tr>
<tr>
<td>coNP (\leq^p \cdot_\text{m})~</td>
<td>73</td>
<td>Gundermann</td>
</tr>
<tr>
<td>NP ~</td>
<td>61</td>
<td>Gundermann</td>
</tr>
<tr>
<td>NP (\leq^p \cdot_\text{tr})~</td>
<td>74</td>
<td>Gundermann</td>
</tr>
<tr>
<td>NP (\leq^p \cdot_\text{tr})~</td>
<td>68</td>
<td>Gundermann</td>
</tr>
<tr>
<td>truth-table ~ for NP</td>
<td>67</td>
<td>Gundermann</td>
</tr>
<tr>
<td>Turing ~ for NP</td>
<td>67</td>
<td>Gundermann</td>
</tr>
<tr>
<td>Hartmanis</td>
<td>59, 76</td>
<td>Hartmanis</td>
</tr>
<tr>
<td>hashing</td>
<td></td>
<td>Hartmanis</td>
</tr>
<tr>
<td>half</td>
<td>40</td>
<td>Hartmanis</td>
</tr>
<tr>
<td>Hemachandra</td>
<td>15, 58, 59, 76, 103, see Hemaspaanand</td>
<td>Hemachandra,</td>
</tr>
<tr>
<td>Hempel</td>
<td>vii</td>
<td>Hempel</td>
</tr>
<tr>
<td>HH</td>
<td>42, 44, 119</td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>hierarchy</td>
<td></td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>arithmetical</td>
<td>8, 122</td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>close connection of the extended low to the low</td>
<td>45</td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>collapse of the boolean</td>
<td>76</td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>collapse of the low</td>
<td>48</td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>collapse of the polynomial</td>
<td>2, 10, 40, 42–44, 54, 55, 57, 108, 121</td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>decomposition of NP via the low</td>
<td>44</td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>extended low</td>
<td>118</td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>high</td>
<td>42</td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>Kleene</td>
<td>122</td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>low</td>
<td>41</td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>lowness</td>
<td>43</td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>multiselectivity</td>
<td>107</td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>polynomial ~ and small circuits</td>
<td>35</td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>relativized polynomial</td>
<td>117, 122, 123</td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>S(k) ~</td>
<td>106</td>
<td>Hemachandra, Hemaspaanand</td>
</tr>
<tr>
<td>Hoene</td>
<td>vii, 16, 39, 40, 76–78, 103, 113</td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>Hofmann</td>
<td>viii</td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>Holzwarth</td>
<td>vii</td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>Homan</td>
<td>vii</td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>Homer</td>
<td>vii</td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>(H_{\text{sp}}^p)</td>
<td>42, 44, 119</td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>immunity</td>
<td></td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>C ~</td>
<td>110</td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>P ~</td>
<td>110, 111</td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>P-sr ~</td>
<td>111</td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>weakly-P-rankable~</td>
<td>111</td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>incomparability</td>
<td></td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>~ of (E_{\text{tr}}^p) (P-sel) and (R_{\text{tr}}^p) (P-sel)</td>
<td>100</td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>~ of (E_{\text{tr}}^p) (P-sel) and (R_{\text{tr}}^p) (P-sel)</td>
<td>100</td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>~ of (E_{\text{tr}}^p) (P-sel) and (R_{\text{tr}}^p) (P-sel)</td>
<td>100</td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>inequality</td>
<td>29, 42</td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>interpreter</td>
<td></td>
<td>Holzwarth, Hemachandra, Hemaspaanand, Homer, Hoefmann</td>
</tr>
<tr>
<td>advice ~</td>
<td>20, 24, 31, 34, 35</td>
<td>Holzwarth, Hemachandra, Homer, Hoefmann</td>
</tr>
<tr>
<td>advice ~ for SAT</td>
<td>35–37</td>
<td>Holzwarth, Hemachandra, Hommer, Hoefmann</td>
</tr>
<tr>
<td>class of advice ~</td>
<td>31</td>
<td>Holzwarth, Hemachandra, Hommer, Hoefmann</td>
</tr>
<tr>
<td>nondeterministic advice</td>
<td>24, 26, 28</td>
<td>Holzwarth, Hemachandra, Hommer, Hoefmann</td>
</tr>
<tr>
<td>advice ~</td>
<td>25, 26, 30</td>
<td>Holzwarth, Hemachandra, Hommer, Hoefmann</td>
</tr>
<tr>
<td>P advice</td>
<td>30</td>
<td>Holzwarth, Hemachandra, Hommer, Hoefmann</td>
</tr>
<tr>
<td>recursive advice</td>
<td>39</td>
<td>Holzwarth, Hemachandra, Hommer, Hoefmann</td>
</tr>
<tr>
<td>intuition</td>
<td>vi</td>
<td>Holzwarth, Hemachandra, Hommer, Hoefmann</td>
</tr>
<tr>
<td>skating on</td>
<td>vi</td>
<td>Holzwarth, Hemachandra, Hommer, Hoefmann</td>
</tr>
</tbody>
</table>
Jain 103
Jenner 77
Jiang vii, 58, 102, 112
Jockusch 15, 16, 103
Joseph 15, 16, 113

- k-walk 97–99
 - self-avoiding 97
Kadin 76
Kämper 40
Karlo® 59
Karp 20, 35, 39, 40
Karp–Lipton
 - ~ Theorem 35
 - relativized version of the ~ Theorem 38
Kilian 40

king
 - ~ of a tournament 24
Kleene 16
 - ~ hierarchy 122
Ko vii, 16, 39, 58, 59, 75, 112
Köbler 16, 40, 58, 59
Kummer 77, 103, 113

Landau 39
language see set
 - tally ~ see set, tally
L△pk 43–45, 48, 58
L△s k 48
Lemma
 - Toda Ordering ~ 76
 - Toda’s ~ 76
length
 - advice ~ 34
 - bit-~ 23
 - linear ~ 19–22, 26, 28, 30, 39, 105, 112
 - polynomial ~ 19–24, 27, 32–40, 49, 54, 55, 67, 68, 76, 78, 105, 107–109, 120, 121
 - quadratic ~ 19, 20, 24, 39, 112
LH 41, 42, 44, 46, 48, 57, 58, 119
Lindner 39, 76
linear 19
Lipton 20, 35, 39, 40
list
 - query ~ 116
Lk 119
LNP 41
logarithm
 - implicit base of ~ 23
Long 16, 58, 59
loop
 - self-~s 63
Low
 - ~(C) 119
 - ~(Yk p) 41
 - ~(Yk p) 41
 - ~(Xk p) 41
 - ~(Xk p) 41
lowness 41–43, 45, 46, 55, 58, 59
 - ~ of all four types of nondeterministically selective sets 58
 - ~ of nondeterministically selective sets 49, 58
 - ~ of NP ∩ P-sel 48
 - ~ of P-selective sets 46, 49
 - analysis in terms of ~ 58
 - best currently known upper bounds for ~ of selective sets 51
 - best currently known upper bounds for extended ~ of selective sets 50
 - definition of ~ 41
 - extended ~ 43, 46–49, 59
 - extended ~ of all four types of nondeterministically selective sets 58
 - extended-~ bounds 50
 - extended-~ structure of P-selective sets 48, 49
 - extended-~ upper and lower bounds 46
 - extended-~ upper bounds 55
 - generalization of ~ 45
 - more general ~ result 40
 - nontrivial lower bound on ~ 46, 48
 - refined ~ 43
 - upper and lower bounds on ~ 46, 49
 - upper and lower bounds on extended ~ 49
Lp 41
L△s pk 41–45, 47–49, 51, 54, 55, 57–59, 107, 119
L△sp k 43–45, 50, 55, 58
Lund 59

machine 9, 24, 27, 28, 32, 47, 52, 56, 65, 67, 69, 81, 92, 93, 99, 100, 102, 103, 116, 118
 - bottleneck ~ 39
 - deterministic f(n)-space Turing ~ 118
 - deterministic f(n)-time Turing ~ 118
- deterministic polynomial-time Turing
 \sim 2, 47, 88, 106, 118, 119, 123
- enumeration of partial recursive \sim s
 31
- exponential-time \sim 27
- FewP \sim 68
- FP \sim 12
- FP \uparrow \sim 71
- function-computing Turing \sim 10, 120
- nondeterministic polynomial-time function-computing Turing \sim 10
- nondeterministic polynomial-time Turing
 \sim 10, 11, 14, 29, 38, 47, 50, 55, 62, 65, 69, 90, 109, 115, 120, 121
- NP \sim 53, 56, 67
- oracle \sim 47, 86
- P^{\#SAT} \sim 47
- polynomial-time oracle \sim 29
- polynomial-time Turing \sim 27, 69
- probabilistic polynomial-time Turing
 \sim 123
- query-clocked \sim 100
- simulating \sim 27
- Turing \sim 5, 116
- Turing reduction \sim 94
- unambiguous polynomial-time Turing
 \sim 67, 123
- unambiguous Turing \sim 67

Magklis viii
Mayer viii
McLaughlin 16
measure
- \sim of resource 19
- complexity \sim s 107
measurement
- fine-grained \sim of advice 20
Meyer 16
MinimumPath 62, 65–67, 69, 70
N 124
N^+ 124
Naik vii, 16, 39, 40, 59, 76–78, 103
Nasipak vii, 39
nature
- nondeterministic \sim of gamma reductions 90

NE 8, 119
NEXP 119
Nickelsen vii, viii, 113
Nisan 59
NNT 15
- implicitly membership-testable sets 2, 119
nonclosure
- \sim of EL \uparrow \sim under many-one reductions 46
- \sim of the extended low hierarchy 46
- \sim under a function of P-sel 84
- \sim under intersection for all selectivity classes 82
- \sim under k-ary connectives of NPSV-sel and NPMV-sel 84
- \sim under nondegenerate connectives of NPSV-sel and NPMV-sel 84
- \sim under reductions of P-sel 85
- \sim under union of selective sets 82
- simultaneous capture of \sim under intersection for all versions of selectivity 82
nondeterminism vi, 39
- linear amount of \sim 39
- understanding of \sim 9
notation 123
notion
- \sim of being “easily k-countable” 113
- \sim of equality for partial functions 16
- \sim s closely related to P-selectivity 109
- \sim s related to membership comparability 108
- advice \sim 35
- complexity-theoretic \sim vii
- refinements of the \sim of membership comparability 108

- complete for \sim v
- completeness for \sim under many-one reductions 2
- completeness for \sim under Turing reductions 2
- relativized \sim 42, 43, 47, 48, 119, 120
NP/poly 21, 33, 34
NPMV 10, 11, 15, 16, 34, 39, 54, 74, 91, 92, 120
NPMV-sel 10, 11, 13, 21, 34, 41, 50, 51, 54, 55, 57, 58, 74, 75, 82–84, 120
NPMV_t 10–12, 15, 16, 34, 54, 74, 75, 81, 90, 91, 120
NPMV_t-sel 11–13, 21, 34, 41, 50, 51, 54, 55, 57–59, 74, 75, 81–84, 90, 120
NP^{NP} 55, 57, 121
Index

NPSV 9, 10, 12, 15, 16, 32, 34, 38, 39, 49, 50, 52, 55, 56, 74, 120
NPSV-sel 10–13, 21, 32–34, 41, 49–51, 54, 55, 57–59, 68, 74, 83, 84, 120
NPSV-t 10, 12–16, 74, 81, 88, 90, 103, 120
NPSV-t-sel 11–14, 21, 32, 41, 50, 51, 54, 57, 58, 68, 74, 81, 83, 84, 120

NT
 – near-testable sets 2, 121

NTIME 119, 121

Ogihara vii, viii, 16, 39, 40, 59, 77, 78, 103, 113, see Ogihara
Ogihara 76, 103, see Ogihara

optimality
 – relativized ~ 48

oracle 12, 14, 27–29, 41, 43, 47, 52–54, 56, 57, 59, 80, 81, 88–103, 115, 118, 120, 121, 123
 – ~ query 5
 – low sets as ~s 41
 – NP ~ 71

ordering
 – lexicographical ~ 71, 108, 110
 – linear ~ 7, 124
 – linear ~ of {1}∗ 6
 – linear ~ of Σ∗ 6
 – linear ~ of Σ∗ 6
 – partial ~ 7
 – partial ~ 7

output
 – ~ of a polynomial-time algorithm v
 – linearly bounded ~ of an advice function 19
 – quadratically bounded ~ of an advice function 19

Owings 113

P-close 2, 49, 121
P-enumerability 77
P-mc 108
 – ~(const) 108
 – R–tt(~(const)) 108
 – E–tt(~) 95

– E–tt(~) 95, 97
– E–tt(~) 97, 100
– E–tt(~) 97, 100, 103
– E–tt(~) 97, 99, 100
– E–tt(~) 97, 100
– R–tt(~) 95
– R–tt(~) 95, 96
– R–tt(~) 96
– R–tt(~) 97, 100
– relativized R–tt(~) 103
– R–tt(~) 95, 97, 99
– R–tt(~) 95, 97, 99, 103
– R–tt(~) 95, 99, 103
– R–tt(~) 95, 100
– R–tt(~) 35, 97, 100, 102
– R–tt(~) 97, 95, 99, 100, 102, 108

P-sr 110, 111, 113

the polynomial-time semi-rankable sets 110

P/poly 21–24, 35–37, 39, 78, 105, 107, 108

Papadimitriou vii
Parkins vii, 39
Pasanen 16
Paterson 16

path 11, 12, 14, 53, 65, 81, 92, 93
 – accepting ~ 11, 29, 56, 62–70, 90, 94, 120, 121, 123
 – accepting ~ of a FewP machine 68
 – accepting ~ of a function-computing machine 10, 120
 – computation ~ 14, 33, 56, 62, 66, 69, 70, 87, 109, 121
 – directed ~ 63, 64, 76
 – directed ~ in a tournament 64
 – guess bits of an accepting ~ 70
 – guessed ~ 14
 – guessed computation ~ 11
 – minimum accepting ~ of a nondeterministic Turing machine 62, 65–67, 69, 70
 – nondeterministic ~ 53, 54, 57
 – nondeterministic guess of a computation ~ 11, 53
 – nondownward ~ 20
 – rejecting ~ of a function-computing machine 10, 120
 – rejecting ~s 66
 – short ~s in a tournament 63
 – simulated ~ 53

PH
- Π_k^p 37, 38
- poly 19
- Popeye 41
- ~ the Sailor Man 41
- cotton candy is low for ~ 41
- spinach is not low for ~ 41
- power 41, 49, 94
- ~ of two 20
- distinguishing the ~ of reductions \forall
- relative ~ 2
- separating the ~ of reducibilities 2, 15
- PP 28–30, 46–49, 55, 75, 109, 121
- PP/poly 109
- predecessor
- lexicographical ~ 2
- preorder 7
- procedure
- nondeterministic polynomial-time ~ 91
- program
- Selman’s ~ 16
- Selman’s structural ~ \forall
- pronouncement 77
- proof
- nonrelativizable ~ 59
- relativizable ~ 46
- property
- closure ~ 84
- closure ~ of P-sel 6, 79
- closure ~ of P-sel, NPSV$_t$-sel, and NPMV$_t$-sel 84
- PSPACE 37, 58, 59, 66, 67, 75, 88, 105, 109, 121
- PW-sel 48
- qP
- the quasipolynomial time sets 2, 16, 121
- quadratic 19
- quantification
- universal ~ 33
- quantifier
- alternating ~s 43
- number of ~s needed to remove a set’s ability to provide useful information 43
- polynomially bounded ~ 9
- unbounded ~ 9
- answers to ~s 69, 70
- answers to ~s on the MinimumPath 70
- linear limit to number of ~s 27
- linear number of ~s by a Turing reduction 26
- membership ~ 70
- nonadaptive ~ 102
- oracle ~ 5
- polynomial number of ~s to a P-selective set 76
- possible answers to ~s 69
- set of answers to ~ 71
- truth-table ~ 70
- R 94
- random polynomial time 68, 122, 123
- R_{it}^P
- ~ (P-sel) 95
- R_{it}^P
- ~ (P-sel) 95, 96
- R_{it}^P
- ~ (P-sel) 96
- Ramachandran 59
- range 101
- ~ of natural senses \forall
- Ranjan 59
- rank 110
- rankability
- P-semi~ 110
- rational
- dyadic ~ 3
- realization
- ~ of an FP$^{NP}_{tt}$ function 77
- recursiveness
- semi~ 2, 6, 82, 83, 85
- reducibility 8, 117
- 1-truth-table ~ to a P-selective set 88
- 2-disjunctive self~ 5, 118
- ~ degree 8
- disjunctive self~ 5, 38, 118
- disjunctive self~ of SAT 35
- self~ vi, 16, 74, 75, 79, 80, 88, 90, 103
- Turing ~ 26
- Turing self~ 5, 74, 75, 88–92, 123
- Turing self～c, classes containing complete sets with that property 75
- advice upper bounds for ～s to selectivity classes 22
- comparison of polynomial-time ～s 2
- completeness for NP under many-one ～s 2
- completeness for NP under Turing ～s 2
- conjunctive ～s 81
- disjunctive ～s 81
- exponential-time Turing ～ 115
- gamma ～ 90, 115
- linear Turing ～ 26
- locally positive Turing ～ 103, 115
- many-one ～s 81
- parity ～s 81
- polynomial-time Turing ～ 95, 99
- positive Turing ～ 29, 79, 81, 85, 86, 115
- positive-truth-table ～ 87
- strong nondeterministic Turing ～ 116
- truth-table ～s 116
- Turing ～ 26, 29, 94, 100, 115
- variants of positive ～s 80
- refinement 16, 39, 40, 110
- ～ of P-selectivity 110, 111
- ～ of the amount of advice 20
- ～ of the P-selective sets 105
- ～ of the semi-feasible sets ～
- NPSV ～ 39
- Regan vii
- relation 7, 29
- ～ between nondeterministic selectivity classes 12
- ～ between the multiselectivity hierarchy and the extended low hierarchy 107
- ～ between truth-table equivalence classes and Turing equivalence classes 100
- close ～ between P-selective sets and standard left cuts 39
- equivalence ～ 7, 105, 124
- equivalence ～ 7
- equivalence on ～Σ 7
- preorder ～ 7
- reflexive ～ 7
- reflexive and transitive ～ 7
- standard arithmetic ～s 123
- standard set ～s 123
- structural ～ 7
- transitive ～ 7
- relativization 13, 41, 43, 49, 55, 88, 90, 119
- ～ of a proof 32
- ～ on a per set basis 38
- ～ remains a useful approach 59
- positive ～ 59
- survey of open ～ questions 59
- requirement 20
- research v～vii, 2, 3, 5
- unification of semi-feasibility ～ vi
- result 5, 7, 12～16, 20, 23, 34, 37, 39, 40, 45～49, 55, 61, 66～68, 73～80, 85, 88, 90, 91, 100, 102, 105, 106, 108, 110～113
- ～s distinguishing reducibility notions 2
- ～s on topics beyond selectivity 3
- advice ～s 54
- classic ～ of Hartmanis and Stearns 76
- classic ～s 3
- complexity ～ 107
- extended-lowness ～ 47, 48, 54
- hardness ～ 62
- immediate corollaries of lowness ～s 46
- links between oracle ～s and ～s in the real world 59
- lowness ～s 43, 46, 48, 55
- meaning and weight of relativization ～s 59
- nonrelativized ～s 76
- relativizable ～s 58
- relativized ～s 76
- relativizing ～s 90
- value of relativized ～s 49
R^e_T
- ～(P-sel) 95, 97, 99
R^e_Ttt
- ～(P-sel) 95, 97, 99, 103
R^e_Ttt
- ～(P-sel) 103
R^n
- ～(S(k)) 106
R^n_{o(1)}-T
- ～(P-sel) 28
R^n_{o(log n)}-T
- ～(P-sel) 95
R^n_{o(n^k)}-T
- ～(P-sel) 27
Rogers 40
Index 145

Rohatgi 59
Rothe vii, 16, 58, 112
Royer 40
Rozenberg viii
R [C] (P-sel) 122
R [C] (SPARSE) 35
Rtt (P-sel) 95, 97, 99, 100, 102
TALLY 35
S([p]n) 106
S(2) 107
S(k) 106
S(log n) 106
S(n) 106
S2 40, 76, 78, 113, 122
S2NPcoNP 40, 76, 78, 122
Salomaa viii
SAT 5, 9, 14, 15, 35–39, 45, 47, 54, 68,
71–73, 75, 76, 82, 108, 118
Schnorr 16
Schöning 15, 16, 58, 59
segment
initial ~ of a linear ordering 6
initial ~ of a polynomial-time computable linear ordering 6
initial ~ of a recursive linear ordering 6
selectivity 9, 16, 79, 106
~ and self-reducible sets 88
~ via general functions 119
(A,k)~ 113
(i,j)~ 106
associative ~ 111–112
broadening of ~ 9
commutative ~ 111–112
deterministic ~ 90
F~ 9, 119
FEXP~ 109
forms of ~ 105
four types of nondeterministic ~ 15
FPP~ 109, 113
FP~ 88
generalizations of ~ 105
multi ~ 105, 106, 112, 113
nondeterministic ~ 9, 80
NP~ 38
NP2V~ 39
NPMV~ 11, 15, 16, 34, 74, 91
NPMV~ 11, 12, 15, 16, 74, 75, 90, 91
NPSV~ 12, 15, 32, 38
NPSV~ 12, 14–16, 88, 90, 103
other types of ~ than P~ 102
P~ 1, 3–7, 9, 12, 14–16, 31, 49, 62,
64, 68, 74, 82, 88, 102, 103, 105, 109, 110
P~ 1
probabilistic ~ 105, 109
relationships between nondeterministic ~ classes 12
study of nondeterministic ~ 15
understanding of ~ 9
weak ~ 105, 112
selector 52, 64, 81, 97, 99
~ function see function, selector
associative ~ 111–112
commutative ~ 111–112
F~ 9, 119
more powerful ~s 109
NPMV~ 11, 15, 74, 92
NPMV~ 11, 12, 81, 90
NPSV~ 32, 34, 38, 50, 52, 55, 56
NPSV~ 14, 15
P~ 7, 92
symmetric ~ 4, 86
symmetric P~ 100
Selman v, vii, 1, 2, 4, 5, 15, 16, 39, 40,
59, 76–78, 103
sequence
characteristic ~ 102
set
~s _w-equivalent to some set in C 118
(a,b)p-recursive ~s 109
advice complexity of the P-selective ~s 111
advice for P-selective ~s 20
best currently known upper bounds for extended lowness of selective ~s 50
best currently known upper bounds for lowness of selective ~s 51
cheatable ~s 109, 113
class containing Turing self-reducible complete ~s 75
closure properties of the P-selective ~s 6
closure under complement of NPMV-selective ~s 15
closure under complement of NPMV-selective ~s 15
collection of ~s 19, 20, 79, 81, 117
complement of a ~ 11
complement of an NPSV-selective

complete N 13, 38

complete characterization of P-selective N 6

complete characterization of semi-recursive N 6

computationally simple N in a natural sense v

Δ^p_k extended low N 118

disjunctively self-reducible N 103, 105, 118

easily-countable N 108, 109

FP-selective N 109

implicitly membership-testable N 2, 15, 119

left cut N 28, see cut

lowness for nondeterministically selective N 49

lowness of P-selective N 46

membership comparable N 107, 108

membership complexity of N 1

near-testable N 2, 15, 108, 109, 121

nearly near-testable N 2, 119

nondeterministic version of semi-feasible N vi

nondeterministically selective N 10, 61, 67, 73, 90

nonempty finite sub N of a P-selective set N 21, 24, 25

nonempty finite sub N of an NPMV-selective set N 34

nonrecursive N v

NP N 2

NP-\leq_p^M-hard N 68

NP-\leq_p^M-complete N 68

NP-complete N 5, 8, 14, 15, 42, 61

NPMV-selective N 34, 54

NPMV$_f$-selective N 16, 34, 54

NPSV-selective N 16, 49

NPSV$_f$-selective N 14, 16, 88

oracle N 5

P-close N 2, 15, 121

P-enumerable N 77

P-selective N of whose intersection is not semi-recursive N 82

P-selective nonrecursive N v

P-semi-rankable N 105, 110
- ~ of the number of queries according to a selector
- \((A,k)\sim 113\)
- space 19
- deterministic \(f(n) \sim 118\)
- physical ~ taken by a circuit 19
- polynomial ~ 121
- SPARSE 46, 48, 50, 107, 121, 122
- \(R^A_P(\sim)\) 35
- spinach 41
- ~ is not low for Popeye 41
- Stearns 76
- step 26, 31, 32, 51, 56, 62, 64, 86, 87, 89, 91, 93, 98, 99, 116
- computation ~ 62
- Stephan 77, 103, 113
- Stol vii
- Stricker viii
- string
- advice ~ 20, 25, 33
- collection of ~ 21, 57, 116
- concatenation of ~ 17
- easily decodable advice ~ 23
- evil ~ 52
- study 9
- ~ of associative selectivity 112
- ~ of nondeterministic selectivity 9, 15
- ~ of P-selectivity 1, 7
- complexity-theoretic ~ of one-way functions 16
- complexity-theoretic ~ of semi-membership complexity 1
- TALLY 6, 30, 47, 122
- \(R^A_P(\sim)\) 35
- Tantau vii, 102, 103
- tape 116
- oracle ~ 116
- technique
- minimum path ~ 61, 62, 68, 75
- parallel census ~ 68
- test 1, 49
- classic simplicity ~ 3
- testability
- near ~ 109, 113
- Thakur vii
- Theorem
- Karp–Lipton ~ 35
- relativized version of the Karp–Lipton ~ 38
- theory
- ~ of positive relativization 59
- ~ of semi-feasible algorithms iii
- ~ of semi-feasible computation v, vii
- advice ~ 43
- basic lowness ~ 41
- coding ~ 97
- complexity ~ 1, 3, 16, 41, 46, 103
- computational complexity ~ vii
- extended-lowness ~ 46
- lowness ~ 41, 43, 46
- P-selectivity ~ 68
- recursive function ~ v, 2, 58, 103
- selectivity ~ 3, 105
- tournament ~ 63
- \(\Theta^A_P\) 123
- \(\Theta^P_P\) 43, 118, 123
- \(\Theta^{P,A}_P\) 45, 118, 123
- Thierauf 16, 39, 40, 76–78, 103
- thresholds 106
- time
- almost polynomial ~ (APT) 2, 16
- co-nondeterministic polynomial ~ 117
- deterministic “polynomial exponential” ~ 119
- deterministic exponential ~ 118
- deterministic \(f(n) \sim 118\)
- deterministic polynomial ~ 121
- deterministic polynomial ~ relative to an oracle 121
- deterministic polynomial ~ relative to an oracle with a bounded number of queries 121
- exponential ~ vi, 26
- linear ~ 98, 100
- linear exponential ~ 27
- nondeterministic “polynomial exponential” ~ 119
- nondeterministic exponential ~ 119
- nondeterministic \(f(n) \sim 121\)
- nondeterministic polynomial ~ 24, 119, 120
- nondeterministic running ~ 121
- probabilistic polynomial ~ 121
- quasipolynomial ~ (qP) 2, 16, 121
- random polynomial ~ 122
- unambiguous nondeterministic polynomial ~ 123
- Tod 75, 76
- ~ Ordering Lemma 76
- ~’s Lemma 76
- token
- advice ~ 24–27, 31, 32, 34, 39, 117
Index

Torán 77
Torenvliet iii, iv, viii, 39, 77, 103
tournament 63, 64, 76
 – king of a 24
tree 26
 – of possible queries 100
 – self-reduction 90, 91, 93
union 7, 65, 96, 98, 99, 102, 105, 123
UP 66, 67, 123

variable 5, 9, 72, 79, 84
 – logical and of 124
 – logical or of 124
Veltman viii
Verbeek vii
verboseness 113
Vereshchagin 58
verification
 – polynomial-time of a certificate 33
Vyskoč 59

Wagner 76
Wang vii, 16, 39, 40, 76–78, 103, 113
Watanabe vii, 40, 58, 112
weakly-FP2-rankable 111
weakly-P-rankable 110
 – the weakly P-rankable sets 110
Wechsung 40, 76, 77
West 76
worktape 10, 120
 – semi-infinite 10, 120
world
 – real 49
 – relativized 46, 48, 49, 76, 103,
 108, 118, 119
Wössner viii
Young 15, 16, 113
Zaki vii, 16, 113
Zimand vii, 16, 59, 113
ZPP 37–40, 67, 68, 74, 78, 108, 122,
 123
ZPPP 40, 67, 68, 78, 122