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Word Embedding

Word Embedding is a set of language techniques in
which words from the vocabulary are mapped to
vectors of real numbers in a low-dimensional space.



Word Embedding

Word Embedding is a set of language techniques in
which words from the vocabulary are mapped to
vectors of real numbers in a low-dimensional space.

Previous Methods

# Build co-occurrence matrix from a corpus
?A Perform dimension reduction with PCA
? Learn by counting



Word Embedding

Word Embedding is a set of language techniques in
which words from the vocabulary are mapped to
vectors of real numbers in a low-dimensional space.

Current methods

2 based on a neural network architecture

? Learn by predicting
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Skip-Gram Model
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Skip-Gram Model

Given a document formalized as a list of (w,, C)

J = yT: [y: P(D = 1|v;,v.) + Z P(D = O\fui,vc/)]

1=1 ceC; dev—c,



Sense Embedding

Ubiquitous polysemous words harm the
performance for most NLP systems

Solution: learn a embedding for each sense instead



Sense Embedding

Clustering-based

Nonparametric

Ontology-based



Sense Embedding

Clustering-based

. How sense is defined?
Nonparametric

Ontology-based



Sense Embedding

Clustering-based based on the distributional hypothesis
of Harris, (1954):

Nonparametric a word sense is reflected by a set of
contexts where it appears

Ontology-based based on the sense definition of a
sense inventory



Reisinger and Mooney (2010)

clustering-based

learn co-occurrence vector for each w;



Reisinger and Mooney (2010)

clustering-based

learn co-occurrence vector for each w;

cluster all tokens of w; into K clusters

? each token is represented by the context vector
which is the average of word vectors in the context



Reisinger and Mooney (2010)

clustering-based

learn co-occurrence vector for each w;

cluster all tokens of w; into K clusters

? each token is represented by the context vector
which is the average of word vectors in the context

learn one vector for each centroid of w,

? averaging all belonging context vectors



Reisinger and Mooney (2010)

clustering-based

The similarity functions

MaxSim(u, v) = - <III<1£}D<(]<K d(mi(u), m;(v))

K K

AvgSim (u, v) =7 Z Z d(m;(u

i=1 j=1
K K

AvgSimC(u,v) =12 ZZd vec(c ) x d(vec(c),m;(v)) x d(m;(u), 7;(v))

=1 j=1



Huang et al. (2012b)

clustering-based

score

Document
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@ee® | play
@eee | shore
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he walks to the bank ... global semantic vector (@eee® | water




Huang et al. (2012b)

clustering-based

learn word vectors
re-label the data by clustering

learn sense vectors via the same neural network



Huang et al. (2012b)

clustering-based

learn word vectors

re-label the data problematic!
The pipeline leads to error propagation!

learn sense vectors via the same neural network



Neelakantan et al. (2014)
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Neelakantan et al. (2014)

. Context Context Cluster  Word Sense Context
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Use argmax to pick the cluster: /

s; =1 cosine(p(w;, k), Veonteat (C;)) . 2,..., K]




Neelakantan et al. (2014)
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Neelakantan et al. (2014)

. Context Context Cluster  Word Sense Context
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Neelakantan et al. (2014)
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Li and Jurafsky (2015)

non-parametric

Create a Chinese Restaurant Process for each word
? asense corresponds to a table

72 adata pointis a customer



Li and Jurafsky (2015)

non-parametric

Create a Chinese Restaurant Process for each word
? asense corresponds to a table

72 adata pointis a customer

Probability for choosing a sense is defined as:

thp(kt|cz-), it k; already exists

S; — ki) ox $
pl 2 75 it £; is new




Rothe and Schutze (2015)

Best Student Paper of ACL 2015

ontology-based
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Rothe and Schutze (2015)
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ontology-based
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Rothe and Schutze (2015)

Objectives

ontology-based

argmin p(a) E<d)||D(d)E(d)w(d) —w9|| vd
argminD(d),E(d)||E(d)dz'ag(w(d)) — DDdiag(s'D)|| Vd

argmin (a) || RE@w@|| Vvd



Evaluating on Word Similarity task

Model MaxSim | AvgSim | AvgSimC
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Evaluating on Word Similarity task

Model MaxSim ¢« AvgSim < AvgSimC
Huang 26.1 62.8 65.7
MSSG 57.26 67.2 69.3
MSSG-NP 59.80 67.3 69.1
CRP 66.4 - 67.0
Retro - - 41.7
EM - - 61.3
Retro+EM | - - 58.7
AutoExtend | - 68.9 69.8




Evaluating on Word Similarity task

Model MaxSim | AvgSim | AvgSimC
Huang 26.1 62.8 65.7
MSSG 57.26 67.2 69.3 —
MSSG-NP 59.80 67.3 69.1 —
CRP 66.4 - 67.0
Retro - - 41.7

EM - - 61.3
Retro+EM | - - 58.7 /
AutoExtend | - 68.9 69.8 /




Sense Embedding for Word Sense Induction

Word Sense Induction (WSI)

? automatically discover senses from unlabeled data
without referring to any sense inventory
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Word Sense Induction (WSI)

? automatically discover senses from unlabeled data
without referring to any sense inventory

Previous methods on WSI

? learn co-occurrence vectors by counting
? learn centroids by clustering



Sense Embedding for Word Sense Induction

Word Sense Induction (WSI)

? automatically discover senses from unlabeled data
without referring to any sense inventory

Previous methods on WSI
? learn co-occurrence vectors by counting
? learn centroids by clustering

? problematic: have to learn a model for each word
impractical for real applications



Sense Embedding for Word Sense Induction

Compare with existing methods, Sense Embedding:
72 perform joint learning for multiple words
7 learn by predicting

learn by predicting >> learn by counting



Sense Embedding for Word Sense Induction

Compare with existing methods, Sense Embedding:
72 perform joint learning for multiple words

7 learn by predicting

? Promising for this task!



Sense Embedding for Word Sense Induction

SemEval-2010 Wsi

UoY (2010) 62.4 Best result of the task
NMF,, (2011) 62.6

NB (2013) 65.4 By Charniak @Brown U
Spectral (2014) 60.7 By CMU

SE-WSI-fix 66.3

SE-WSI-CRP 61.2

CRP-PPMI 59.2

WE-Kmeans 58.6



Sense Embedding for Word Sense Induction

SemEval-2010 Wsi

UoY (2010) 62.4

NMF,, (2011) 62.6

NB (2013) 65.4 Joint learning is
Spectral (2014) 60.7 better:

SE-WSI-fix 66.3 Neelakantan et al. (2014)
SE-WSI-CRP 61.2

CRP-PPMI 59.2

WE-Kmeans 58.6 word2vec + Kmeans



Sense Embedding for Word Sense Induction

SemEval-2010 Wsi

UoY (2010) 62.4

NMF,, (2011) 62.6

NB (2013) 65.4 Learn by predicting
Spectral (2014) 60.7 is better!

SE-WSI-fix 66.3

SE-WSI-CRP 61.2 Li and Jurafsky (2015)
CRP-PPMI 59.2 Co-occur+ CRP

WE-Kmeans 58.6



Conclusion

Introduced previous and current techniques for
Word Embedding

?2 Skip-gram

Describe 3 directions for Sense Embedding
# Clustering-based

72 Nonparametric

2 Ontology-based

Sense Embedding for Word Sense Induction
? Best performance right now!
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Thank you for listening

Questions?



