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Abstract

This paper investigates the cutting-edge techniques for word embedding, sense embedding,
and our evaluation results on large-scale datasets. Word embedding refers to a kind of
methods that learn a distributed dense vector for each word in a vocabulary. Traditional
word embedding methods first obtain the co-occurrence matrix then perform dimension
reduction with PCA. Recent methods use neural language models that directly learn word
vectors by predicting the context words of the target word. Moving one step forward,
sense embedding learns a distributed vector for each sense of a word. They either define
a sense as a cluster of contexts where the target word appears or define a sense based on
a sense inventory. To evaluate the performance of the state-of-the-art sense embedding
methods, I first compare them on the dominant word similarity datasets, then compare
them on my experimental settings. In addition, I show that sense embedding is applicable
to the task of word sense induction (WSI). Actually we are the first to show that sense
embedding methods are competitive on WSI by building sense-embedding-based systems
that demonstrate highly competitive performances on the SemEval 2010 WSI shared task.
Finally, I propose several possible future research directions on word embedding and sense
embedding.
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1 Introduction

Word Embedding are a kind of methods to learn low-dimensional real-valued vectors (also
called “distributed representation”) for words. Previous methods learn each vector v (also
called “distributional representation”) by counting co-occurrence values with other words.
Recent methods learns each vector v by discriminative learning that predicts the context
words of the target word.

Word Embedding has been demonstrated to preserve both syntactic and semantic prop-
erties by showing that related word pairs (such as (“king”,“queen”) and (“man”,“woman”))
have similar vector offsets. Shown in table 1, the first example shows that the vector off-
set from vec(“king”) to vec(“queen”) is similar with the vector offset from vec(“man”) to
vec(“woman”). This shows the semantic regularities. By substaction, the royal properties
of “king” and “queen” are canceled, and the resulting vector captures only the difference
between “man” and “woman” which is the same as the substraction between “man” and
“woman”. Similarly, the second example demonstrates that word embedding captures the
syntactic differences (from the present tense to the past tense).

vec(“king”) - vec(“queen”) = vec(“man”) - vec(“woman”)
vec(“come”) - vec(“came”) = vec(“go”) - vec(“went”)

Table 1: Syntactic and Semantic properties of word embeddings

Word embedding methods learn a single vector for each word which is problematic for
polysemous words. To remedy this issue, sense embedding methods were proposed to learn a
distributed representation for each sense of a word. According to the ways for defining sense,
existing sense embedding methods can be roughly divided into 3 categories: clustering-
based, non-parametric and ontology-based. Ontology-based methods (Chen et al., 2014;
Jauhar et al., 2015; Rothe and Schütze, 2015) ground senses into a existing sense inventory
such as WordNet. Clustering-based methods (Reisinger and Mooney, 2010; Huang et al.,
2012a) and non-parametric methods (Neelakantan et al., 2014; Li and Jurafsky, 2015),
on the other hand, treat a group of similar contexts of a word as a sense. This follows
the distributional hypothesis (Harris, 1954) that the word meaning is reflected by a set of
contexts where it appears. Comparatively, clustering-based methods assign fixed number
of senses for each word, non-parametric methods dynamically decide the number of senses
for each word by non-parametric processes, such as the Chinese Restaurant Process (CRP)
(Blei et al., 2003a).

Previous methods on sense embedding primarily evaluate their performance on some
context-dependent word similarity sets, such as SCWS (Huang et al., 2012a). Each instance
in the testset contains two target words, two sentences in which each target word appears
and 10 similarity scores assigned by human juedges. This is problematic since the testset
is small and the disagreement between human graders is large (variance among the human
grades is large). Table 2 shows the variances among 10 human grades on the 2003 test
instances of SCWS testset. Among all the test instances, only about 4% are agreed (variance
less than 1.0) and more than 37% are highly disagreed (variance greater than 10.0). The
highest variance is 22.26 while the variance of integer list from 1 to 10 is only 8.25.
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Variance <1.0 1.0 to 5.0 5.0 to 10.0 <10.0

Percentage 4.15% 18.32% 40.34% 37.19%

Table 2: Percentage of variance among 10 human grades on instances of SCWS testset

We point out that the sense embedding task and the word sense induction (WSI) task
are highly inter-related, and propose to evaluate sense embedding methods on WSI tasks.
WSI is the task of automatically finding sense clusters for polysemous words without refer-
ring any already-known sense inventory. In detail, we evaluate the current state-of-the-art
sense embedding methods on two experiments: In one experiment, we test them on Sem-
Cor corpus1, in the other experiment we test them on some previous WSI shared tasks.
Comparing to the later setting, the former setting has much larger vocabulary and more
instances.

As the result, we surprisingly find that sense embedding methods generally show highly
competitive performance on WSI shared tasks. We conclude that two advantages of sense
embedding may result in this improvement: (1) distributed sense embeddings are taken as
the knowledge representations which are trained discriminatively, and usually have better
performance than traditional count-based distributional models (Baroni et al., 2014), and
(2) a general model for the whole vocabulary is jointly trained to induce sense centroids
under the multi-task learning framework (Caruana, 1997). We further verify the two advan-
tages by comparing with carefully designed baselines. In addition, we find some interesting
patterns by evaluating on SemCor corpus.

The remaining of this paper is organized as follows. In Chapter 2, I will introduce
the general idea of word embedding, the details of two state-of-the-art word embedding
methods, and my understanding of these methods. In Chapter 3, I will describe 3 directions
for learning sense embeddings, then several state-of-the-art sense embedding methods under
each direction, and finally their performance on SCWS testset. In Chapter 4, I will propose
to evaluate sense embedding methods on WSI tasks as an alternative way. I first show that
the tasks of sense embedding and WSI are highly inter-related, then analyze the results
on the SemEval-2010 WSI task which recent researches on WSI commonly evaluated their
works on. In Chapter 5, I will propose several future research directions on word and sense
embedding. Finally, in Chapter 6, I will conclude this paper.

1http://moin.delph-in.net/SemCor
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Figure 1: Neural Network structure for Skip-gram model. Figure comes from Rong (2014)

2 Word Embedding

Word embedding is a set of language modeling techniques in which words or phrases from the
vocabulary are mapped to vectors of real numbers in a low-dimensional space. Traditional
word embedding methods adopt dimension reduction methods (such as SVD and PCA) on
the word co-occurrence matrix. Comparatively, recent methods use discriminative learning,
such that the vector of the target word is updated by minimizing its distance from the
vectors representing its context words and maximizing its distance from the vectors of
other words. In this Chapter, I will introduce several state-of-the-art word embedding
models (Skip-gram, CBOW and GloVe).

2.1 Skip-gram Model

The skip-gram model (Mikolov et al., 2013a) learns word embeddings such that they are
useful for predicting the context words. As shown in Figure 1, skip-gram model is a
fully connected neural network with one hidden layer. The input and output layers are
vocabulary-sized sparse vectors. The input layer is one-hot representation that only the
position representing the target word is 1 and the other positions are all 0s. The output
layer is a probability distribution of outputing each word in the vocabulary given the input
word. The reference output layer is also one-hot representation, and the errors at this layer
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are calculated basing on the difference between the actual output and the reference. The
hidden layer is a N-dimensional dense vector which is actually a row vector of matrixWV×N

(by product the input layer with the matrix). All predicting words share the same matrix
W

′

N×V .

Given the input word to be the ith word in the vocabulary, the probability of outputting
the jth word in the context (positive case) is given by equation 1, where vec(wi) is the ith
row vector of WV×N and vec(wj) is the jth column vector of W

′

N×V .

P (D = 1|vec(wi), vec(wj)) =
1

1 + evec(wi)T vec(wj)
(1)

Similarly, the probability of outputting the jth word which is not in the context (negative
case) is given by equation 2.

P (D = 0|vec(wi), vec(wj)) = 1− P (D = 1|vec(wi), vec(wj)) (2)

Given a training set containing the sequence of word tokens w1, w2, . . . , wT , the word
embeddings are learned by maximizing the following objective function:

J(WV×N ,W
′

N×V ) =

T
∑

i=1

[

∑

c∈Ci

P (D = 1|vec(wi), vec(c))+
∑

c
′
∈V−Ci

P (D = 0|vec(wi), vec(c
′))

]

(3)
where WV×N and W

′

N×V (mentioned before) are parameters, i is the position of the target
word wi in the sequence, Ci represents the context of word wi, each c is a word appearing
in the context of wi and each c′ is a word not appearing in the context.

To make the training faster, Stochastic Gradient Descent (SGD) is adopted on each pair
of target word and context. And the error on the output layer is back-propagated through
the whole network. The adapted target function is shown in equation 4, where wi is the
target word, Ci is the set of the context words and V represents the whole vocabulary.

Jsgd(WV×N ,W
′

N×V ) =
∑

c∈Ci

P (D = 1|vec(wi), vec(c)) +
∑

c′∈V−Ci

P (D = 0|vec(wi), vec(c
′))

(4)

In addition to the model, there are several techniques that have been proved helpful
by later research (Levy et al., 2015). One method is called “dynamic window size”. For
each training word wi, the set of context words includes Ni words to the left and right of
wi. Here Ni, the window size for wi, is uniformly sampled from an integer list from 1 to
N , where N is the manually set maximum context window size. This method highlights
the influence of the surrounding words because the vector of the target word is updated
more towards them comparing with the words that are relatively farther but are still within
the range of N . Another method is called “sub-sampling” which is adopted to diminish
the excessive influence of frequent words. Frequent words are usually function words and
do not have much information for distinguishing different words. Here each word w has a
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Figure 2: A binary tree for the hierarchical softmax. Figure comes from Rong (2014)

chance to be dropped out with a probability as shown in Equation 5, where punigram(w) is
the unigram distribution of w and Z is the normalization factor.

p(w) =
punigram(w)3/4

Z
(5)

Training according to the objective function in Equation 4 is impractical, since we have
to enumerate all words in the vocabulary V when we sum over probabilities for the negative
cases, whose size can be several millions. Here I introduce two techniques to solve this
problem, which are Negative Sampling and Hierarchical Softmax. We should notice that
both techniques are also applicable to the CBOW model which will be described in Section
2.2.

2.1.1 Negative Sampling

As we have shown in Equation 4, each update needs both the positive case cj and the
negative cases V −{cj}. The idea of negative sampling is that we only need a few negative
cases rather than the whole vocabulary. The negative cases are sampled without replace-
ment from V −{cj} according to the probability in Equation 5. The training objective with
negative sampling is shown in Equation 6 where Vneg is the set of negative cases sampled
from V − {cj}.

Jneg = P (D = 1|vec(wi), vec(cj)) +
∑

c
′
∈Vneg

P (D = 0|vec(wi), vec(c
′)) (6)

2.1.2 Hierarchical Softmax

Hierarchical softmax, on the other hand, uses a binary tree to directly represent the prob-
ability of outputting each word in the vocabulary. Shown in Figure 2, all words in the
vocabulary are the leaf nodes, and it is easy prove that there are |V | − 1 internal nodes.
For each leaf node, there is a unique path (a sequence of steps) from the root to it. The
probability of outputing that word is the product of the probability of each step.
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Figure 3: The Continuous Bag-of-Word (CBOW) Model. Figure comes from Rong (2014)

p(cj |wi) =

L(cj)−1
∏

k=1

σ
(

I(n(cj , k + 1) = ch(n(cj , k)))vec(wi)
T v

′

n(cj ,k)

)

(7)

In the hierarchical softmax model, there is no vector representations for words (matrix
W

′

N×V ). Instead, each inner node has an vector representation v
′

n(w,k). The probability
of outputting word cj given target word wi is defined in Equation 7, where ch is the left
child of n(cj , k), v

′

n(cj ,k)
is the vector representation of inner node n(cj , k), vec(wi) is the

vector representation for target word wi and I(x) is an indicator that returns 1 if x is true
or returns -1 otherwise. Basically hierarchical softmax encodes the probability of outputing
each word into an binary tree. Starting from the root, there is a probability for going left
and right at each level. So the probability of reaching a leaf node from the root is the
product of the probability of the action (going left or right) at each level.

2.2 Continuous Bag-of-Word Model

Continuous Bag-of-Word (CBOW) Model is the reverse version of Skip-gram model (de-
scribed in Section 2.1) that it takes a bag-of-word context as the input and outputs the
target word. Shown in Figure 3, x1k, x2k, . . . , xCk are the input context words that each
is fully connected with the hidden layer and shares the same matrix W|V |×N . The hidden

layer is fully connected with the output layer with parameter W
′

N×|V |. Comparing with
Skip-gram model which the hidden layer is just the vector of the target word, in this model
the hidden layer is the average of vectors of all input words:
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h =
1

C
·W · (x1, x2, . . . , xC)

=
1

C
· (vec(x1), vec(x2), . . . , vec(xC))

(8)

Similar to the way I describe Skip-gram, here I define the probability wi is the output
word as:

P (D = 1|wi, h) =
1

1 + ev
T
i h

(9)

and the probability wi is not the output word as:

P (D = 0|wi, h) = 1− P (D = 1|vi, h) (10)

the learning target for SGD is:

Jsgd(W,W
′

) = P (D = 1|vec(wi), h) +
∑

w
′
∈V−wi

P (D = 0|vec(w
′

), h) (11)

2.3 GloVe: Global Vectors for Word Representation

Both Skip-gram and CBOW learn word embeddings from each local word and context
pair. GloVe proposes another way to learn word embeddings directly from an aggregated
global word-word co-occurrence matrix. This work is based on the intuition that similar
words should have similar co-occurrence numbers with other words. In this method, they
first make a co-occurrence matrix basing on Equation 12 that sums over all co-occurrence
instances that wj is within the N -word window of wj . Here dist(·, ·) is the distance function
that returns the position difference between the two arguments.

Xi,j =
∑

wi,wj

1

dist(wi, wj)
(12)

We directly show the objective of this model which is:

J =
∑

i,j

f(Xij)(w
T
i wj − logXij)

2 (13)

where f(Xij) is the weight function for each pair of words, and it is defined as:

f(Xij) =

{

(Xij/Xmax)
α if Xij < Xmax

1 otherwise
(14)

The training algorithm iterates through each element Xij of co-occurrence X and do
update.
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2.4 Conclusion

To conclude this Chapter, I first informally define what is word embedding, then briefly
compare traditional methods which count co-occurrence and the current methods which
use the neural language model. Finally I introduce several popular word embedding models
which are Skip-gram, CBOW and GloVe.

Personally, I think Skip-gram, CBOW and GloVe basically all learn the word embeddings
by predicting the context words. They are all based on the assumption that similar words
should have similar context words. All of them weight each context word by considering the
distance between the target word and the context word: GloVe explicitly define the weight
as 1

dist(w,c) . Both Skip-gram and CBOW implicitly capture that by “dynamic window size”
that nearer context words have more chance to be in the context window while farther
words have less chance. However they have significant differences. The difference between
Skip-gram and CBOW is the order of sequence of training instances (wi, ci). For Skip-gram,
each target word vector is updated with all its context words at once. For CBOW, vectors
of several words are updated with one context word at once. While the difference between
Skip-gram and GloVe is that Skip-gram update with each local instance while GloVe update
with the global co-occurrence matrix.
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3 Sense Embedding

Word Embedding is problematic because the ubiquitous polysemous words harm the per-
formance among many NLP tasks. To remedy this issue, sense embedding methods learn
embeddings for senses rather than words. According to the ways for learning senses, exist-
ing sense embedding methods can be roughly divided into clustering-based, non-parametric
and ontology-based. Clustering-based methods (Reisinger and Mooney, 2010; Huang et al.,
2012a) learns a fixed number of senses for each polysemous word. In addition, non-
parametric methods (Neelakantan et al., 2014; Li and Jurafsky, 2015) dynamically decide
the number of senses by a non-parametric process. Both methods treat a group of similar
contexts of a word as a sense following the distributional hypothesis (Harris, 1954) that the
word meaning is reflected by a set of contexts where it appears. Finally, ontology-based
methods (Chen et al., 2014; Jauhar et al., 2015; Rothe and Schütze, 2015) learn senses
according to a existing sense inventory such as WordNet. In this Chapter, I will select and
introduce several state-of-the-art sense embedding methods, and compare their performance
on SCWS which is a context-based word similarity testset.

Intuitively, sense embedding is a fine-grain version of word embedding by clustering
different contexts for each target word. For example, “Apple” can appear either with
“Mac”, “Windows”, “iPhone” or with “juice”, “pie”. And the word embeddings of “Mac”,
“Windows” and “iPhone” are different from the word embeddings of “juice” and “pie”. Both
clustering-based and non-parametric sense embedding methods try to use this knowledge
to separate different tokens of each target word. Ontology-based method, on the other
hand, initialize sene embeddings by linguistic definitions (definition, gloss, synonyms) from
a sense inventory. For example, word “bank” generally has two meanings which are “a slope
of land near the water” and “a finance institute”, the sense embedding can be initialized as
following:

vs(“bank
′′)1 = vg(“slope

′′) + vg(“land
′′) + vg(“water

′′)

vs(“bank
′′)2 = vg(“finance

′′) + vg(“institute
′′)

(15)

3.1 Clustering-based Methods

Reisinger and Mooney (2010) makes the first attempt to learn sense embedding. Based
on the standard vector-space model of word, their approach represents each word token wi

as a co-occurrence vector vec(wi) that records all unigrams occurring within the windows
around wi. To learn sense vectors, their approach first clusters all occurrences (such as wi)
of word type w into K clusters, where K is a fixed constant. Then the similarity between
two word types are calculated as a function of their cluster centroids. They introduces three
functions which are shown in Equations 16, 17 and 18, where πi() is the vector of the ith
sense and d(·, ·) is the cosine distance function.

MaxSim(u, v) = max
1≤i≤K,1≤j≤K

d(πi(u), πj(v)) (16)
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Figure 4: The recursive neural network language model. Figure comes from Huang et al.
(2012b)

AvgSim(u, v) =
1

K2

K
∑

i=1

K
∑

j=1

d(πi(u), πj(v)) (17)

AvgSimC(u, v) =
1

K2

K
∑

i=1

K
∑

j=1

d(vec(c), πi(u))× d(vec(c
′

), πj(v))× d(πi(u), πj(v)) (18)

Equation 16 calculates the distance between two word types by the distance of their
most likely sense centroids. Comparatively, Equation 17 and 18 calculate that by averaging
the distances between any pair of sense centroids. In addition, Equation 18 takes into
consideration the distance between the sense and the context. In brief, Equation 18 is the
weighted version of 17.

In addition, Huang et al. (2012b) proposes a neural network-based method. They first
learn distributed word vectors by discriminating the next word given a word sequence with
a recursive neural network. Then they cluster all occurrences of each word and re-label each
occurrence according to the associated cluster. Finally, the sense embeddings are learnt by
feeding the re-labeled corpus to the same neural network.

Shown in Figure 4, in their recursive neural network, the scoring components are com-
puted by two sub neural networks, one capturing the local context and the other capturing
the global context. The score of the local context uses the local word sequence which is
an ordered list s = w1, w2, . . . , wl. And the vector vec(s) equals vec(w1)vec(w2) · · · vec(wl).
Here vec(wi) represents the embedding of word wi in the word sequence, and it is a column
vector in the embedding matrix W ∈ R

n×|V | where |V | is vocabulary size and n is the
vector size for each word embedding. The embedding matrix is updated during the training
through standard error back-propagation process. So scorel in Figure 4 is calculated via
Equation 19, where [vec(w1)vec(w2) · · · vec(wl)] is the concatenation of the l word embed-
dings, a1 ∈ R

h×1 is the content of the hidden layer after the first calculation, W1 ∈ R
h×(ln)

and W2 ∈ R
1×h are the weights of the first and second layer respectively, b1 and b2 are the

biases, f is the element-wise activation function.
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a1 = f(W1[vec(w1)vec(w2) · · · vec(wl)] + b1)

scorel =W2a1 + b2
(19)

The score of the global context, on the other hand, uses the entire word sequence of the
document, and the embedding for the document is the weighted average of word embeddings
within the document as shown in Equation 20. Here, ϕ() is the idf-weighting function for
capturing the importance of each word in the document.

vec(d) =

∑|d|
i=1 ϕ(wi)vec(wi)
∑|d|

i=1 ϕ(wi)
(20)

In the sub neural network of the global context, the global score scoreg is calculated
with Equation 21 which is similar with Equation 19. Here, it only concatenate the vector
of the next word (which is vec(wl)) and the vector of the document (which is vec(d)), other
parameters represent similar meaning as Equation 19.

a
(g)
1 = f(W

(g)
1 [vec(wl); vec(d)] + b

(g)
1 )

scoreg =W
(g)
2 a

(g)
1 + b

(g)
2

(21)

The final score is the sum of the two scores:

score = scorel + scoreg (22)

Comparatively, Huang et al. (2012b) makes several improvement over Reisinger and
Mooney (2010). First of all, Huang et al. (2012b) learns distributed word representation
by discriminative training which has better performance than traditional counting-based
methods, as shown in Baroni et al. (2014). In addition, Huang et al. (2012b) jointly learns
the sense centroids for multiple word types while Reisinger and Mooney (2010) separately
learns that for each word type. However Huang et al. (2012b) still suffers the error propaga-
tion problem by separating the process of labeling sense labels from the process of learning
sense embeddings. More specifically, it is independent for assigning sense labels for different
occurrences of a target word type. Next I will introduce Multi-Sense Skip-gram (MSSG)
model of Neelakantan et al. (2014) that effeciently solves the two problems.

Generally, the MSSG model extends Skip-gram model that we have introduced in Chap-
ter 2.1. For each occurrence of a word type, Skip-gram model updates the vector of that
word type according to the context, while MSSG first finds the nearest sense to the con-
text and updates the sense vector. More specifically, for each word type w ∈ V , it keeps
a global vector vg(w), a fixed number of centroid vectors µ(w, k)k ∈ [1, ..,K] and sense
vectors vs(w, k)k ∈ [1, ..,K].

As shown in Figure 5, for each word wi which is surrounded by context words ci =
[wi−Ni

, . . . , wi−1, wi+1, . . . , wi+Ni], the context vector vcontext(ci) is calculated by averaging

13



Figure 5: The framework of Multi-Sense Skip-gram (MSSG) model. Figure comes from
Neelakantan et al. (2014)

the global vectors of all words within the context (vcontext(ci) = 1
2Ni

∑

x∈ci
vg(x)). Then

the closest sense centroid is selected by cosine similarity as shown in Equation 23, where
µ(wi, k) is the kth centroid vector and vcontext(ci) is the vector of context ci. Finally both
the selected centroid vector and the sense vector are updated. Here the centroid vector
µ(wi, k) is updated by adding the context vector vcontext(ci) into it which is problematic
from my point of view. Since they use k-means algorithm, but they use cosine distance
rather than Euclidean distance.

si = argmax
k

cosine(µ(wi, k), vcontext(ci)) k ∈ [1, 2, . . . ,K] (23)

For updating the sense vector, we first define the probability of observing a word c in
the context in Equation 24 and the probability of not observing word c

′

in the context in
Equation 25. We follow the definition style of Chapter 2.1 since MSSG is an multi-sense
extension of Skip-gram model.

p(D = 1|vs(wi, si), vg(c)) =
1

1 + e−vs(wi,si)T vg(c)
(24)

p(D = 0|vs(wi, si), vg(c
′

)) = 1− p(D = 1|vs(wi, si), vg(c
′

)) (25)

Given a training set containing the sequence of word tokens w1, w2, . . . , wT , the sense
embeddings are learned by maximizing the following objective function:
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Q =
T
∑

i=1

[

∑

c∈Ci

p(D = 1|vs(wi, si), vg(c)) +
∑

c′∈V−Ci

p(D = 0|vs(wi, si), vg(c
′

))
]

(26)

where i is the position of the target word wi in the sequence, Ci represents the context of
word wi, each c is a word appearing in the context of wi and each c′ is a word not appearing
in the context.

For fast training reason, Stochastic Gradient Descent (SGD) is adopted on each pair of
target word and context. And the error on the output layer is back-propagated through
the whole network. The adapted target function is shown in equation 27, where wi is the
target word, Ci is the set of the context words and V represents the whole vocabulary.

Qsgd =
∑

c∈Ci

p(D = 1|vs(wi, si), vg(c)) +
∑

c
′
∈V−Ci

p(D = 0|vs(wi, si), vg(c
′

)) (27)

3.2 Non-parametric Sense Embedding methods

Intuitively it is problematic to assign a fixed number of senses for every word. Generally
some words like “beat” have several meanings, words like “people” may have only one
meaning and functional words should have only one meaning. However, clustering-based
methods such as MSSG assign a equal number of senses to each word regardless of the
above situations. Non-parametric processes are naturally helpful for generating a different
number of senses for each word.

Probabaly the NP-MSSG model of Neelakantan et al. (2014) is the first work that
addresses the task of learning a varying number of senses for different words. Generally,
their method creates a new sense for a word type with the probability which is proportional
to the distance from the context to the nearest sense. Initially, there is no sense for each
word type, as the number of senses for each word type is unknown. Then the first sense
for a word type is created from the first context in which it appears and the first context
is also assigned to the first sense. After creating the first sense, the sense for each context
is decided by Equation 28, where K(wi) is the current number of senses for word wi. The
context is assigned to a new sense if the distance to the nearest sense is greater than a
pre-defined hyperparameter λ, or it is assigned to the nearest sense kmax ∈ [1, 2, . . . ,K(wi)]
otherwise.

si =

{

K(wi) + 1, if maxk=1,2,...,K(wi) cosine(µ(wi, k), vcontext(ci)) < λ

kmax, otherwise
(28)

The NP-MSSG model is different from the MSSG model introduced in Chapter 3.1 only
in the way of creating new senses. It also keeps a cluster vector µ(wi, k) and a sense vector
vs(wi, k) for each sense which are updated in the same way as MSSG model. The objective
function, the neural network architecture and the training algorithm are also the same that
readers can refer to Chapter 3.1 for those details.
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One problem NP-MSSG suffers is that it is hard to choose a proper λ which is crucial for
the performance. Li and Jurafsky (2015), on the other hand, models the process of learning
new senses for a word type as a Chinese Restaurant Process (CRP) (Blei et al., 2003a).

To briefly review the Chinese Restaurant Process, every data point is a customer of
the restaurant in which there are several tables. Each table serves a dish, corresponding
to a cluster of data points. Initially, the restaurant is empty that there is no table, and
the first customer always choose to sit at a new table. The next customer either choose an
existing table (share a existing cluster) or choose a new table (create a new cluster) basing
on the probability distribution shown in Equation 29, where Nt is the number of customers
in cluster kt, ci is the customer, γ is a constant hyperparameter for choosing new tables.
Intuitively it is reasonable to give constant probability for opening new tables as we have
no information about that table at this time.

p(si = kt) ∝

{

Ntp(kt|ci), if kt already exists

γ, if kt is new
(29)

Back to the CRP-based sense embedding method, each CRP corresponds to a word
type that whenever a customer (a token of the word type surrounded by a context) comes,
the customer choose to sit either in one of the existing tables (existing senses of the word
type) or in a new table (create a new sense), according to the same probability distribution
defined in Equation 29, where Nt is the number of contexts assigned to sense kt, ci is the
current context, γ is a constant hyperparameter for creating a new sense. So we can see
there is a perfect match between the non-parametric sense embedding problem and CRP.

3.3 Ontology-based Methods

Despite the fact that clustering-based and non-parametric sense embedding methods have
demonstrated good performance, they are not applicable to the down-streaming NLP appli-
cations that use WordNet-based senses. Another motivation for ontology-based methods is
that there are well developed sense inventories (such as WordNet) containing not only the
definitions and glosses but also hyponym, hypernym and synonym relations. Utilize these
resources may further improve the quality of sense embeddings.

Majority ontology-based methods are roughly divided into two categories: One kind
of methods use a sense inventory for initialization that they initialize sense vectors by the
definition, gloss and relations between senses, then fine tune the vectors with a large plain
corpus. The other kind of methods use the sense inventory as constraint that they transfer
the sense embedding learning problem into a optimization problem under constraints. Here
I first introduce the first kind of methods and then describe the second kind of methods.

The adapting predictive (AP) model of Jauhar et al. (2015) adapt the Skip-gram model
(Mikolov et al., 2013a) by considering word senses as latent variables, and solve that by
EM algorithm. Taking each word token as a observed symbol, the model first predict the
sense which is a latent variable, then predict the surrounding tokens which are also observed
symbols as shown in Figure 6.
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Figure 6: The generative process of adapting predictive model

To formalize the model, here I first introduce several notations which is consensus with
the previous content of this survey. Let W = {w1, w2, . . . , wn} be the whole vocabulary
and Ws = {s11, s12, . . . , snm} be all the senses of the vocabulary. Let Ω be an ontology
such as WordNet, then it can be formalized as a undirected graph GΩ = (TΩ, EΩ), where
each node tij corresponds to a sense sij and a edge eij−i′j′ connects two senses with a
relation (hypernym, hyponym or synonym). Vg = {vec(wi)|∀wi ∈ W} is all the word
embeddings and Vs = {vec(sij)|∀sij ∈ Ws} is all the sense embeddings. A corpus D =
[((w1, c1), (w2, c2), . . . , (wn, cn)] is a list of word and context pairs. As shown in Equation
30, where pΩ(θ) is the prior distribution of model parameter, the model maximize the joint
probability of the training corpus D. At this time, the model parameter θ = (Vg) is the set
of word embeddings.

C(θ) = argmax
θ

pΩ(θ)
∏

(wi,ci)∈D

p(wi, ci; θ) (30)

By considering senses, the model is reformatted as Equation 31, where the parameter θ
changed to be (Vg, Vs) which is the set of both word and sense embeddings.

C(θ) = argmax
θ

pΩ(θ)
∏

(wi,ci)∈D

∑

sij∈si

p(wi, ci, sij ; θ) (31)

After taking log, we get the model shown in Equation 32. Parameters can be easily
updated with this equation since the two parts can be learnt independently.

C(θ) = argmax
θ

logpΩ(θ) +
∑

(wi,ci)∈D

log(
∑

sij∈si

p(wi, ci, sij ; θ)) (32)

The prior distribution pΩ(θ) is defined as the sum of Euclidean distances between each
pair of senses that has a relation:

logpΩ(θ) ∝ γ
∑

ij−i′j′

||vec(sij)− vec(si′j′ )||
2
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and the joint probability p(wi, ci, sij ; θ) is decomposed by a chain rule:

p(wi, ci, sij ; θ) = p(wi; θ)p(sij |wi; θ)p(ci|sij ; θ)

Here the context ci is independent from word wi given the sense sij as shown in Figure
6. p(wi; θ) is constant 1. The final form is demonstrated by Equation 33:

C(θ) = argmax
θ

∑

(wi,ci)∈D

log
(

∑

sij∈si

p(ci|sij ; θ)p(sij |wi; θ)
)

−γ
∑

ij−i
′
j
′

||vec(sij)− vec(si′j′ )||
2

(33)

The model parameter θ is finally defined as (Vg, Vs,Π) that Π = {πij |πij = p(sij |wi)} is
the context independent sense distribution, and Vg and Vs are the word and sense embed-
dings. We can see that Equation 33 can be solved by EM algorithm. However the original
paper mentions that EM may lead to a poor performance, so it uses Variational Bayes to
update Π as shown in Equation 34:

log(π
(t+1)
ij ) ∝ ψ(c̃(wi, sij) + λπ

(0)
ij )− ψ(c̃(wi) + λ) (34)

Here ψ() is the digamma function which equals to d
dx ln

(

Γ()
)

and c̃() is the expected count.
Adopting negative sampling (Mikolov et al., 2013a), SGD on Equation 35 is used to update
Vg and Vs, where ci is the context word, c

′

i is the negative context word, σ() is the Sig-
moid function, each c

′

i is sampled from all negative samples. This function is similar with
the objective function of Skip-gram, but with additional term to push other sense vectors
vec(sij′ ) away from the current context.

J = log σ(vec(ci) · vec(sij)) +
∑

j
′
6=j

log σ(−vec(ci) · vec(sij′ ))+

∑

m

E
c
′

i∼neg

[

log σ(−vec(w
′

i) · vec(sij))
]

(35)

The overall training procedure is shown in Algorithm 1 that it iterates through the corpus
D (Line 2) with online update. In the E-step, it assigns the most probable sense sij to each
(wi, ci) (Line 3-4). In the M-step, it updates the context-independent sense distribution
Π(t+1) by expected count according to Equation 34, and updates the parameters (Line 5-7).

So far I have introduced the first kind of ontology-based sense embedding methods, that
utilize an sense inventory to initialize the sense vectors and then fine-tune them with a unan-
notated corpus. However they suffer from two drawbacks: To begin with, they do not fully
utilize all the useful knowledge contained in the sense inventory. For example, Bhingardive
et al. (2015) points out that information such as gloss (G), definition (D), synset members
(S), gloss of the hypernymy-hyponymy synsets (HG), definition of hypernymy-hyponymy
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Algorithm 1 EM training for adapting predictive model

1: procedure EMAdapt(D, Ω)
2: for (wi, ci) in D do

3: E-Step:

4: sij ← argmaxsij π
(t)
ij p(ci|sij ;V

(t)
g , V

(t)
s )

5: M-Step:

6: Π(t+1) is updated according to Equation 34

7: V
(t+1)
g and V

(t+1)
s are updated according to Equation 35

8: end for

9: end procedure

Figure 7: A example factor graph used by the Retrofitting-based method. Shaded vertices
are observed. Observed variable vertices represent word types, unobserved variable vertices
represent word senses. Picture comes from Jauhar et al. (2015)

synsets (HD) and synset members of hypernymy-hyponymy synsets (HS) is helpful for
learning high quality sense embeddings for the WSD task. Jauhar et al. (2015) only uti-
lize information from S and HS and Chen et al. (2014) uses knowledge from D and G. In
addition, they are relatively time consuming as they iterate through a large corpus.

Comparatively, the second kind of ontology-based methods that use an sense inven-
tory as constraint do not suffer from these drawbacks, as they use more knowledge to
make constraints and directly solve the optimization problem that do not iterate through
a unannotated corpus. Here let me introduce two methods of this kind: First of all, the
Retrofitting-based approach of Jauhar et al. (2015) learns sense embeddings through a fac-
tor graph representing a sense inventory, such as WordNet. In the graph, every variable
vertex either represents a word or represents a sense, every factor vertex connects either a
sense and a word meaning the word has the sense, or two senses meaning there is a relation
between them. Obviously the minimum tree width of this graph is 2 so the time complexity
for optimization with it is small. Figure 7 shows an example of the factor graph. We can
see that word “bank” is associated with two senses “bank(1)” which is related with sense
“loan(3)” of word “loan” and sense “money(1)” of word “money”, and “bank(2)” which is
related with sense “river(1)” of word “river”.

Following the same definition of Chapter 3.3, the potential for each clique (which is
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Algorithm 2 Coordinate descent for Retrofitting-based method

1: procedure CoorRetro(Ω)
2: while ||vec(sij)

(t) − vec(sij)
(t−1)|| ≥ ǫ, ∀sij ∈ TΩ do

3: for sij ∈ TΩ do

4: vec(sij)
(t+1) is updated according to Equation 37

5: end for

6: end while

7: end procedure

Synset1 ... Synseti ... Synsetn
people 1 ... ...

... ... ...

dog ... 1 ...

... ... ...

hound ... 1 ...

... ... ...

Table 3: Representing WordNet as a sparse matrix.

always pairwise) set as e||u−v||2 . Their optimization prolbem is to find the maximum a
posterior (MAP) estimation of Vs given Vg, so the optimization problem is:

C(Vs) = argmin
Vs

∑

i−ij

α||vec(wi)− vec(sij)||
2 +

∑

ij−i
′
j
′

βr||vec(sij)− vec(si′j′ )||
2 (36)

where both α and βr are coefficients and βr is relation specific. It is not hard to get the
analytical solution of Equation 36 which is:

vec(sij) =
αvec(wi) +

∑

i′j′∈{ij−i′j′} βrvec(si′j′ )

α+
∑

i
′
j
′
∈{ij−i

′
j
′
} βr

(37)

And coordinate descent is adopted to iteratively update the parameters (sense embed-
dings) using Equation 37. This procedure is demonstrated in Algorithm 2.

Finally in this Chapter, let me introduce AutoExtend which received the best student
paper in ACL-15. To better understand this work, let me first briefly introduce WordNet.
WordNet can be seen as a sparse matrix that each row represents a word, each column
represents a Synset and each cell is a lexeme representing a sense. A Synset is a set of
synonymous senses. A word can have multiple senses, and is associated with a Synset if
there is a sense that is associated with both of them. Table 3 visualize an example where
both word “dog” and word “hound” are associated with Synseti, so they have similar senses.

Generally, this work learns sense embeddings by AutoEncoders that first take a word
embedding matrix as input, then compress it into a Synset embedding matrix, finally repro-
duce the word embedding matrix by transforming from the Synset embedding matrix back
to the word embedding matrix. I demonstrate the model with Figure 8. Here the input
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Figure 8: The neural network structure for sense embedding learning.

layer of the Autoencoder is a |W | ×N sized matrix, and the hidden layer is a |S| ×N sized
matrix.

More formally, let W ∈ R
|W |×N be the word matrix and S ∈ R

|S|×N be the Synset
matrix, D and E ∈ R

|W |×|S|×N×N are two 4 dimensional tensors that E is the parameter to
encode the word matrix into the synset matrix and D is the parameter to decode the Synset
matrix into the word matrix. Overall the optimization function is shown in Equation 38,
where

⊗

is tensor multiplication.

argmin
D,E
||D

⊗

E
⊗

W −W || (38)

Given any specific pair w(i) ∈W and s(j) ∈ S, E(i,j) and D(j,i) ∈ R
N×N are the encoding

and decoding parameters concerning about the pair.

l(i,j) = E(i,j)w(i)

l(i,j) = D(j,i)s(j)
(39)

As shown in Equation 39, we can get the embedding of a specific lexeme l(i,j) by either
multiplying E(i,j) with the related word embedding w(i) or multiplyingD(j,i) with the related
Synset embedding s(j). Here it makes two important assumptions that the sum of all lexeme
embeddings belonging to the word is equal to the word embedding, and similarly the sum
of all lexeme embeddings associated with the Synset is equal to the Synset embedding:

w(i) =
∑

j

l(i,j)

s(j) =
∑

i

l(i,j)
(40)

By combining Equation 39 and Equation 40, we have one of the two very important
constraints under which we solve the optimization:
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∑

j

E(i,j) = IN (41)

And similarly the other constraint is:

∑

i

D(j,i) = IN (42)

Here we further assumes E(i,j) and D(i,j) are diagonal matrix, so optimizing each dimen-
sion d ∈ [1, . . . , N ] is independent from each other. We further refine the two constraints as
Equation 43 and 44, where R(wi, sj) = 0 represents there is no relationship between word
wi and Synset sj . The second function of each Equation means that the element is 0 if the
dimension indices are different or the word does not have a lexeme that is a member of the
Synset.

∑

j

Ei,j,d1,d2 = 1, ∀i, d1, d2

Ei,j,d1,d2 = 0, if d1 6= d2 or R(wi, sj) = 0

(43)

∑

i

Dj,i,d1,d2 = 1, ∀j, d1, d2

Dj,i,d1,d2 = 0, if d1 6= d2 or R(wi, sj) = 0

(44)

I think there are two advantages for making this assumption which are: this makes
model training faster, and this avoids over-fitting. Finally, they refine the original learning
target (Equation 38) as 3 objectives,

argminD(d),E(d) ||D(d)E(d)w(d) − w(d)|| ∀d (45)

argminD(d),E(d) ||E(d)diag(w(d))−D(d)diag(s(d))|| ∀d (46)

argminE(d) ||RE(d)w(d)|| ∀d (47)

where R ∈ R
r×|S| is the WordNet relation matrix and r is the number of related Synsets.

All of the 3 objectives are about only one dimension d: Equation 45 models the same
target as Equation 38 that both equations minimize the information lost after encoding
and decoding through out the AutoEncoder neural network in Figure 8. Equation 46 try
to impose lexeme constraints that we should get the same lexeme embeddings both by
going from word embeddings and by going from Synset embeddings. Equation 47 captures
additional relations between Synsets such as hypernym-hyponym, antonym and verb group.
Intuitively, Synsets having relations should have similar embeddings. All of the relations
can be extracted from WordNet without additional refinement. To learn with all of the 3
objectives, they use linear interpolation with weights α, β and 1− α− β.
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Model MaxSim AvgSim AvgSimC

Huang 26.1 62.8 65.7

MSSG 57.26 67.2 69.3
MSSG-NP 59.80 67.3 69.1

CRP 66.4 - 67.0

Retro - - 41.7
EM - - 61.3
Retro+EM - - 58.7

AutoExtend - 68.9 69.8

Table 4: Representing WordNet as a sparse matrix.

3.4 Evaluating on SCWS testset

Existing works mainly use SCWS dataset (Huang et al., 2012a) for similarity evaluation. It
contains 2003 instances each of which contains two target words and 10 human grades on a
10-point scale representing the similarity between them. SCWS dataset contains not only
the isolated target words, the human annotated similarity scores, but also a context for each
word. To evaluate on SCWS dataset, we first calculate the similarity score for each instance,
then adopt Spearman correlation (ρ) between the similarity vector and the reference vector
of averaged human scores. There are several ways, such as MaxSim (Equation 16), AvgSim
(Equation 17) and AvgSimC (Equation 18) to calculate the similarity score.

We collect the performance scores from each paper and show them in table 4. Here
Huang stands for the method of Huang et al. (2012a), MSSG and MSSG represents the
corresponding models of Neelakantan et al. (2014), CRP is the work of Li and Jurafsky
(2015), EM and Retro corresponds to the two methods mentioned in Jauhar et al. (2015)
and Retro+EM represents running Retro to get the initial embedding of EM, AutoExtend
is the Autoencoder-based method of Rothe and Schütze (2015). First of all, we can see
that AvgSimC is the best among the three inference algorithms, while MaxSim is the
worst. I think it is because MaxSim considers the least information which is the pair of the
most probable senses. While AvgSim considers all possible pairs of senses, plus AvgSimC
consider all possible pairs of senses weighted by their similarity with the current context. In
addition, clustering-based method (MSSG) shows comparative result with non-parametric
method (MSSG-NP). Even though intuitively different words should have different number
of senses. I think we may need to refine functional words with more senses in order to
company their varing context. Further more, CRP shows much higher score on MaxSim
than the others. I think it is because the “rich get richer” property of CRP makes it
conservative for assigning senses other than the most frequent sense, and usually simply
assigning the most frequent sense can get a high performance. Finally, AutoExtend shows
the best performance (in bold), proving the soundness of its method.

3.5 Evaluating on SemCor corpus

Evaluating sense embeddings is hard as there is no gold answer for each sense vector. As
stated in Chapter 1, previous works mainly compare on SCWS dataset (Huang et al., 2012a)
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whose size is small and the disagreement between human grades is large. For the size, the
SCWS dataset only contains 2003 instances. For the agreement between human grades, we
calculate the variance of the 10 grades for each instance which shows that only 4% are less
than 1.0 while more than 37% are greater than 10.0. The highest variance is 22.26 while
the variance of integers from 1 to 10 is only 8.25.

Here we propose to evaluate sense embedding methods on SemCor corpus2. SemCor is
a sense annotated news domain corpus. It contains round 30k sentences, and all senses are
according to WordNet. To evaluate on SemCor, one sense embedding model labels each
word with a sense label, then compare the results with the gold reference. For unsupervised
methods, we first use Hungarian algorithm (Kuhn, 1955) to do the matching. SemCor has
two advantages from SCWS: 1) SemCor has gold reference and the evaluation is precise
(either right or wrong). 2) SemCor contains much more word types and instances than
SCWS that evaluating on more instances is generally more convincing.

We use 2 more indices in addition to precision: Variation of Information and Paired F-
score. Variation of Information (VI) (Meilă, 2003) provides additional information besides
labeling agreement (Goldwater and Griffiths, 2007), such as two results which have identical
labeling precision with reference can have very different VI result, so we also investigate the
VI between any two induction results. We calculate basing on Equation 48 such that rij is
the probability for choosing the intersection between cluster i from one result and cluster
j from the other, pi and qj represents the probability for choosing points in cluster i from
one result and cluster j from the other result respectively.

V I = −
∑

i,j

rij [log(rij/pi) + log(rij/qj)] (48)

Overall the VI between two clustering results X and Y is the amount of information
lost and the amount to be gained by changing from X to Y which is shown in Equation 49.
So if two clustering results are identical, the VI between them is 0. Otherwise it is greater
than 0. The more different they are, the larger VI is.

V I(X;Y ) = H(X) +H(Y )− 2I(X,Y ) (49)

Different from other metrics, paired F-score evaluates two clustering results by trans-
forming this into a classification problem. For each cluster ci in either result, we generate
every instance pairs from it

(

ci
2

)

. Let F (X) and F (Y ) be the set of instance pairs exist
in result X and Y respectively, precision and recall are shown in Equation 50 and paired
F-score is the harmonic mean ( 2pr

p+r ) between them.

p =
F (X) ∩ F (Y )

F (X)

r =
F (X) ∩ F (Y )

F (Y )

(50)

2http://moin.delph-in.net/SemCor
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CRP MSSG AutoExtend OneSense

MFS(%) 79.33 68.46 85.11 100.0

Precision(%) 59.90 57.65 62.89 67.51

VI 1.22 1.31 1.11 0.88

Paired-F(%) 57.81 53.65 64.28 65.09

Table 5: Representing WordNet as a sparse matrix. MFS stands for most frequent sense,
VI is Variation of Information.

We choose AutoExtend (Rothe and Schütze, 2015), the MSSG model of Neelakantan
et al. (2014) and the CRP-based method of Li and Jurafsky (2015) for comparing. It
is because they provides implementation for their work and reported the state-of-the-art
performance in their papers. We also add baseline OneSense that always assign the same
sense since previous sense disambiguation and induction tasks always include that baseline
for comparison. We choose snapshot of Wikipedia 2010 as the training data which contains
around 2 million documents and 990 million tokens. We select all word types with more
than 100 occurrences from SemCor as the test data. As a result, our test data contains
15,469 word types with 193,118 instances. Comparing with SCWS, our test set has much
more test instances.

I show the performance scores in Table 5. Here MFS(%) represents the percentage of
the most frequent sense, Precision(%) is the percentage of instances that is labeled correctly
comparing with the gold reference. First of all, we can see that OneSense shows the best
performance on each index. Previous shared tasks on sense disambiguation and induction
also observed this phenomenon (Agirre and Soroa, 2007; Manandhar et al., 2010). However
we still observe that other systems show pretty close performance on the index of Paired
F-score. The MFS(%) of golden is 67.51 which is the Precision(%) of OneSense, and MSSG
shows the closest MFS(%) number with that. Finally, we can see that the performances on
all other indices are proportional to the number on MFS(%).
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4 Sense Embedding for WSI

4.1 Introduction and Overview

Word sense induction (WSI) is the task of automatically finding sense clusters for pol-
ysemous words. In contrast, word sense disambiguation (WSD) assumes there exists an
already-known sense inventory, and the sense of a word type is disambiguated according
to the sense inventory. Therefore, clustering methods are generally applied in WSI tasks,
while classification methods are utilized in WSD tasks. WSI has been successfully applied
to many NLP tasks such as machine translation (Xiong and Zhang, 2014), information
retrieval (Navigli and Crisafulli, 2010) and novel sense detection (Lau et al., 2012).

However, existing methods usually represent each instance with discrete hand-crafted
features (Bordag, 2006; Chen et al., 2009; Van de Cruys and Apidianaki, 2011; Purandare
and Pedersen, 2004), which are designed manually and require linguistic knowledge. Most
previous methods require learning a specific model for each polysemous word, which limits
their usability for down-stream applications and loses the chance to jointly learn senses for
multiple words.

There is a great advance in recent distributed semantics, such as word embedding
(Mikolov et al., 2013b; Pennington et al., 2014) and sense embedding (Reisinger and Mooney,
2010; Huang et al., 2012a; Jauhar et al., 2015; Rothe and Schütze, 2015; Chen et al., 2014;
Tian et al., 2014). Comparing with word embedding, sense embedding methods learn dis-
tributed representations for senses of a polysemous word, which is similar to the sense
centroid of WSI tasks.

In this work, we point out that the WSI task and the sense embedding task are highly
inter-related, and propose to jointly learn sense centroids (embeddings) of all polysemous
words for the WSI task. Concretely, our method induces several sense centroids (embed-
ding) for each polysemous word in training stage. In testing stage, our method represents
each instance as a contextual vector, and induces its sense by finding the nearest sense
centroid in the embedding space. Comparing with existing methods, our method has two
advantages: (1) distributed sense embeddings are taken as the knowledge representations
which are trained discriminatively, and usually have better performance than traditional
count-based distributional models (Baroni et al., 2014), and (2) a general model for the
whole vocabulary is jointly trained to induce sense centroids under the multi-task learn-
ing framework (Caruana, 1997). Evaluated on SemEval-2010 WSI dataset, our method
outperforms all participants and most of the recent state-of-the-art methods.

4.2 Methodology

4.2.1 Word Sense Induction

WSI is generally considered as an unsupervised clustering task under the distributional
hypothesis (Harris, 1954) that the word meaning is reflected by the set of contexts in which
it appears. Existing WSI methods can be roughly divided into feature-based or Bayesian.
Feature-based methods first represent each instance as a context vector, then utilize a
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clustering algorithm on the context vectors to induce all the senses. Bayesian methods
(Brody and Lapata, 2009; Yao and Van Durme, 2011; Lau et al., 2012; Goyal and Hovy,
2014; Wang et al., 2015), on the other hand, discover senses based on topic models. They
adopt either the LDA (Blei et al., 2003b) or HDP (Teh et al., 2006) model by viewing each
target word as a corpus and the contexts as pseudo-documents, where a context includes
all words within a window centered by the target word. For sense induction, they first
extract pseudo-documents for the target word, then train topic model, finally pick the most
probable topic for each test pseudo-document as the sense.

All of the existing WSI methods have two important factors: 1) how to group similar
instances (clustering algorithm) and 2) how to represent context (knowledge representation).
For clustering algorithms, feature-based methods use k-means or graph-based clustering
algorithms to assign each instance to its nearest sense, whereas Bayesian methods sample the
sense from the probability distribution among all the senses for each instance, which can be
seen as soft clustering algorithms. As for knowledge representation, existing WSI methods
use the vector space model (VSM) to represent each context. In feature-based models, each
instance is represented as a vector of values, where a value can be the count of a feature
or the co-occurrence between two words. In Bayesian methods, the vectors are represented
as co-occurrences between documents and senses or between senses and words. Overall
existing methods separately train a specific VSM for each word. No methods have shown
distributional vectors can keep knowledge for multiple words while showing competitive
performance.

4.2.2 Sense Embedding for WSI

As mentioned in Section 1, sense embedding methods learn a distributed representation for
each sense of a polysemous word. There are two key factors for sense embedding learning:
(1) how to decide the number of senses for each polysemous word and (2) how to learn an
embedding representation for each sense. To decide the number of senses in factor (1), one
group of methods (Huang et al., 2012a; Neelakantan et al., 2014) set a fixed number K of
senses for each word, and each instance is assigned to the most probable sense according to
Equation 51, where µ(wt, k) is the vector for the k-th sense centroid of word w, and vc is
the representation vector of the instance.

st = arg max
k=1,..,K

sim(µ(wt, k), vc) (51)

Another group of methods (Li and Jurafsky, 2015) employs non-parametric algorithms
to dynamically decide the number of senses for each word, and each instance is assigned to
a sense following a probability distribution in Equation 52, where St is the set of already
generated senses for wt, and γ is a constant probability for generating a new sense for wt.

st ∼

{

p(k|µ(wt, k), vc) ∀ k ∈ St

γ for new sense
(52)

From the above discussions, we can obviously notice that WSI task and sense embedding
task are inter-related. The two factors in sense embedding learning can be aligned to the
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Algorithm 3 Sense Embedding Learning for WSI

1: procedure Training(Corpus C)
2: for iter in [1..I] do

3: for wt in C do

4: vc ← context vec(wt)

5: st ← sense label(wt, vc)
6: update(wt, st)
7: end for

8: end for

9: end procedure

two factors of WSI task. Concretely, deciding the number of senses is the same problem
as the clustering problem in WSI task, and sense embedding is a potential knowledge
representation for WSI task. Therefore, sense embedding methods are naturally applicable
to WSI.

In this work, we apply the sense embedding learning methods for WSI tasks. Algorithm
3 lists the flow of our method. The algorithm iterates several times over a Corpus (Line
2-3). For each token wt, it calculates the context vector vc (Line 4) for an instance, and then
gets the most possible sense label st for wt (Line 5). Finally, both the sense embeddings
for st and global word embeddings for all context words of wt are updated (Line 6). We
introduce our strategy for context vec in the next section. For sense label function, a sense
label is obtained by either Equation 51 or Equation 52. For the update function, vectors
are updated by the Skip-gram method (same as Neelakantan et al. (2014)) which tries to
predict context words with the current sense. In this algorithm, the senses of all polysemous
words are learned jointly on the whole corpus, instead of training a single model for each
individual word as in the traditional WSI methods. This is actually an instance of multi-
task learning, where WSI models for each target word are trained together, and all of these
models share the same global word embeddings.

Comparing to the traditional methods for WSI tasks, the advantages of our method in-
clude: 1) WSI models for all the polysemous words are trained jointly under the multi-task
learning framework; 2) distributed sense embeddings are taken as the knowledge repre-
sentations which are trained discriminatively, and usually have better performance than
traditional count-based distributional models (Baroni et al., 2014). To verify the two state-
ments, we carefully designed comparative experiments described in the next section.

4.3 Experiment

4.3.1 Experimental Setup and baselines

We evaluate our methods on the test set of the SemEval-2010 WSI task (Manandhar et al.,
2010). It contains 8,915 instances for 100 target words (50 nouns and 50 verbs) which mostly
come from news domain. We choose the April 2010 snapshot of Wikipedia (Shaoul and
Westbury, 2010) as our training set, as it is freely available and domain general. It contains
around 2 million documents and 990 million tokens. We train and test our models and the
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System V-Measure(%) Paired F-score(%) 80-20 SR(%) FS #CI
All Noun Verb All Noun Verb All Noun Verb All

UoY (2010) 15.7 20.6 8.5 49.8 38.2 66.6 62.4 59.4 66.8 - 11.54
NMFlib (2011) 11.8 13.5 9.4 45.3 42.2 49.8 62.6 57.3 70.2 - 4.80
NB (2013) 18.0 23.7 9.9 52.9 52.5 53.5 65.4 62.6 69.5 - 3.42
Spectral (2014) 4.5 4.6 4.2 61.5 54.5 71.6 - - - 60.7 1.87
SE-WSI-fix 9.8 13.5 4.3 55.1 50.7 61.6 62.9 58.5 69.2 63.0 2.50
SE-WSI-CRP 5.7 7.4 3.2 55.3 49.4 63.8 61.2 56.3 67.9 61.3 2.09
CRP-PPMI 2.9 3.5 2.0 57.7 53.3 64.0 59.2 53.6 67.4 59.2 1.76
WE-Kmeans 4.6 5.0 4.1 51.2 46.5 57.6 58.6 53.3 66.4 58.6 2.54

Table 6: Result on SemEval-2010 WSI task. 80-20 SR is the supervised recall of 80-20 split
supervised evaluation. FS is the F-Score of 80-20 split supervised evaluation. #CI is the average
number of clusters (senses)

baselines according to the above data setting, and compare with reported performance on
the same test set from previous papers.

For our sense embedding method, we build two systems: SE-WSI-fix which adopts
Multi-Sense Skip-gram model (Neelakantan et al., 2014) and assigns 3 senses for each word
type, and SE-WSI-CRP (Li and Jurafsky, 2015) which dynamically decides the number
of senses using a Chinese restaurant process. For SE-WSI-fix, we learn sense embeddings
for the top 6K frequent words in the training set. For SE-WSI-CRP, we first learn word
embeddings with word2vec3, then use them as pre-trained vectors to learn sense embeddings.
All training is under default parameter settings, and all word and sense embeddings are fixed
at 300 dimensions.

We also design baselines to verify the two advantages of our sense embedding methods.
One (CRP-PPMI ) uses the same CRP algorithm as SE-WSI-CRP, but with Positive PMI
vectors as pre-trained vectors. The other (WE-Kmeans) uses the vectors learned by SE-
WSI-fix, but separately clusters all the context vectors into 3 groups for each target word
with kmeans. We compute a context vector by averaging the vectors of all selected words
in the context4.

4.3.2 Comparing on SemEval-2010

We compare our methods with the following systems: (1) UoY (Korkontzelos and Man-
andhar, 2010) which is the best system in the SemEval-2010 WSI competition; (2) NMFlib

(Van de Cruys and Apidianaki, 2011) which adopts non-negative matrix factorization to
factor a matrix and then conducts word sense clustering on the test set; (3) NB (Choe
and Charniak, 2013) which adopts naive Bayes with the generative story that a context is
generated by picking a sense and then all context words given the sense; and (4) Spectral
(Goyal and Hovy, 2014) which applies spectral clustering on a set of distributional context
vectors.

3https://code.google.com/p/word2vec/
4A word is selected only if its length is greater than 3, not the target word, or not in a self-constructed

stoplist.
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Experimental results are shown in Table 6. Let us see the results on supervised recall
(80-20 SR) first, as it is the main indicator for the task. Overall, SE-WSI-fix performs
better than most of the systems, including the best system in the shared task (UoY ), and
SE-WSI-CRP works better than Spectral and all the baselines. This shows the effectiveness
of our methods. Besides, SE-WSI-CRP is 1.7 points lower than SE-WSI-fix. We think the
reason is that SE-WSI-CRP induces fewer senses than SE-WSI-fix (see the last column of
Table 6). Since both systems induce fewer senses than the golden standard which is 3.85,
inducing fewer senses harms the performance. Finally, simple as it is, NB shows the best
performance. However NB does not suffer from the domain adaptation problem as it is
trained on the training data of the task, and it uses EM algorithm which is generally too
slow to benefit from large data. We have other advantages that we train a general model
while NB learns specific model for each target word.

As for the unsupervised evaluations, SE-WSI-fix achieves a good V-Measure score (VM)
with a few induced senses. Pedersen (2010) points out that bad models can increase VM
by increasing the number of clusters, but doing this will harm performance on both Paired
F-score (PF) and SR. Even though UoY, NMFlib and NB show better VM, they (especially
UoY ) induced more senses than SE-WSI-fix. In addition, SE-WSI-fix has higher PF than
all others, and higher SR than UoY and NMFlib. Comparatively SE-WSI-CRP has lower
VM and induces fewer senses than SE-WSI-fix. One possible reason is that the “rich gets
richer” nature of CRP makes it conservative for making new senses. But its PF and SR
show that it is still a highly competitive system.

To verify the advantages of our method, we first compare SE-WSI-CRP with CRP-
PPMI as their only difference is the vectors for representing contexts. We can see that SE-
WSI-CRP performs significantly better than CRP-PPMI on both SR and VM. CRP-PPMI
has higher PF mainly because it induces fewer number of senses. The above results prove
that using sense embeddings have better performance than using count-based distributional
models. Besides, SE-WSI-fix is significantly better than WE-Kmeans on every metric.
As WE-Kmeans and SE-WSI-fix learn sense centroids in the same vectors space, while
the latter performs joint learning. Therefore, the joint learning is better than learning
separately.

4.4 Related Work

K̊agebäck et al. (2015) proposed two methods to utilize distributed representations for the
WSI task. The first method learned centroid vectors by clustering all pre-computed context
vectors of each target word. The other method simply adopted MSSG (Neelakantan et al.,
2014) and changed context vector calculation from the average of all context word vectors
to weighted average. Our work has further contributions. First, we clearly point out the
two advantages of sense embedding methods: 1) joint learning under the multi-task learning
framework, 2) better knowledge representation by discriminative training, and verify them
by experiments. In addition, we adopt various sense embedding methods to show that sense
embedding methods are generally promising for WSI, not just one method is better than
other methods. Finally, we compare our methods with recent state-of-the-art WSI methods
on both supervised and unsupervised metrics.
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4.5 Conclusion

In this Chapter, we show that sense embedding is a promising approach for WSI by adopting
two different sense embedding based systems on the SemEval-2010 WSI task. Both systems
show highly competitive performance while they learn a general model for thousands of
words (not just the tested polysemous words). we believe that the two advantages of our
method are: 1) joint learning under the multi-task learning framework, 2) better knowledge
representation by discriminative training, and verify them by experiments.
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Figure 9: Convolutional Neural Network for context vector modeling.

5 Several Possible Future Research

5.1 Structural Context Representation for Word and Sense Embedding

Previous sense embedding methods always use bag-of-word context representation. How-
ever, sometimes we may refer to a structural representation (such as a phrase or a sub-tree)
to determine the meaning of the target word. The example below demonstrates a sentence
with the polysemous target word flight.

“I took a flight with Air Canada”

By looking at each individual word such as “air” and “Canada” under the bag-of-word
scenario, the system may get confused as “air” and “Canada” may refer to some natural
scene or pollution issue of Canada. By looking at “Air Canada” together, it is precise that
flight means “a formation of aircraft in flight”.

Here I propose to incorporate phrases, Named Entities and other Syntactic information
into context modeling. To incorporate phrases, there are several possible ways: one way is
to treat any N -gram words as a phrase, another way is to chunk the training corpus and
take a chunk as a phrase. Intuitively, the later way generates more accurate phrases, but
suffers the error propagation problem. I propose to adopt the Multiple Sense Skip-Gram
(MSSG) model to learn a fixed number of senses.

5.2 Dynamic Word Embedding

One major application for sense embedding is to inference the embedding of a given target
word and context. There have been several inference algorithms for sense embedding such
as MaxSim, AvgSim and AvgSimC. Previous experiments have shown that there is a huge
difference on performance when doing inference with different algorithms. One possible
thought is: Can we learn a model that directly and dynamically output the embedding
given the target word and context? Here we propose to use Convolutional Neural Network
(CNN) and Siamese Network to build a dynamic word embedding model.
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Figure 10: The Siamese network for supervised training.

We use CNN which is shown in Figure 9 to model context representation. Here we take
the word embeddings of the context as the input layer, and extract a constant number of
N -gram features in the convolution layer for each N ∈ [2, 3, 4, 5], then use max pooling
to randomly drop half of the extracted features, then concatenate the result vector with
the target word vector, finally get the output layer which is fully connected with the max
pooling layer.

We use Siamese network to train our model. Shown in Figure 10, Siamese network uis a
neural network for supervised learning in which the reference (whether X1 and X2 are the
same) is given. The network takes a pair of instances (X1 and X2) each time, then compute
the result vectors by putting them into the neural network Gw, then compute the output
scalar as the element-wised distance between two output vectors, and finally compute the
error by comparing the scalar with the reference. Here Gw is the CNN network in Figure
9, and both Gw share the same parameter W .

For training, we plan to use SemCor corpus as it has reference senses according to
WordNet and is large in scale. For each target word, we plan to extract all the tokens of it,
and train our model by each pair of tokens.
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6 Conclusion

To conclude this paper, In Chapter 2, I introduced several cutting-edge word embedding
models which are Skip-gram, Continuous Bag-of-Word and GloVe. I first introduced Skip-
gram as it is the most widely used, then introduced the other models by comparing with
Skip-gram, finally I reach my conclusion that they actually learn word vectors by maxi-
mizing the probability of predicting the context words while minimizing the probability of
predicting other words. The prediction probability is defined as the sigmoid function of
vector cosine similarity.

In Chapter 3, I introduced several sense embedding models. First of all, I separated these
models by the way of learning senses: both clustering-based methods and non-parametric
methods define a sense as a cluster of contexts of the target word, while ontology-based
methods adopt sense definition from a sense inventory such as WordNet. Clustering-based
methods learns a fixed number (K) of senses by clustering all contexts of a word into K
groups, thus a hard clustering algorithm (such as K-means) is used. Non-parametric meth-
ods use a non-parametric random process to learn a different number of senses (K(wi))
for each word. A Non-parametric process (such as Chinese Restaurant Process) can be
seen as a soft clustering algorithm. Ontology-based methods either use a sense inventory
as a initialization, then fine-tune the sense vectors on a plain corpus, or directly solve a
constrained optimization problem constructed from the sense relations in the sense inven-
tory. In addition, I introduced the state-of-the-art methods in each direction, and finally I
showed the evaluation results both on the SCWS dataset (Huang et al., 2012a) and on my
own experiment.

In Chapter 4, I introduced a promising way to solve word sense induction (WSI) using
sense embedding, and no one has tried that before. I show that sense embedding and WSI
are inner related, so sense embedding is naturally applicable to the problem of WSI. In
addition, sense embedding has advantages over traditional WSI methods which are: (1)
distributed sense embeddings are taken as the knowledge representations which are trained
discriminatively, and usually have better performance than traditional count-based distri-
butional models (Baroni et al., 2014), and (2) a general model for the whole vocabulary is
jointly trained to induce sense centroids under the multi-task learning framework (Caru-
ana, 1997). I did my experiments on SemEval-2010 WSI task as most previous WSI meth-
ods compared their performance on it. My sense embedding-based methods demonstrated
highly competitive performance on SemEval-2010.

In Chapter 5, I proposed several possible future works for word and sense embeddings
which are: Structural Context Representation for Word and Sense Embedding, and Dy-
namic Word Embedding.
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