
Adaptive and Concurrent Secure Computation
from New Adaptive, Non-Malleable Commitments

Abstract

We present a unified approach for obtaining general secure computation that achieves adaptive-
Universally Composable (UC)-security. Using our approach we essentially obtain all previous results
on adaptive concurrent secure computation, both in relaxed models (e.g., quasi-polynomial time sim-
ulation), as well as trusted setup models (e.g., the CRS model, the imperfect CRS model). This pro-
vides conceptual simplicity and insight into what is required for adaptive and concurrent security, as
well as yielding improvements to set-up assumptions and/or computational assumptions in known mod-
els. Additionally, we provide the first constructions of concurrent secure computation protocols that are
adaptively secure in the timing model, and the non-uniform simulation model. As a corollary we also
obtain the first adaptively secure multiparty computation protocol in the plain model that is secure under
bounded-concurrency.

Conceptually, our approach can be viewed as an adaptive analogue to the recent work of Lin, Pass and
Venkitasubramaniam [STOC ‘09], who considered only non-adaptive adversaries. Their main insight
was that the non-malleability requirement could be decoupled from the simulation requirement to achieve
UC-security. A main conceptual contribution of this work is, quite surprisingly, that it is still the case
even when considering adaptive security.

A key element in our construction is a commitment scheme that satisfies a strong definition of non-
malleability. Our new primitive of concurrent equivocal non-malleable commitments, intuitively, guar-
antees that even when a man-in-the-middle adversary observes concurrent equivocal commitments and
decommitments, the binding property of the commitments continues to hold for commitments made
by the adversary. This definition is stronger than previous ones, and may be of independent interest.
Previous constructions that satisfy our definition have been constructed in setup models, but either re-
quire existence of stronger encryption schemes such as CCA-secure encryption or require independent
“trapdoors” provided by the setup for every pair of parties to ensure non-malleability. A main technical
contribution of this work is to provide a construction that eliminates these requirements and requires only
a single trapdoor.

1 Introduction

The notion of secure multi-party computation allows mutually distrustful parties to securely compute a
function on their inputs, such that only the (correct) output is obtained, and no other information is leaked,
even if the adversary controls an arbitrary subset of parties. This security is formalized via the real/ideal
simulation paradigm, requiring that whatever the adversary can do in a real execution of the protocol, can be
simulated by an adversary (“simulator”) working in the ideal model, where the parties submit their inputs to
a trusted party who then computes and hands back the output. Properly formalizing this intuitive definition
and providing protocols to realize it requires care, and has been the subject of a long line of research starting
in the 1980s.

In what is recognized as one of the major breakthroughs in cryptography, strong feasibility results were
provided, essentially showing that any function that can be efficiently computed, can be efficiently computed
securely, assuming the existence of enhanced trapdoor permutations (eTDP) [49, 29]. However, these results
were originally investigated in the stand-alone setting, where a single instance of the protocol is run in
isolation. A stronger notion is that of concurrent security, which guarantees security even when many
different protocol executions are carried out concurrently. In this work, we focus on the strongest (and most
widely used) notion of concurrent security, namely universally-composable (UC) security [6]. This notion
guarantees security even when an unbounded number of different protocol executions are run concurrently
in an arbitrary interleaving schedule and is critical for maintaining security in an uncontrolled environment
that allows concurrent executions (e.g., the Internet). Moreover, this notion also facilitates modular design
and analysis of protocols, by allowing the design and security analysis of small protocol components, which
may then be composed to obtain a secure protocol for a complex functionality.

Unfortunately, achieving these strong notions of concurrent security is far more challenging than achiev-
ing stand-alone security, and we do not have general feasibility results for concurrently secure computation
of every function. In fact, there are lower bounds showing that concurrent security (which is implied by
UC security) cannot be achieved for general functions, unless trusted setup is assumed [8, 9, 37]. Previous
works overcome this barrier either by using some trusted setup infrastructure [8, 11, 2, 7, 32, 12], or by
relaxing the definition of security [42, 48, 3, 10, 25] (we will see examples below).

Another aspect of defining secure computation, is the power given to the adversary. A static (or non-
adaptive) adversary is one who has to decide which parties to corrupt at the outset, before the execution of the
protocol begins. A stronger notion is one that allows for an adaptive adversary, who may corrupt parties at
any time, based on its current view of the protocol. It turns out that achieving security in the adaptive setting
is much more challenging than in the static one. The intuitive reason for this is that the simulator needs
to simulate messages from uncorrupted parties, but may later need to explain the messages (i.e. produce
the randomness used to generate those messages) when that party is corrupted. Moreover, the simulator
must simulate messages from uncorrupted parties without knowing their inputs, but when corrupted, must
explain the messages according to the actual input that the party holds. On the other hand, in the real
protocol execution, messages must information-theoretically determine the actual inputs of the party, both
for correctness as well as to ensure that an adversary is committed to its inputs and cannot cheat. We note that
although the setting of adaptive corruptions with erasures has been considered in the literature, in our work
we assume adaptive corruptions without erasures. Here we assume that honest parties cannot reliably erase
randomness used to generate messages of the protocol and thus when corrupted, the adversary learns the
randomness used by that party to generate previous protocol messages. Clearly, this is the more general and
challenging setting. Canetti, Lindell, Ostrovsky and Sahai [11] provided the first constructions of UC-secure
protocols with static and adaptive security in the common reference string model (CRS)1. Subsequently,
several results were obtained for both the static and adaptive case in other trusted-setup models and relaxed-
security models. The techniques for achieving security against adaptive adversaries are generally quite

1In the CRS model, all parties have access to public reference string sampled from a pre-specified distribution

1

different than the techniques needed to achieve security against static adversaries, and many results for
concurrent secure computation do not readily extend to the adaptive setting. In fact, several of the previous
results allowing general concurrent secure computation (e.g., using a trusted setup) were only proved for
the static case [35, 36, 45, 43, 22, 32], and extending them to the adaptive setting has remained an open
problem.

In this paper we focus on the strongest notions of security, and study their fundamental power and
limitations. The main question we ask is:

Under which circumstances is adaptive concurrent security generally feasible?

In particular, we refine this question to ask:

What is the minimum setup required to achieve adaptive concurrent security?

We address these questions on both a conceptual and technical level. In particular, we unify and general-
ize essentially all previous results in the generic adaptive concurrent setting, as well as providing completely
new results (constructions with weaker trusted setup requirements, weaker computational assumptions, or
in relaxed models of security), conceptual simplicity, and insight into what is required for adaptive and
concurrent secure computation. Our main technical tool is a new primitive of equivocal non-malleable
commitment. We describe our results in more detail below.

1.1 Our Results

We extend the general framework of [35], to obtain a composition theorem that allows us to establish adap-
tive UC-security in models both with, and without, trusted set-up. With this theorem, essentially all general
UC-feasibility results for adaptive adversaries follow as simple corollaries, often improving the set-up and/or
complexity theoretic assumptions; moreover, we obtain adaptive UC secure computation in new models
(such as the timing model). Additionally, our work is the first to achieve bounded-concurrent adaptively-
secure multiparty computation without setup assumptions. As such, similar to [35], our theorem takes a step
towards characterizing those models in which adaptive UC security is realizable, and also at what cost.

Although technically quite different, as mentioned previously, our theorem can be viewed as an adaptive
analogue of the work of Lin, Pass and Venkitasubramaniam [35], who study the static case. Their work
puts forward the very general notion of a “UC-puzzle” to capture the models (or setup assumptions) that
admit general static UC-security. More precisely, they prove that if we assume the existence of enhanced
trapdoor permutations and stand-alone non-malleable commitments, static UC-security is achievable in any
model that admits a UC-puzzle. In this work, we establish an analogous result for the more difficult case of
adaptive UC-security, as we outline below.

We start by introducing the notion of an Adaptive UC-Puzzle. Next, we define the new primitive (which
may be of independent interest), equivocal non-malleable commitment or EQNMCom, which is a commit-
ment with the property that a man-in-the-middle observing concurrent equivocal commitments and decom-
mitments cannot break the binding property. We then present a construction of equivocal non-malleable
commitment for any model that admits an adaptive UC-puzzle (thus, requiring this primitive does not in-
troduce an additional complexity-theoretic assumption). Finally, we rely on a computational assumption
that is known to imply adaptively secure OT (analogous to the eTDP used by [35], which implies statically
secure OT). Specifically, we use simulatable public key encryption [17, 13]. Although a weaker assump-
tion, trapdoor simulatable public key encryption is known to imply semi-honest adaptively secure OT, it is
unknown how to achieve malicious, adaptive, UC secure OT (in any setup model) from only trapdoor simu-
latable public key encryption. We remark here that, more recently, for the static case, Lin et al. show how to
extend their framework and rely on the minimal assumptions of stand-alone semi-honest oblivious-transfer
and static UC-puzzle [44]. More concretely, we show the following:

2

THEOREM 1 (Main Theorem (Informal)). Assume the existence of an adaptive UC-secure puzzle Σ using
some setup T , the existence of an EQNMCom primitive, and the existence of a simulatable public-key
encryption scheme. Then, for every m-ary functionality f , there exists a protocol Π using the same set-up
T that adaptively, UC-realizes f .

As an immediate corollary of our theorem, it follows that to establish feasibility of adaptive UC-secure
computation in any set-up model, it suffices to construct an adaptive UC-puzzle in that model. Comple-
menting the main theorem, we show that in many previously studied models, adaptive UC-puzzles are easy
to construct. Indeed, in many models the straightforward puzzle constructions for the static case (cf. [35])
are sufficient to obtain adaptive puzzles; some models require puzzle constructions that are more complex
(see Appendix E for details). We highlight some results below.
Adaptive UC in the “imperfect” string model. Canetti, Pass and shelat [12] consider adaptive UC
security where parties have access to an “imperfect” reference string–called a “sunspot”–that is generated
by an arbitrary efficient min-entropy source (obtained e.g., by measurement of some physical phenomenon).
The CPS-protocol requires m communicating parties to share m reference strings, each of them generated
using fresh entropy. We show that a single reference string is sufficient for UC and adaptively-secure MPC
(regardless of the number of parties m).
Adaptive UC in the timing model. Dwork, Naor and Sahai [22] introduced the timing model in the context
of concurrent zero-knowledge, where all players are assumed to have access to clocks with a certain drift.
Kalai, Lindell and Prabhakaran [32] subsequently presented a concurrent secure computation protocol in
the timing model; whereas the timing model of [22] does not impose a maximal upper-bound on the clock
drift, the protocol of [32] requires the clock-drift to be “small”; furthermore, it requires extensive use of
delays (roughly n∆, where ∆ is the latency of the network). Finally, [35] showed that UC security against
static adversaries is possible also in the unrestricted timing model (where the clock drift can be “large”);
additionally, they reduce the use of delays to only O(∆). To the best of our knowledge, our work is the
first to consider security against adaptive adversaries in the timing model, giving the first feasibility results
for UC and adaptively-secure MPC in the timing model; moreover, our results also hold in the unrestricted
timing model.
Adaptive UC with quasi-polynomial simulation. Pass [42] proposed a relaxation of the standard simulation-
based definition of security, allowing for super polynomial-time or Quasi-polynomial simulation (QPS). In
the static and adaptive setting, Prabhakaran and Sahai [48] and Barak and Sahai [3] obtained general MPC
protocols that are concurrently QPS-secure without any trusted set-up, but rely on strong complexity as-
sumptions. We achieve adaptive security in the QPS model under relatively weak complexity assumptions.
Moreover, we achieve a stronger notion of security, which (in analogy with [42]) requires that indistin-
guishability of simulated and real executions holds for all of quasi-polynomial time; in contrast, [3] only
achieves indistinguishability w.r.t. distinguishers with running-time smaller than that of the simulator.
Adaptive UC with non-uniform simulation. Lin et al. [35] introduced the non-uniform UC model, which
considers environments that are PPT machines and ideal-model adversaries that are non-uniform PPT
machines and prove feasibility of MPC in the same model. Relying on the same assumptions as those
introduced by [35] to construct a puzzle in non-uniform model (along with the assumption of the existence
of simulatable PKE), we show feasibility results for secure MPC in the adaptive, non-uniform UC model.
Adaptive Bounded-Concurrent Secure Multiparty Computation. Several works [36, 45, 43] consider the
notion of bounded-concurrency for general functionalities where a single secure protocol Π implementing a
functionality f is run concurrently, and there is an a priori bound on the number of concurrent executions.
In our work, we show how to construct an adaptive puzzle in the bounded-concurrent setting (with no setup
assumptions). Thus, we achieve the first results showing feasibility of bounded-concurrency of general
functionalities under adaptive corruptions.

In addition to these models, we obtain feasibility of adaptive UC in existing models such as the common
reference string (CRS) model [11], uniform reference string (URS) model [11], key registration model [2],

3

tamper-proof hardware model [33], and partially isolated adversaries model [20] (see Appendix E). For
relaxed security models, we obtain UC in the quasi-polynomial time model [42, 48, 3].

Beyond the specific instantiations, our framework provides conceptual simplicity, technical insight, and
the potential to facilitate “translation” of results in the static setting into corresponding (and much stronger)
adaptive security results. For example, in recent work of Garg et al. [24], one of the results—constructing
UC protocols using multiple setups when the parties share an arbitrary belief about the setups—can be
translated to the adaptive model by replacing (static) puzzles with our notion of adaptive puzzles. Other
results may require more work to prove, but again are facilitated by our framework.

1.2 Technical Approach and Comparison with Previous Work

There are two basic properties that must be satisfied in order to achieve adaptive UC secure computation: (1)
concurrent simulation and (2) concurrent non-malleability. The former requirement amounts to providing
the simulator with a trapdoor while the latter requirement amounts to establishing independence of execu-
tions. The simulation part is usually “easy” to achieve. Consider, for instance, the common random string
(CRS) or Uniform Reference String (URS) model where the players have access to a public reference string
that is sampled uniformly at random. A trapdoor can be easily provided to the simulator as the inverse of
the reference string under a pseudo-random generator. Concurrent non-malleability on the other hand is
significantly harder to achieve. For the specific case of the CRS model, Canetti et al. [11] and subsequent
works [23, 39] show that adaptive security can be achieved using a single trapdoor. However, more general
setup models require either strong computational assumptions, or provide the simulator with different and
independent trapdoors for different executions. For example, in the URS model, [11] interpret the random
string as a public-key for a CCA-secure encryption scheme, and need to assume dense cryptosystems, while
in the imperfect random string (sunspot) model, [12] require multiple trapdoors. Other models follow a
similar pattern, where concurrent non-malleability is difficult.

In the static case, [35] provided a framework that allowed to decouple the concurrent simulation require-
ment from the concurrent non-malleability. More precisely, they show that providing a (single) trapdoor to
achieve concurrent simulation is sufficient, and once a trapdoor is established concurrent non-malleability
can be obtained for free. This allows them to obtain significant improvement in computational/set-up as-
sumptions since no additional assumptions are required to establish non-malleability.

A fundamental question is whether the requirement of concurrent simulation and concurrent non-mallea-
bility can be decoupled in the case of adaptive UC-security. Unfortunately, the techniques used in the static
case are not applicable in the adaptive case. Let us explain the intuition. [35] and subsequent works rely on
stand-alone non-malleable primitives to achieve concurrent non-malleability. An important reason this was
possible in the static case is because non-malleable primitives can be constructed in the plain-model (i.e.
assuming no trapdoor). Furthermore, these primitives inherently admit black-box simulation, i.e. involve
the simulator rewinding the adversary. Unfortunately, in the adaptive case both these properties are difficult
to achieve. First, primitives cannot be constructed in the plain model since adaptive security requires the
simulator to be able to simultaneously equivocate the simulated messages for honest parties for different
inputs and demostrate their validity at any point in the execution by revealing the random coins for the
honest parties consistent with the messages. Second, as demostrated in [26], black-box rewinding techniques
cannot be employed since the adversary can, in between messages, corrupt an arbitrary subset of the players
(some not even participating in the execution) whose inputs are not available to the simulator.

In this work, we show, somewhat surprisingly that a single trapdoor is still sufficient to achieve concur-
rent non-malleability. Although we do not decouple the requirements, this establishes that even for the case
of adaptive security no additional setup, and therefore, no additional assumptions, are required to achieve
concurrent non-malleability, thereby yielding similar improvements to complexity and set-up assumptions
to [35].

The basic approach we take resembles closely the unified framework of [35]. By relying on previous

4

works [43, 45, 37, 11, 29], Lin et. al in [35] argue that to construct a UC protocol for realizing any multi-
party functionality, it suffices to construct a zero-knowledge protocol that is concurrently simulatable and
concurrently simulation-sound2. To formalize concurrent-simulation, they introduce the notion of a UC-
puzzle that captures the property that no adversary can successfully complete the puzzle and also obtain a
trapdoor, but a simulator exists that can generate (correctly distributed) puzzles together with trapdoors. To
achieve simulation-soundness, they introduce the notion of strong non-malleable witness indistinguishability
and show how a protocol satisfying this notion can be based on stand-alone non-malleable commitments.

A first approach for the adaptive case, would be to extend the techniques from [35], by replacing the
individual components with analogues that are adaptively secure and rely on a similar composition theorem.
While the notion of UC-puzzle can be strengthened to the adaptive setting, the composition theorem does not
hold for stand-alone non-malleable commitments. This is because, in the static case, it is enough to consider
a commitment scheme that is statistically-binding for which an indistinguishability-based notion of non-
malleability is sufficient; such a notion, when defined properly, is concurrently composable. However, when
we consider adaptive security, commitments need to be equivocable (i.e., the simulator must be capable of
producing a fake commitment transcript and inputs for honest committers that allow the transcript to be
decommitted to both 0 and 1) and such commitments cannot be statistically-binding. Therefore, we need
to consider a stronger simulation-based notion of non-malleability. Furthermore, as mentioned before, an
equivocal commitment, even in the stand-alone case, requires the simulator to have a trapdoor, which in turn
requires some sort of a trusted set-up.

Our approach here is to consider a “strong” commitment scheme, one that is both equivocable and
concurrently non-malleable at the same time, but relies on a UC-puzzle (i.e. single trapdoor) and then
establish a new composition theorem that essentially establishes feasibility of UC-secure protocol in any
setup that admits a UC-puzzle. While the core contribution of [35] was in identifying the right notion of
UC-puzzle and providing a modular analysis, in this work, the main technical novelty is in identifying the
right notion of commitment that will allow feasibility with a single trapdoor. Once this is established the
results from [35] can be extended analogously by constructing an adaptively secure UC-puzzle for each
model. In fact, in most of the models considered in this work, the puzzle constructions are essentially the
same as the static case and thus we obtain similar corollaries to [35]. While the general framework for
our work resembles [35], as we explain in the next section, the commitment scheme and the composition
theorem are quite different and requires an intricate and subtle analysis.

1.3 Main Tool: Equivocal Non-Malleable Commitments

We define and construct a new primitive called equivocal non-malleable commitments or EQNMCom. Such
commitments have previously been defined in the works of [15, 16] but only for the limited case of bounded
concurrency and non-interactive commitments. In our setting, we consider the more general case of un-
bounded concurrency as well as interactive commitments. Intuitively, the property we require from these
commitments is that even when a man-in-the-middle receives concurrent equivocal commitments and con-
current equivocal decommitments, the man-in-the-middle cannot break the binding property of the com-
mitment. Thus, the man-in-the-middle receives equivocal commitments and decommitments, but cannot
equivocate himself. Formalizing this notions seems to be tricky and has not been considered in literature
before. Previously, non-malleability of commitments has been dealt with in two scenarios:

Non-malleability w.r.t commitment:[21, 46, 34] This requires that no adversary that receives a commit-
ment to value v be able to commit to a related value (even without being able to later decommit to this
value).

2Simulation-soundness is a stronger property that implies and is closely related to non-malleability

5

Non-malleability w.r.t decommitment (or opening):[15, 46, 18] This requires that no adversary that re-
ceives a commitment and decommitment to a value v be able to commit and decommit to a related
value.

While the former is applicable only in the case the of statistically-binding commitments the latter is use-
ful even for statistically-hiding commitments. In this work, we need a definition that ensures independence
of commitments schemes that additionally are equivocable and adaptively secure. Equivocability means that
there is a way to commit to the protocol without knowing the value being committed to and later open to any
value. Such a scheme cannot be statistically-binding. Furthermore, since we consider the setting where the
adversary receives concurrent equivocal decommitments, our definition needs to consider non-malleability
w.r.t decommitment. Unfortunately, current definitions for non-malleability w.r.t decommitment in litera-
ture are defined only in the scenario where the commitment phase and decommitment phases are decoupled,
i.e. in a first phase, a man-in-the-middle adversary receives commitments and sends commitments, then,
in a second phase, the adversary requests decommitments of the commitments received in the first phase,
followed by it decommitting its own commitments. For our construction, we need to define concurrent
non-malleability w.r.t decommitments and such a two phase scenario is not applicable as the adversary can
arbitrarily and adaptively decide when to obtain decommitments. Furthermore, it is not clear how to extend
the traditional definition to the general case, as at any point, only a subset of the commitments received by
the adversary could be decommitted and the adversary could selectively decommit based on the values seen
so far and hence it is hard to define a “related” value.

We instead propose a new definition, along the lines of simulation-extractability that has been defined
in the context of constructing non-malleable zero-knowledge proofs [47]. Loosely speaking, an interactive
protocol is said to be simulation extractable if for any man-in-the-middle adversary A, there exists a prob-
abilistic polynomial time machine (called the simulator-extractor) that can simulate both the left and the
right interaction for A, while outputting a witness for the statement proved by the adversary in the right
interaction. Roughly speaking, we say that a tag-based commitment scheme (i.e., commitment scheme that
takes an identifier—called the tag—as an additional input) is concurrent non-malleable w.r.t opening if for
every man-in-the-middle adversary A that participates in several interactions with honest committers as a
receiver (called left interactions) as well as several interactions with honest receivers as a committer (called
right interactions), there exists a simulator S that can simulate the left interactions, while extracting the
commitments made by the adversary in the right interactions (whose identifiers are different from all the left
identifiers) before the adversary decommits.

A related definition in literature is that of simulation-sound trapdoor commitments from [23, 39] which
considers non-interactive equivocable commitments and require that no adversary be able to equivocate
even when it has access to an oracle that provides equivocal commitments and decommitments. This can be
thought of as the CCA analogue for equivocal commitments. We believe that such a scheme would suffice
for our construction, however, it is not clear how to construct such commitments from any trapdoor (i.e. any
set-up) even if we relax the definition to consider interactive commitments.

It is not hard to construct equivocal commitments using trusted set-up. The idea here is to provide the
simulator with a trapdoor with which it can equivocate as wells as extract the commitments on the right.
(by e.g., relying on encryption). However, to ensure non-malleability, most constructions in literature addi-
tionally impose CCA-security or provide independent trapdoors for every interaction. Our main technical
contribution consists of showing how to construct a concurrent non-malleable commitment scheme in any
trusted set-up by providing the simulator with just one trapdoor, i.e. we show how to construct a concur-
rent non-malleable commitment scheme w.r.t opening using any UC-puzzle. We remark here that, in the
static case, a stand-alone non-malleable commitment was sufficient, since the indistinguishability based no-
tion of non-malleability allowed for some form of concurrent composition. However, in the adaptive case,
it is not clear if our definition yields a similar composition and hence we construct a scheme and prove
non-malleability directly in the concurrent setting.

6

Although our main application of equivocal non-malleable commitments is achieving UC-security, these
commitments may also be useful for other applications such as concurrent non-malleable zero knowledge se-
cure under adaptive corruptions. We believe that an interesting open question is to explore other applications
of equivocal non-malleable commitments and non-malleable commitments with respect to decommitment.

2 Equivocal Non-malleable Commitments

In this section, we define Equivocal Non-malleable Commitments. Intuitively, these are equivocal commit-
ments such that even when a man-in-the-middle adversary receives equivocal commitments and openings
from a simulator, the adversary himself remains unable to equivocate. Since we are interested in construct-
ing equivocal commitments from any trapdoor (i.e. setup), we will capture trapdoors, more generally, as
witnesses to NP-statements. First, we provide definitions of language-based commitments.

Language-Based Commitment Schemes: We adopt a variant of language-based commitment schemes
introduced by Lindell et. al [38] which in turn is a variant of [4, 31]. Roughly speaking, in such commitments
the sender and receiver share a common input, a statement x from an NP language L. The properties of the
commitment scheme depend on the whether x is in L or not and the binding property of the scheme asserts
that any adversary violating the binding can be used to extract an NP-witness for the statement. We present
the formal definition below.

Definition 1 (Language-Based Commitment Schemes). Let L be an NP-Language and R, the associated
NP-relation. A language-based commitment scheme (LBCS) for L is commitment scheme 〈S,R〉 such that:

Computational hiding: For every (expected) PPT machine R∗, it holds that, the following ensembles are
computationally indistinguishable over n ∈ N .

• {staR
∗

〈S,R〉(x, v1, z)}n∈N,x∈{0,1}n,v1,v2∈{0,1}n,z∈{0,1}∗

• {staR
∗

〈S,R〉(x, v2, z)}n∈N,x∈{0,1}n,v1,v2∈{0,1}n,z∈{0,1}∗

where staR
∗

〈S,R〉(x, v, z) denotes the random variable describing the output of R∗(x, z) after receiving
a commitment to v using 〈S,R〉.

Computational binding: The binding property asserts that, there exists an polynomial-time witness-extractor
algorithm Ext, such that for any cheating committer S∗, that can decommit a commitment to two dif-
ferent values v1, v2 on common input x ∈ {0, 1}n, outputs w such that w ∈ R(x).

We now extend the definition to include equivocability.

Definition 2 (Language-Based Equivocal Commitments). Let L be an NP-Language andR, the associated
NP-relation. A language-based commitment scheme 〈S,R〉 for L is said to be equivocal, if there exists a
tuple of algorithms (S̃,Adap) such that the following holds:

Special-Hiding: For every (expected) PPT machine R∗, it holds that, the following ensembles are compu-
tationally indistinguishable over n ∈ N .

• {staR
∗

〈S,R〉(x, v1, z)}n∈N,x∈L∩{0,1}n,w∈R(x),v1∈{0,1}n,z∈{0,1}∗

• {staR
∗

〈S̃,R〉(x,w, z)}n∈N,x∈L∩{0,1}n,w∈R(x),v1∈{0,1}n,z∈{0,1}∗

where staR
∗

〈S̃,R〉(x,w, z) denotes the random variable describing the output of R∗(x, z) after

receiving a commitment using 〈S̃, R〉.

7

Equivocability: Let τ be the transcript of the interaction between R and S̃ on common input x ∈ L ∩
{0, 1}n and private input w ∈ R(x) and random tape r ∈ {0, 1}∗ for S̃. Then for any v ∈ {0, 1}n,
Adap(x,w, r, τ, v) produces a random tape r′ such that (r′, v) serves as a valid decommitment for C
on transcript τ .

2.1 Definition of Equivocal Non-Malleable Commitments

Let 〈C,R〉 be a commitment scheme, and let n ∈ N be a security parameter. Consider man-in-the-middle
adversaries that are participating in left and right interactions in which m = poly(n) commitments take
place3. We compare between a man-in-the-middle and a simulated execution. In the man-in-the-middle
execution, the adversary A is simultaneously participating in m left and right interactions. In the left inter-
actions the man-in-the-middle adversary A interacts with C receiving commitments to values v1, . . . , vm,
using identities id1, . . . , idm of its choice. It must be noted here that values v1, . . . , vm are provided to com-
mitter on the left prior to the interaction. In the right interaction A interacts with R attempting to commit
to a sequence of related values again using identities of its choice ĩd1, . . . , ĩdm; ṽi is set to the value decom-
mitted by A in the jth right interaction. If any of the right commitments are invalid its committed value is
set to ⊥. For any i such that ĩdi = idj for some j, set ṽi = ⊥—i.e., any commitment where the adversary
uses the same identity as one of the honest committers is considered invalid. Let MIMA

〈C,R〉(v1, . . . , vm, z)
denote a random variable that describes the values ṽ1, . . . , ṽm and the view of A, in the above experiment.

In the simulated execution, a simulator S interacts only with receivers on the right as follows:

1. Whenever the commitment phase of jth interaction with a receiver on the right is completed, S outputs
a value ṽj as the alleged committed value in a special-output tape.

2. During the interaction, S may output a partial view for a man-in-the-middle adversary whose right-
interactions are identical to S’s interaction so far. If the view contains a left interaction where the ith

commitment phase is completed and the decommitment is requested, then a value vi is provided as
the decommitment.

3. Finally, S outputs a view and values ṽ1, . . . , ṽm. Let simS
〈C,R〉(1

n, v1, . . . , vm, z) denote the random
variable describing the view output by the simulation and values ṽ1, . . . , ṽm.

Definition 3. A commitment scheme 〈C,R〉 is said to be concurrent non-malleable w.r.t. opening if for
every polynomial p(·), and every probabilistic polynomial-time man-in-the-middle adversary A that partic-
ipates in at most m = p(n) concurrent executions, there exists a probabilistic polynomial time simulator S
such that the following ensembles are computationally indistinguishable over n ∈ N :{

MIMA
〈C,R〉(v1, . . . , vm, z)

}
n∈N,v1,...,vm∈{0,1}n,z∈{0,1}∗{

simS
〈C,R〉(1

n, v1, . . . , vm, z)
}
n∈N,v1,...,vm∈{0,1}n,z∈{0,1}∗

A slightly relaxed definition considers all the values committed to the adversary in the left interaction
to be sampled independently from an arbitrary distribution D. We show how to construct a commitment
satisfying only this weaker definition. However, this will be sufficient to establish our results.

3We may also consider relaxed notions of concurrent non-malleability: one-many, many-one and one-one secure non-malleable
commitments. In a one-one (i.e., a stand-alone secure) non-malleable commitment, we consider only adversaries A that participate
in one left and one right interaction; in one-many, A participates in one left and many right, and in many-one, A participates in
many left and one right.

8

Definition 4. A commitment scheme 〈C,R〉 is said to be concurrent non-malleable w.r.t. opening with
independent and identically distributed (i.i.d.) commitments if for every polynomial p(·) and polynomial
time samplable distribution D, and every probabilistic polynomial-time man-in-the-middle adversary A
that participates in at most m = p(n) concurrent executions, there exists a probabilistic polynomial time
simulator S such that the following ensembles are computationally indistinguishable over n ∈ N :{

(v1 . . . , vm)← Dn : MIMA
〈C,R〉(v1, . . . , vm, z)

}
n∈N,z∈{0,1}∗{

(v1 . . . , vm)← Dn : simS
〈C,R〉(1

n, v1, . . . , vm, z)
}
n∈N,z∈{0,1}∗

Remark 1. Any scheme that satisfies our definition with a straight-line simulator in essence realizes the
ideal commitment functionality with UC-security as it acheives equivocation and straight-line extraction.
If the simulator is not straight-line, then the requirement that the left commitments are sampled from i.i.d
distributions is seemingly inherent. This is because our definition implies security against selective openning
attacks (SOA) and as proved in [41], achieving fully concurrent SOA-security with (black-box) rewinding
techniques is impossible when the distributions of the commitments are not sampleable (or unknown).

Finally, we consider commitment schemes that are both non-malleable w.r.t opening and language-based
equivocal. In a setup model, the simulator will obtain a trapdoor via the setup procedure and the witness
relation will satisfy that language requirement.

Definition 5. A commitment scheme 〈C,R〉 is said to be an equivocal non-malleable commitment scheme
if it is both a language-based equivocal commitment scheme (see Definition 2) and is concurrent non-
malleable w.r.t. opening (see Definition 4).

3 Adaptive UC-Puzzles

Informally, an adaptive UC-puzzle is a protocol 〈S,R〉 between two players–a sender S and a receiver R –
and a PPT computable relationR, such that the following two properties hold:

Soundness: No efficient receiver R∗ can successfully complete an interaction with S and also obtain a
“trapdoor” y, such thatR(TRANS, y) = 1, where TRANS is the transcript of the interaction.

Statistical UC-simulation with adaptive corruptions: For every efficient adversary A participating in
a polynomial number of concurrent executions with receivers R (i.e., A is acting as a puzzle sender
in all these executions) and at the same time communicating with an environment Z , there exists a
simulator S that is able to statistically simulate the view ofA for Z , while at the same time outputting
trapdoors to all successfully completed puzzles. Moreover, S successfully simulates the view even
when A may adaptively corrupt the receivers.

We provide a formal definition in the Appendix B. In essence, it is the same definition as in [35] with
the additional requirement of adaptive security in the simulation. We remark that our analysis will require
the puzzle to be straight-line simulatable. In fact, for almost all models considered in this work, this is
indeed the case, with the exception of the timing and partially-isolated adversaries model (for which we
argue the result independently). Using the result of [26], it is possible to argue that straight-line simulation
is necessary to achieve adaptive security (except when we consider restricted adversaries, such as the timing
or partially-isolated adversaries model).

9

4 Achieving Adaptive UC-Security

In this section, we give a high-level overview of the construction of an EQNMCom scheme and the proof of
Theorem 1, which relies on the existence of an EQNMCom scheme. For the formal construction and analysis
of our EQNMCom scheme, see Appendix C. A formal proof of Theorem 1 can be found in Appendix D.

By relying on previous results [11, 17, 30, 14, 13], the construction of an adaptive UC-secure proto-
col for realizing any multiparty functionality can be reduced to the task of constructing a UC-commitment
assuming the existence of simulatable PKE. First, we show how to construct an equivocal non-malleable
commitment scheme based on any adaptive UC-puzzle. Then combining the equivocal non-malleable com-
mitment scheme with a simulatable PKE scheme we show how to realize the UC-commitment.

4.1 Constructing EQNMCom based on Adaptive UC-Puzzles

Our protocol on a very high-level is a variant of the non-malleable commitment protocol from [34] which
in turn is a variant of the protocol from [21]. While non-malleability relies on the message-scheduling tech-
nique of [21, 34] protocol, the equivocability is obtained by relying on a variant of Feige-Shamir’s trapdoor
commitment scheme4 and adaptively secure witness-indistinguishable proof of knowledge (WIPOK) proto-
col (see Appendix G for a formal definition and construction) of Lindell-Zarosim[38]. More precisely, our
protocol proceeds in two phases: in the preamble phase, the Committer and Receiver exchange a UC-puzzle
where the Receiver is the sender of the puzzle and the Committer is the receiver of the puzzle (this phase
establishes a trapdoor through which an equivocal commitment can be generated). This is followed by the
commitment phase: here the Committer first commits to its value using a language-based (non-interactive)
equivocal commitment scheme, where the NP-language is the one corresponding to the UC-puzzle and
the particular statement is the puzzle exchanged in the preamble (this relies on the Feige-Shamir trapdoor
commitment scheme). This is followed by several invocations of an (adaptively-secure) WIPOK where the
Committer proves the statement that either it knows the value committed to in phase 2 or possesses a solution
to the puzzle from phase 1. Here we rely on the adaptively-secure (without erasures) WIPOK of [38] where
the messages are scheduled based on the Committers id using the scheduling of [21]. This phase allows
for any Committer that possess a solution to the puzzle from the preamble phase to generate a commitment
that can be equivocated (i.e. later be opened to any value). Conversely, any adversary that can equivocate
the non-interactive commitment of the second phase can be used to obtain a solution to the puzzle. The
decommitment information is simply the value and the random tape of an honest committer consistent with
the commitment phase. More specifically, our protocol proceeds as follows:

1. In the Preamble Phase, the Committer and Receiver exchange a UC-puzzle where the Receiver is the
sender of the puzzle and the Committer is the receiver of the puzzle. Let x be the transcript of the
interaction.

2. In the Committing Phase, the Committer sends c = EQComx(v), where EQComx is a language-
based equivocal commitment scheme as in Definition 2 with common input x. This is followed by
the Committer proving that c is a valid commitment for v. This is proved by 4` invocations of an
adaptively-secure (without erasures) WIPOK where the messages are scheduled based on the id (as
in [21, 34]). More precisely, there are ` rounds, where in round i, the schedule designidi

is followed
by design1−idi

(See Figure 1).

While the protocol is an adaptation of the [34] commitment scheme, where the individual components
are replaced by adaptively-secure alternatives, proving security requires a substantially different analysis. It
is easy to see that concurrent equivocability of our scheme follows from the UC-Puzzle simulation. However

4Let x be an NP-statement. The sender commits to bit b by running the honest-verifier simulator for Blum’s Hamiltonian Circuit
protocol [5] on input the statement x and the verifier message b, generating the transcript (a, b, z), and finally outputting a as its
commitment. In the decommitment phase, the sender reveals the bit b by providing both b, z.

10

design0 design1

γ2

β2

β1

α1

γ1, α2

γ2

β2

γ1

β1

α1, α2

Figure 1: Message schedule in a round in adaptively-secure WIPOK

proving concurrent non-malleability w.r.t opening with i.i.d commitments is the hard part and the core of
our contribution. Recall that, achieving this, essentially entails constructing a simulator for any man-in-
the-middle adversary, that while equivocating all commitments to the adversary (in the left interactions),
can extract all the values the value committed to by the adversary (in the right interactions) before the
decommitment phase.

Towards extracting from the right interactions, we first recall the basic idea in [34, 21]. Their scheduling
ensures that for every right interaction with a tag that is different from a left interaction, there exists a
point—called a safe-point—from which we can rewind the right interaction (and extract the committed
value), without violating the hiding property of the left interaction. It now follows from the hiding property
of the left interaction that the values committed to on the right do not depend on the value committed to
on the left. However, this technique only allows for extraction from a right interaction without violating
the hiding property of one left interaction. However, here we need to extract without violating the hiding
property of all the left interactions.

Our simulator-extractor as follows: In a main execution with the man-in-the-middle adversary, the sim-
ulator simulates all puzzles to obtain trapdoors and equivocates the left interactions using the solution of the
puzzle and simulates the right interactions honestly. Whenever a decommitment on the left is requested, the
simulator obtains a value externally (a value sampled independently from distribution D) which it decom-
mits to the adversary (this is achieved since the protocol is adaptively secure). After the adversary completes
the commitment phase of a right interaction in the main execution, the simulator switches to a rewinding
phase, where it tries to extract the value committed to by the adversary in that right interaction. Towards
this, it chooses a random WIPOK (instead of a safe point) from the commitment phase and rewinds the ad-
versary to obtain the witness used in the WIPOK (using the proof-of-knowledge extractor). In the rewinding
phase, the left interactions are now simulated using the honest committer strategy (as opposed to equivo-
cating using the solution to the puzzle). More precisely, in the rewinding phase, for every left interaction
that has already been opened (i.e. decommitment phase has occurred in the main execution), the simulator
has a value and random tape for an honest committer and for those that have not yet been opened, using the
adaptive-security of the protocol, the simulator simply samples a random value from distribution D (since
we consider only i.i.d. values for left interactions) and generates a random tape for an honest committer
consistent with the transcript so far. This stands in contrast of extracting only from safe-points as in [34].

The proof proceeds using a hybrid argument, where in hybrid experiment Hi all puzzle interactions are
simulated and the first i left commitments to complete the preamble phase is equivocated. It will follow
from the soundness of the UC-puzzle and statistical simulation that the simulation is correct H0. First, we
show that in H0, the value extracted in any particular right interaction from a random WIPOK is the value
decommitted to by the adversary. This follows from the fact that for the adversary to equivocate, it must
know the solution to the UC-puzzle and this violates the statistical simulation and soundness condition of the
puzzle. We show the following properties for every i, and the proof of correctness follows using a standard
hybrid argument.

• If the value extracted in any particular right interaction from a random WIPOK is the value decom-

11

mitted to by the adversary in Hi−1, then the value extracted from a random WIPOK and the safe
point of that right interaction w.r.t to ith left interaction are the same and equal to the decommit-
ment. We show this by carefully considering another sequence of hybrids that yields an adversary that
violates the soundness of the UC-puzzle in an execution where the puzzles are not simulated. This
will rely on fact that the simulator simulates the left interactions in the rewindings using the honest
committer strategy and the pseudo-randomness of the non-interactive commitment scheme used in the
Commitment phase.

• If the value extracted from the safe point is the decommitment in Hi−1 then the same holds in Hi.
We rely on the proof technique of [34] through safe-points to establish this. In slightly more detail,
we show that for any particular right interaction, the value extracted from the safe-point w.r.t ith left
interaction does not change when the ith left commitment is changed from an honest commitment to
an equivocal commitment. Recall that a safe-point can be used to extract the value committed to in the
right without rewinding the particular left interaction. Since, the non-interactive commitment scheme
used has pseudo-random commitments, an adversary cannot distinguish if it is receiving an honest or
equivocal commitment in the ith interaction.

• If the value extracted in the right interaction from the safe point is the value decommitted to by the
adversary in Hi, then the value extracted from a random WIPOK and the safe point are the same and
equal to the decommitment in Hi. This is established exactly as the first property.

See Appendix C for the formal construction and proof.

4.2 Adaptive UC-secure Commitment Scheme

We now provide the construction of a UC-commitment scheme. First, we recall the construction of the
adaptive UC-secure commitment in the common reference string model (CRS) from [11] to motivate our
construction. In the [11] construction, the CRS contains two strings. The first string consists of a random
image y = f(x) of a one-way function f and the second string consists of a public key for a cca-secure
encryption scheme. The former allows a simulator to equivocate the commitment when it knows x and the
public key allows the simulator to extract committed values from the adversary using its knowledge of the
corresponding secret-key. The additional CCA requirement ensures non-malleability.

Our construction follows a similar approach, with the exception that instead of having a common refer-
ence string generated by a trusted party, we use the equivocal non-malleable commitment to generate two
common-reference strings between every pair of parties: one for equivocation and the other for extraction.
This is achieved by running the following “non-malleable” coin-tossing protocol between an initiator and a
responder. Let 〈Scom,Rcom〉 be a concurrent equivocal non-malleable commitment scheme and 〈Spuz,Rpuz〉
be a UC-puzzle.

1. The initiator commits to a random string r0 using 〈Scom,Rcom〉 to the responder.

2. The responder chooses a random string r1 and sends to the Initiator.

3. The initiator opens its commitment and reveals r0.

4. The output of the coin toss is: r = r0 ⊕ r1.

The coin-tossing protocol is run between an initiator and responder and satisfies the following two prop-
erties: (1) For all interactions where the initiator is honest, there is a way to simulate the coin-toss. This
follows directly from the equivocability of the commitment scheme 〈Scom,Rcom〉. (2) For all interactions
where the initiator is controlled by the adversary, the coin-toss generated is uniformly-random. This follows
from the simulation-extractability of the commitment scheme.

Using the coin-tossing protocol we construct an adaptive UC-commitment scheme. First, the sender and
receiver interact in two coin-tossing protocols, one where the sender is the initiator, with outcome coin1

12

and the other, where the receiver is the initiator, with outcome coin2. Let x be the statement that coin1

is in the image of a pseudo-random generator G. Also let, PK = oGen(coin2) be a public key for the
simulatable encryption scheme (Gen,Enc,Dec, oGen, oRndEnc, rGen, rRndEnc). To commit to a string β,
the sender sends a commitment to β using the non-interactive language-based commitment scheme with
statement x along with strings S0 and S1 where one of the two strings (chosen at random) is an encryption
of decommitment information to β and the other string is outputted by oRndEnc. In fact, this is identical
to the construction in [11], with the exception that a simulatable encryption scheme is used instead of a
CCA-secure scheme.

Binding follows from the soundness of the adaptive UC-puzzle and hiding follows from the hiding
property of the non-interactive commitment scheme and the semantic security of the encryption scheme. It
only remains to show that the scheme is concurrently equivocable and extractable. To equivocate a com-
mitment from a honest committer, the simulator manipulates coin1 (as the honest party is the initiator) so
that coin1 = G(s) for a random string s and then equivocates by equivocating the non-interactive com-
mitment and encrypting the decommitment information for both bits 0 and 1 in Sb and S1−b (where b is
chosen at random). To extract a commitment made by the adversary, the simulator manipulates coin2 so
that coin2 = rGen(r) and (PK, SK) = Gen(r) for a random string r. Then it extracts the decommitment
information in the encryptions sent by the adversary using SK.

The procedure described above works only if the adversary does not encrypt the decommitment infor-
mation for both 0 and 1 even when the simulator is equivocating. On a high-level, this follows since, if the
coin-toss coin1 cannot be manipulated by the adversary when it is the initiator, then the coin1 is not in the
range of G with very high probability and hence the adversary cannot equivocate (equivocating implies a
witness can be extracted that proves that coin1 is in the range of G). Proving this turns out to be subtle and
an intricate analysis relying on the simulation-extractability of the 〈Scom,Rcom〉-scheme is required.

We use a “non-malleable” coin-toss protocol to generate two keys, one for equivocation and another
for extraction. Such an idea has been pursued before, for instance, in [18], they use a coin-toss to generate
keys for extraction and equivocation. However, they use a single coin-toss and depending on which party is
corrupt, the simulation yields an extraction or equivocation key. In recent and independent work, Garg and
Sahai [26], show how to achieve stand-alone adaptively-secure multiparty computation in the plain model
(assuming no-setup) using non black-box simulation. They rely on a coin-tossing protocol using equivocal
commitments to generate a common random string and then rely on previous techniques used in the uniform
reference string model [11] to securely realize any functionality. An important difference between their
approach and ours is that while our construction relies on a single trapdoor they require the trapdoors to be
non-malleable.5 For details of the construction and proof, see Figure 2 and Appendix D.

5 Puzzle Instantiations

By Theorem 1, it suffices to present an adaptive UC puzzle in a given model to demonstrate feasibility of
adaptive and UC secure computation. We first give some brief intuition on the construction of adaptive
UC-puzzles in various models. Formal constructions and proofs follow.

In the Common reference string (CRS) model, the Uniform reference string (URS) model and the Key
registration model the puzzles are identical to the ones presented in [35] for the static case, where the puzzle
interactions essentially consists of a call to the corresponding ideal setup functionalities. Thus, in these mod-
els, the simulator is essentially handed the trapdoor for the puzzle via its simulation of the ideal functionality
and the puzzles are non-interactive. In the Timing model and the Partially Isolated Adversaries model, we
rely on essentially the same puzzles as [35], however, we need to modify the simulator to accommodate
adaptive corruption by the adversary (see Section E.8 for more details).

Constructing adaptive UC-puzzles in the Sunspots model is less straightforward and so we give more
5In [18], they use separate keys for each party and in [26], the trapdoors admit a “simulation-soundness” property.

13

detail here. Simulated reference strings r in the Sunspots model have Kolmogorov complexity smaller
than k. Thus, as in [35], the puzzle sender and receiver exchange 4 strings (v1, c2, v2, c2). We then let Φ′

denote the statement that c1, c2 are commitments to messages p1, p2 such that (v1, p1, v2, p2) is an accepting
transcript of a Universal argument of the statement Φ = KOL(r) ≤ k. Note that since we require statistical
and adaptive simulation of puzzles, the commitment scheme used must be both statistically-hiding and
”obliviously samplable” (i.e. there is a way to generate strings that are statistically indistinguishable from
commitments, without ”knowing” the committed value). See Section E.6 for details.

To construct an adaptive puzzle for the bounded-concurrent model we follow an approach similar to
the sunspots model combined with the bounded-concurrent non black-box zero-knowledge protocol of
Barak[1]. In fact this is inspired by the stand alone adaptive secure multiparty computation construction
of Garg, et al, [26]. See Section E.7 for details.

Protocol 〈S,R〉: Input: The sender S has a bit β to be committed to.

Preamble:

• An adaptive UC-Puzzle interaction 〈Spuz,Rpuz〉 on input 1n where R is the receiver and S is the sender.
Let TRANS1 be the transcript of the messages exchanged.

• An adaptive UC-Puzzle interaction 〈Spuz,Rpuz〉 on input 1n where S is the receiver and R is the sender.
Let TRANS2 be the transcript of the messages exchanged.

Commit phase:

Stage 1: S and R run a coin-tossing protocol to agree on strings PK and CRS:
Coin-toss to generate PK:

1. The parties run protocol 〈Scom,Rcom〉 with common input TRANS1. R plays the part of sender with
input a random string r0R.

2. S chooses a random string r0S and sends to R.
3. R opens its commitment and reveals r0R.
4. The output of the coin toss is: r = r0S ⊕ r0R. S and R run oGen(r) to obtain public key PK.

Coin-toss to generate CRS:
1. The parties run protocol 〈Scom,Rcom〉 with common input TRANS2. S plays the part of sender with

input a random string r1S.
2. R chooses a random string r1R and sends to S.
3. S opens its commitment and reveals r1S.
4. The output of the coin-toss is: x = r1S ⊕ r1R.

Stage 2:
1. The parties run 〈Seq,Req〉 with common input x to generate a commitment C = EQComx(β; r)

where S plays the part of Seq with input bit β.
2. S chooses b ∈ {0, 1} at random and sends to R the strings (S0, S1) to where:

• Sb is an encryption of the decommitment information of C (to bit β) under PK.
• S1−b is generated by running oRndEnc(PK, rEnc) where rEnc is chosen uniformly at random.

Reveal phase:

1. S sends β, b, and the randomness used to generate S0, S1 to R.

2. R checks that S0, S1 can be reconstructed using β, b and the randomness produced by S.

Figure 2: The Adaptive Commitment Protocol 〈S,R〉

14

References

[1] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106–115, 2001.

[2] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable protocols
with relaxed set-up assumptions. In FOCS, pages 186–195, 2004.

[3] Boaz Barak and Amit Sahai. How to play almost any mental game over the net - concurrent composi-
tion via super-polynomial simulation. In FOCS, pages 543–552, 2005.

[4] M. Bellare, S. Micali, and R. Ostrovsky. The (true) complexity of statistical zero knowledge. In STOC,
pages 494–502, 1990.

[5] Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings of the International
Congress of Mathematicians, pages 1444–1451, 1986.

[6] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
pages 136–145, 2001.

[7] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security with
global setup. In TCC, pages 61–85, 2007.

[8] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO, pages 19–40,
2001.

[9] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally composable
two-party computation without set-up assumptions. In EUROCRYPT, pages 68–86, 2003.

[10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security in the plain
model from standard assumptions. In FOCS, pages 541–550, 2010.

[11] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party
and multi-party secure computation. In STOC, pages 494–503, 2002.

[12] Ran Canetti, Rafael Pass, and Abhi Shelat. Cryptography from sunspots: How to use an imperfect
reference string. In FOCS, pages 249–259, 2007.

[13] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Improved non-committing
encryption with applications to adaptively secure protocols. In ASIACRYPT, pages 287–302, 2009.

[14] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Simple, black-box construc-
tions of adaptively secure protocols. In TCC, pages 387–402, 2009.

[15] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive and non-malleable com-
mitment. In STOC, pages 141–150, 1998.

[16] Giovanni Di Crescenzo, Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Efficient and non-
interactive non-malleable commitment. In EUROCRYPT, pages 40–59, 2001.

[17] Ivan Damgård and Jesper Buus Nielsen. Improved non-committing encryption schemes based on a
general complexity assumption. In CRYPTO, pages 432–450, 2000.

[18] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding universally composable
commitment schemes with constant expansion factor. In CRYPTO, pages 581–596, 2002.

15

[19] Ivan Damgård, Jesper Buus Nielsen, and Daniel Wichs. Isolated proofs of knowledge and isolated zero
knowledge. In EUROCRYPT, pages 509–526, 2008.

[20] Ivan Damgård, Jesper Buus Nielsen, and Daniel Wichs. Universally composable multiparty computa-
tion with partially isolated parties. In TCC, pages 315–331, 2009.

[21] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J. Comput.,
30(2):391–437, 2000.

[22] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In IN 30TH STOC, pages
409–418, 1999.

[23] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge protocols using
signatures. In EUROCRYPT, pages 177–194, 2003.

[24] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Bringing people of different beliefs to-
gether to do uc. In TCC, pages 311–328, 2011.

[25] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently secure computation in
constant rounds. In EUROCRYPT, pages 99–116, 2012.

[26] Sanjam Garg and Amit Sahai. Adaptively secure multi-party computation with dishonest majority. In
CRYPTO, pages 105–123, 2012.

[27] Oded Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge University Press,
Cambridge, UK, 2001.

[28] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Collision-free hashing from lattice problems. In
Studies in Complexity and Cryptography, pages 30–39. 2011.

[29] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[30] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer -
efficiently. In CRYPTO, pages 572–591, 2008.

[31] Toshiya Itoh, Yuji Ohta, and Hiroki Shizuya. A language-dependent cryptographic primitive. J. Cryp-
tology, 10:37–50, 1997.

[32] Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent composition of secure pro-
tocols in the timing model. J. Cryptology, 20(4):431–492, 2007.

[33] Jonathan Katz. Universally composable multi-party computation using tamper-proof hardware. In
EUROCRYPT, pages 115–128, 2007.

[34] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent non-malleable
commitments from any one-way function. In TCC, pages 571–588, 2008.

[35] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified framework for con-
current security: universal composability from stand-alone non-malleability. In STOC, pages 179–188,
2009.

[36] Yehuda Lindell. Protocols for bounded-concurrent secure two-party computation. Chicago J. Theor.
Comput. Sci., 2006.

16

[37] Yehuda Lindell. Bounded-concurrent secure two-party computation without setup assumptions. In
STOC, pages 683–692, 2003.

[38] Yehuda Lindell and Hila Zarosim. Adaptive zero-knowledge proofs and adaptively secure oblivious
transfer. In TCC, pages 183–201, 2009.

[39] Philip D. MacKenzie and Ke Yang. On simulation-sound trapdoor commitments. In EUROCRYPT,
pages 382–400, 2004.

[40] Moni Naor, Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Perfect zero-knowledge
arguments for np using any one-way permutation. J. Cryptology, 11(2):87–108, 1998.

[41] Rafail Ostrovsky, Vanishree Rao, Alessandra Scafuro, and Ivan Visconti. Revisiting lower and upper
bounds for selective decommitments. In TCC, pages 559–578, 2013.

[42] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol composition. In
EUROCRYPT, pages 160–176, 2003.

[43] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In STOC,
pages 232–241, 2004.

[44] Rafael Pass, Huijia Lin, and Muthuramakrishnan Venkitasubramaniam. A unified framework for uc
from only ot. In ASIACRYPT, pages 699–717, 2012.

[45] Rafael Pass and Alon Rosen. Bounded-concurrent secure two-party computation in a constant number
of rounds. In FOCS, pages 404–413, 2003.

[46] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In Proceedings of the 46th
Annual IEEE Symposium on Foundations of Computer Science, FOCS ’05, pages 563–572, 2005.

[47] Rafael Pass and Alon Rosen. New and improved constructions of non-malleable cryptographic proto-
cols. In STOC, pages 533–542, 2005.

[48] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal composability
without trusted setup. In STOC, pages 242–251, 2004.

[49] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages
162–167, 1986.

A Definitions and Background

A.1 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to commit itself to a value while
keeping it secret from the receiver (this property is called hiding). Furthermore, in a later stage when the
commitment is opened, it is guaranteed that the “opening” can yield only a single value determined in
the committing phase (this property is called binding). In this work, we consider commitment schemes
that are statistically-binding, namely while the hiding property only holds against computationally bounded
(non-uniform) adversaries, the binding property is required to hold against unbounded adversaries. More
precisely, a pair of PPT machines 〈S,R〉 is said to be a commitment scheme if the following two properties
hold.

Computational hiding: For every (expected) PPT machine R∗, it holds that, the following ensembles are
computationally indistinguishable over n ∈ N .

17

• {staR
∗

〈S,R〉(v1, z)}n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

• {staR
∗

〈S,R〉(v2, z)}n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

where staR
∗

〈S,R〉(v, z) denotes the random variable describing the output of R∗ after receiving a com-
mitment to v using 〈C,R〉.

Statistical binding: Informally, the statistical-binding property asserts that, with overwhelming probability
over the coin-tosses of the receiver R, the transcript of the interaction fully determines the value
committed to by the sender. We refer the reader to [27] for more details.

We say that a commitment is valid if there exists a unique committed value that a (potentially malicious)
committer can open to successfully.

A.2 Simulatable Encryption Schemes

Definition 6. A `-bit simulatable encryption scheme consists of an encryption scheme (Gen,Enc,Dec) aug-
mented with (oGen, oRndEnc, rGen, rRndEnc). Here, oGen and oRndEnc are the oblivious sampling algo-
rithms for public keys and ciphertexts, and rGen and rRndEnc are the respective inverting algorithms, rGen
(resp. rRndEnc) takes rG (resp. (PK, rE,m)) as the trapdoor information. We require that, for all messages
m ∈ {0, 1}`, the following distributions are computationally indistinguishable:

{rGen(rG), rRndEnc(PK, rE,m), PK, c | (PK, SK) = Gen(1k; rG), c = EncPK(m; rE)}
and {r̂G, r̂E, P̂K, ĉ | (P̂K,⊥) = oGen(1k; r̂G), ĉ = oRndEncP̂K(1k; r̂E)}

It follows from the definition that a trapdoor simulatable encryption scheme is also semantically secure.

A.3 Traditional UC

Environment. The model of execution includes a special entity called the UC-environment (or environ-
ment) Z. The environment “manages” the whole execution: it invokes all the parties at the beginning of the
execution, generates all inputs and reads all outputs, and finally produces an output for the whole concurrent
execution. Intuitively, the environment models the “larger world” in which the concurrent execution takes
place (e.g., for a distributed computing task over the Internet, the environment models all the other activities
occurring on the Internet at the same time).

Adversarial behavior. The model of execution also includes a special entity called the adversary, that
represents adversarial activities that are directly aimed at the protocol execution under consideration. We
consider an adaptive adversary, who may corrupt any party at any point during the executions, and as a
function of what he sees. When a party is corrupted, it shares all its tapes with the adversary and follows the
instructions from the adversary for all its future actions.

While honest parties only communicate with the environment through the input/output of the functions
they compute, the adversary is also able to exchange messages with the environment in an arbitrary way
through out the computation6. Furthermore, the adversary controls the scheduling of the delivery of all
messages exchanged between parties (messages sent by the environment is delivered directly). Technically,
this is modeled by letting the adversary read the outgoing message tapes of all parties and decide whether or
not and when (if at all) to deliver the message to the recipient, therefore the communication is asynchronous
and lossy. However, the adversary cannot insert messages and claim arbitrary sender identity. In other
words, the communication is authenticated.

6Through its interaction with the environment, the adversary is also able to influence the inputs to honest parties indirectly.

18

Protocol execution. The execution of a protocol π with the environment Z, adversary A and trusted party
G proceeds as follows. The environment is the first entity activated in the execution, who then activates the
adversary, and invokes other honest parties. At the time an honest party is invoked, the environment assigns
it a unique identifier, and inquiries the adversary whether it wants to corrupt the party or not. To start an
execution of the protocol π, the environment initiates a protocol execution session, identified by a session
identifier sid, and activates all the participants in that session. An honest party activated starts executing the
protocol π thereafter and has access to the trusted party G. We remark that in the UC model, the environment
only initiates one protocol execution session.

Invoking parties. The environment invokes an honest party by passing input (invoke, Pi) to it. Pi is the
globally unique identity for the party, and is picked dynamically by the environment at the time it
is invoked. Immediately after that, the environment notifies the adversary of the invocation of Pi by
sending the message (invoke, Pi) to it, who can then choose to corrupt the party by replying (corrupt,
Pi). Note that here as the adversary is static, parties are corrupted only when they are “born” (invoked).

Session initiation. To start an execution of protocol π, the environment selects a subset U of parties that
has been invoked so far. For each party Pi ∈ U , the environment activates Pi by sending a start-
session message (start-session, Pi, sid, ci,sid, xi,sid) to it, where sid is a session id that identifies this
execution. We remark that in the UC model, the environment starts only one session, and hence all
the parties activated have the same session id.

Honest party execution. An honest party Pi, upon receiving (start-session, Pi, sid, ci,sid, xi,sid), starts
executing its code ci,sid input xi,sid. During the execution,

• the environment can read Pi’s output tape and at any time may pass additional inputs to Pi;

• according to its code, Pi can send messages (delivered by the adversary) to other parties in the
session, in the format (Pi, Pj , s, content)7, where Pj is the identity of the receiver;

• according to its code, Pi can send input to the trusted party in the format (Pi, F , s, input).

Adversary execution. After activation, the adversary may perform one of the following activities at any
time during the execution.

• The adversary can read the outgoing communication tapes of all honest parties and decides to
deliver some of the messages.

• A can exchange arbitrary messages with the environment.

• The adversary can read the inputs, outputs, incoming messages of a corrupted party, and instruct
the corrupted party for any action.

• The adversary can decide to corrupt any party from the set of honest parties at the moment.

Output. The environment outputs a final result for the whole execution in the end.

In the execution of protocol π with security parameter n ∈ N , environment Z, adversaryA and trusted party
G, we define ExecGπ,A,Z(n) to be the random variable describing the output of the environment Z, resulting
from the execution of the above procedure.

LetF be an ideal functionality; we denote by πideal the protocol accessingF , called as the ideal protocol.
In πideal parties simply interacts with Fwith their private inputs, and receives their corresponding outputs
from the functionality at the end of the computation. Then the ideal model execution of the functionality

7The session id in the messages enables the receiver to correctly de-multiplexing a message to its corresponding session, even
though the receiver may involve in multiple sessions simultaneously.

19

F is just the execution of the ideal protocol πideal with environment Z, adversary A′ and trusted party F .
The output of the execution is thus ExecFπideal,A′,Z

(n). On the other hand, the real model execution does not
require the aid of any trusted party. Let π be a multi-party protocol implementing F . Then, the real model
execution of π is the execution of π with security parameter n, environment Z and adversary A, whose
output is the random variable Execπ,A,Z(n). Additionally, the G-Hybrid model execution of a protocol π is
the execution of π with security parameter n, environment Z and adversary A and ideal functionality G.

Security as emulation of a real model execution in the ideal model. Loosely speaking, a protocol
securely realizes an ideal functionality if it securely emulates the ideal protocol πideal. This is formulated
by saying that for every adversary A in the real model, there exists an adversary A′ (a.k.a. simulator) in
the ideal model, such that no environment Z can tell apart if it is interacting with A and parties running the
protocol, or A′ and parties running the ideal protocol πideal.

Definition 7. (Adaptive UC security) Let F and πideal be defined as above, π be a multi-party protocol in
the G-hybrid model. The protocol π is said to realize F with adaptive UC security in G-hybrid model, if for
every uniform PPT adaptive adversary A, there exists a uniform PPT simulator A′, such that, for every
non-uniform PPT environment Z, the following two ensembles are indistinguishable.{

ExecGπ,A,Z(n)
}

n∈N
≈
{

ExecFπideal,A′,Z
(n)
}

n∈N

Multi-session extension of ideal functionalities Note that the UC model only considers a single session
of the protocol execution. (The environment is only allowed to open one session). To consider multi-
ple concurrent executions, we focus on the multi-session extension of ideal functionalities [6, 11]. More
specifically, let F̂ be the multi-session extension of F . F̂ runs multiple copies of F , where each copy will
be identified by a special “sub-session identifier”. Every k parties, trying access F together, share a sub-
session identifier, ssid. To compute, each party simply sends its private input together with ssid to F̂ . F̂
upon receiving all the inputs, activates the appropriate copy of F identified by ssid (running within F̂), and
forwards the incoming messages to that copy. (If no such copy of Fexists then a new copy is invoked and is
given that ssid.) Outputs generated by the copies of Fare returned to corresponding parties by F̂ .

A.4 A Generalized Version of UC

In the UC model, the environment is modeled as a non-uniform PPT machine and the ideal-model ad-
versary (or simulator) as a (uniform) PPT machines. We consider a generalized version (in analogy with
[42, 48]) where we allow them to be in arbitrary complexity classes. Note, however, that the adversary is
still PPT . Additionally, we “strengthen” the definition by allowing the environment to output a bit string
(instead of a single bit) at the end of an execution. In the traditional UC definition, it is w.l.o.g. enough for
the environment to output a single bit [6]; in our generalized version this no longer holds and we are thus
forced to directly consider the more stringent version.

We represent a generalized UC model by a 2-tuple (Cenv, Csim), where Cenv and Csim are respectively
the classes of machines the environment and the simulator of the general model belong to. We consider
only classes, Cenv and Csim, that are closed under probabilistic polynomial time computation. For a model
(Cenv, Csim), let cl(Cenv, Csim) denote the complexity class that includes all computations by PPT oracle
Turing machines M with oracle access to Cenv and Csim.

Definition 8 ((Cenv, Csim)-Adaptive UC adaptive security). Let F and πideal be, as defined above, and π be
a multi-party protocol. The protocol π is said to realize F with (Cenv, Csim)-adaptive UC security, if for
every PPT machine A, there exists a machine A′ ∈ Csim, such that, for every Z ∈ Cenv, the following two
ensembles are indistinguishable w.r.t Csim.{

Execπ,A,Z(n)
}

n∈N
≈
{

ExecFπideal,A′,Z
(n)
}

n∈N

20

Using the above notation, traditional UC is equivalent to (n.u.PPT ,PPT)-UC-security. We let QPS-
UC denote (n.u.PPT ,PQT)-UC-security8 (where PQT denotes probabilistic quasi-polynomial time al-
gorithms), and Non-uniform UC denote (PPT ,n.u.PPT)-UC-security.

B Adaptive UC-Puzzles

Informally, an adaptive UC-puzzle is a protocol 〈S,R〉 between two players–a sender S and a receiver R –
and a PPT computable relationR, such that the following two properties hold:

Soundness: No efficient receiver R∗ can successfully complete an interaction with S and also obtain a
“trapdoor” y, such thatR(TRANS, y) = 1, where TRANS is the transcript of the interaction.

Statistical UC-simulation with adaptive corruptions: For every efficient adversary A participating in
a polynomial number of concurrent executions with receivers R (i.e., A is acting as a puzzle sender
in all these executions) and at the same time communicating with an environment Z , there exists a
simulator S that is able to statistically simulate the view ofA for Z , while at the same time outputting
trapdoors to all successfully completed puzzles. Moreover, S successfully simulates the view even
when A may adaptively corrupt the receivers.

Formally, let n ∈ N be a security parameter and 〈S,R〉 be a protocol between two parties, the sender
S and the receiver R. We consider a concurrent puzzle execution for an adversary A. In a concurrent
puzzle execution, A exchanges messages with a puzzle-environment Z ∈ Cenv and participates as a sender
concurrently in m = poly(n) puzzles with honest receivers R1, . . . ,Rm. At the onset of a concurrent ex-
ecution, Z outputs a session identifier sid that all receivers in the concurrent puzzle execution receive as
input. Thereafter, the puzzle-environment is allowed to exchange messages only with the adversary A. We
compare a real and an ideal execution.

Real execution. In the real execution, the adversary A on input 1n, interacts with a puzzle-environment
Z ∈ Cenv and participates as a sender in m interactions using 〈S,R〉 with honest receivers that receive input
sid (decided by Z). The adversary A is allowed to exchange arbitrary messages with environment Z when
participating in puzzle interactions with the receivers as a sender. In addition A may adaptively corrupt any
of the receivers R1, . . . ,Rm at any point during or after the execution. We assume without loss of generality
that, after every puzzle-interaction, A honestly sends TRANS to Z , where TRANS is the puzzle-transcript.
Finally, Z outputs a string in {0, 1}∗. We denote this by REALA,Z(n).
Ideal execution. Consider A′ ∈ Csim in the ideal-model that has a special output-tape (not accessible by
Z). In the ideal execution, A′ on input 1n interacts with puzzle-environment Z . We denote the output of Z
at the end of the execution by IDEALA′,Z(n).

Definition 9. Adaptive UC-Puzzle. A pair (〈S,R〉,R) is a (Cenv, Csim)-secure Adaptive UC-puzzle for a
polynomial time computable relationR and model (Cenv, Csim), if the following conditions hold.

Soundness: For every malicious PPT receiver A, there exists a negligible function ε(·) such that the
probability thatA, after an execution with S on common input 1n, outputs y such that y ∈ R(TRANS)
where TRANS is the transcript of the messages exchanged in the interaction, is at most ε().

Statistical Simulatability: For every adversary A ∈ Cenv participating in a concurrent puzzle execu-
tion, there is a simulator A′ ∈ Csim such that for all puzzle-environments Z ∈ Cenv, the ensem-
bles {REALA,Z(n)}n∈N and {IDEALA′,Z(n)}n∈N are statistically close over n ∈ N and when-

8We mentioned that this is stronger than the notion of QPS security of [42, 48, 3] which only consider indistinguishability w.r.t
PPT ; we, in analogy with the notion of strong QPS of [42] require indistinguishability to hold also w.r.t PQT .

21

ever A′ sends a message of the form TRANS to Z , it outputs y in its special output tape such that
y ∈ R(TRANS).

The analysis of our equivocal non-malleable commitment scheme will additionally require the puzzle
to be straight-line simulatable. In fact, for all models considered in this work, this is indeed the case,
with the exception of the timing and partially-isolated adversaries model (for which we argue the result
independently). Using the result of [26], it is possible to argue that straight-line simulation is necessary to
achieve adaptive security (when there are no communication restrictions on the adversary, such as the timing
or partially-isolated adversaries model).9

C The Equivocal Non-Malleable Commitment Scheme (EQNMCom)

We note that the construction presented here is the same as the construction of [21, 34] with the following
changes: the statistically-binding commitment is replaced with an equivocal commitment and the special-
sound WI proofs are replaced with adaptively-secure WIPOK’s. Although the constructions are similar, the
analysis here differs significantly from the analysis of the previous constructions of [21, 34] where the fact
that the first commitment is statistically-binding plays a large part in the proof.

The protocol Π = 〈Scom,Rcom〉 proceeds in the following two stages on common input the identity
id ∈ {0, 1}` of the committer, common string x, and security parameter n.

1. In Stage 1, the Committer sends c = EQComx(v), where EQCom is a language-based equivocal
commitment scheme as in Definition 2 with common input x.

2. In Stage 2, the Committer proves that c is a valid commitment for v. This is proved by 4` invoca-
tions of an adaptively-secure (without erasures) WIPOK (See Appendix G) where the messages are
scheduled based on the id (as in [21, 34]). More precisely, there are ` rounds, where in round i, the
schedule designidi

is followed by design1−idi
(See Figure 3).

design0 design1

γ2

β2

β1

α1

γ1, α2

γ2

β2

γ1

β1

α1, α2

Figure 3: Message schedule in a round in adaptively-secure WIPOK

C.1 Analysis

In this subsection, we prove that Π = 〈Scom,Rcom〉 is an equivocal non-malleable commitment scheme
when combined with an adaptive UC-puzzle in a preamble phase where the receiver acts the sender and
the committer acts as the receiver and the NP-statement x used in 〈Scom,Rcom〉 is the transcript of the
interaction from the preamble phase. More precisely, consider the following protocol: Let (〈S,R〉,R) be a
(Cenv, Csim)-secure adaptive UC-puzzle. The protocol Π proceeds in the following two phases on common
input the identity id ∈ {0, 1}` of the committer, and private-input string r for the committer and security
parameter n.

9The basic idea in [26], is that the adversary can corrupt a random subset of (dummy) parties between any two messages thereby
requiring a “rewinding” simulator to produce their inputs that the simulator does not a priori know.

22

Commitment Protocol Π = 〈Scom,Rcom〉

Common input: An identifier id ∈ {0, 1}` and common input x.

Auxiliary Input for Committer: A string v ∈ {0, 1}n.

Stage 1:

S uniformly chooses r ∈ {0, 1}poly(n).

S → R: c = EQComx(v; r).

Stage 2:

S → R: 4` adaptively-secure WIPOK of the statement there exist values v, r such that c =
EQComx(v; r) with verifier query of length 2n, in the following schedule: For j = 1 to `
do: Execute designidj

followed by Execute design1−idj
.

Figure 4: Equivocal Non-Malleable Commitment Scheme Π = 〈Scom,Rcom〉

Preamble Phase: An adaptive UC-Puzzle interaction 〈Spuz,Rpuz〉 on input 1n where Scom is the receiver
and Rcom is the sender. Let x = TRANS be the transcript of the messages exchanged.

Commitment Phase: The parties run protocol 〈Scom,Rcom〉 with common input x and identifier id. S plays
the part of sender with input r.

We now show that the protocol Π is concurrent non-malleable w.r.t opening in the (Cenv, Csim)-model.

THEOREM 2. Commitment scheme Π described above is concurrent non-malleable w.r.t. opening with
independent and identically distributed (i.i.d) commitments

Before we prove this theorem, we first show that Π is a language-based equivocal commitment scheme:

Lemma 1. Commitment scheme Π = 〈Scom,Rcom〉 shown in Figure 4 is a language-based equivocal com-
mitment scheme.

Proof. In order to prove the lemma we need to present an equivocator (S̃com,Adapcom) for 〈Scom,Rcom〉
and prove that (S̃com,Adapcom) has the required properties listed in Definition 2. Intuitively the equivocator,
S̃com, will run the equivocator for the commitment scheme EQCom as well as the simulator for the WIPOK.
Then, Adapcom will run Adapeq for the EQCom scheme and also will adaptively corrupt the prover and
run the simulator for the WIPOK, which produces a simulated view for the prover. By taking a closer look
at the simulator for the WIPOK presented in Appendix G we see that, in fact, S̃com simply replaces every
commitment under EQCom in 〈Scom,Rcom〉 (in both Stage 1 and Stage 2) with an equivocal commitment
generated by the equivocator, S̃eq for the commitment scheme EQCom. The fact that S̃com has this form
will be crucial for the proof of Lemma 3.

We omit the proof that (S̃com,Adapcom) as described above has the desired properties since it follows
straightforwardly from the security properties of EQCom and the adaptive security (without erasures) of the
WIPOK.

Now, we turn towards proving Theorem 2.

23

Proof of Theorem 2: First we describe the simulator and then prove correctness. Let A be a concurrent
man-in-the-middle adversary that on input 1n participates in at most m(n) left-interactions as a receiver,
receiving commitments from an honest committer whose values are chosen uniformly from distribution D
and at most m(n) right-interactions as a committer.

As mentioned before, we assume that the puzzle-simulation is straight-line. On a high-level, S inter-
nally incorporates A and emulates an execution with A as follows:

1. For all puzzle interactions where A∗ controls the sender, S follows the puzzle simulator’s strategy to
simulate the puzzle and obtains a witness which it stores.

2. For all the messages exchanged by A∗ in the right interactions, Sim simply forwards the messages to
an external receiver.

3. For every left interaction, Sim internally generates the messages using the code of special committer
(guaranteed by the scheme), i.e. equivocate in the commitment phase with the witness w obtained
from the puzzle interactions. When a decommitment is requested by A, Sim outputs the current
partial view of the transcript of messages exchanged by A in a special-output tape. Then, it receives a
value v from outside to be decommitted to in the left interaction. Internally, it runs the Adap algorithm
guaranteed by the equivocal commitment scheme to generate a decommitment to v and feeds it to A.

4. Whenever the commitment phase with a receiver is completed on the right, Sim temporary stalls
the main-execution and tries to extract the value committed to by A in this interaction. For this,
Sim selects a random WIPOK from that interaction and rewinds A to the point just before which A
receives the challenge-message in the WIPOK. Sim supplies a new challenge message and continues
simulation. In this simulation, the right interactions are simulated as before (i.e. honestly). However
the left interactions are not simulated as before (i.e. equivocating the commitment phase). Instead they
are generated using an honest committer committing to a value v, where v is either the decommitment
for that left interaction, if one has been obtained by Sim in the main-execution, or a uniformly chosen
sample from D.10 If in the rewinding, A provides a valid response for the selected WIPOK of the
right interaction, then using the special-sound property of the WIPOK, Sim extracts the witness used
in the WIPOK, which contains the committed value. If the adversary fails to provide a valid response
for the particular WIPOK in the right interaction, Sim cancels the current rewinding and starts a new
rewinding by supplying a new challenge.

The proof of correctness of the simulator is expressed in the following lemma.

Lemma 2. The following ensembles are computationally indistinguishable{
(v1 . . . , vm)← Dn : MIMA

〈Scom,Rcom〉(v1, . . . , vm, z)
}
n∈N,z∈{0,1}∗{

(v1 . . . , vm)← Dn : simS
〈Scom,Rcom〉(1

n, v1, . . . , vm, z)
}
n∈N,z∈{0,1}∗

Proof of Lemma 2. We consider a sequence of intermediate hybrid experimentsH0, . . . ,Hm. In experiment
Hi, we consider a simulator Simi that knows the values (v1, . . . , vi) being committed to in the first i left
interactions. On input z, Simi proceeds as follows: It proceeds exactly as Sim with the exception that
only the first i left-interactions are equivocated while the rest are simulated using the honest committer
algorithm, committing to values (vi+1, . . .) both in the main-execution as well as in the rewinding. Let
hybiA(1n, v1, . . . , vm, z) denote the output of Simi in Hi. It follows from description that

hybmA (1n, v1, . . . , vm, z) = simS
〈Scom,Rcom〉(1

n, v1, . . . , vm, z)

10Sim can generate such messages for any value v, since by adaptive security, Sim can obtain random coins for an honest
committer and any value v that is consistent with any partial transcript generated by the equivocator.

24

The proof of the Lemma follows from the next two claims using a standard hybrid argument.

Claim 1. The following ensembles are computationally indistinguishable{
(v1 . . . , vm)← Dn : MIMA

〈Scom,Rcom〉(v1, . . . , vm, z)
}
n∈N,z∈{0,1}∗{

(v1 . . . , vm)← Dn : hyb0
A(1n, v1, . . . , vm, z)

}
n∈N,z∈{0,1}∗

Proof of Claim 1. Recall that in hybrid experiment H0, the simulator simulates all the committers in the
left interaction using the honest committer algorithm. The only difference from the MIM experiment is
that the puzzles are simulated. Assume for contradiction, there exists an adversary A, distinguisher D,
polynomial p(·) such that, for infinitely many n, D distinguishes the ensembles in the claim with prob-
ability at least 1

p(n) . From the definition of the puzzle we have that the distribution of the views in the

outputs of MIMA
〈C,R〉(v1, . . . , vm, z) and hyb0

A(1n, v1, . . . , vm, z) are statistically-close. Furthermore, if the
value extracted by the simulator in hyb0

A(1n, v1, . . . , vm, z) in each interaction is consistent with the de-
committment made by the adversary in the view output by the simulator, then MIMA

〈C,R〉(v1, . . . , vm, z) and
hyb0

A(1n, v1, . . . , vm, z) are statistically-close. Hence, if D distinguishes the distributions, it must be the
case that, the values output in both the experiments differs with probability at least 1

p(n) . This happens,

whenever the value output by the simulator in hyb0
A is inconsistent with the view output by the simulator.

Hence, the Sim0 obtains two decommitments for the same commitment (one as part of the main-execution
and one obtained using the witness extracted) for a commitment made by the adversary in some right-
interaction with probability at least 1

p(n) . With any two valid decommitments, a solution to the puzzle from

the preamble phase can be obtained. Consider a slightly altered simulation Sim
0

that proceeds exactly like
Sim0 with the exception that all the puzzle interactions in the left interaction are simulated honestly. It
follows from the statistical-simulatability of the puzzle that with non-negligible probability, Sim

0
extracts a

witness for a puzzle in a right interaction where the adversary is a receiver of the puzzle. Hence, if Sim
0

runs
inPPT , then, Sim

0
with adversaryA can be used to construct an adversary that violates the soundness of the

adaptive UC-puzzle.11 It only remains to argue that Sim
0

run in PPT and then we arrive at a contradiction.
Recall that for every right interaction that completes the commitment phase, Sim0, and hence Sim

0
rewinds

repeatedly until it obtains a witness for a random WIPOK. We argue that the expected number of restarts
for every right- interaction is O(1) and therefore the expected running time of Sim

0
is bounded by some

polynomial. Fix a particular right-interaction that completes the commitment phase and select a WIPOK.
Given the first message of the WIPOK, let p be the probability that over a random challenge-message that
A provides a valid response. Since the rewindings are identically distributed to the main-execution, the
expected number of restarts required before Sim

0
encounters another execution where A provides a valid

response is 1
p . However, note that Sim

0
needs to perform the rewinding only with probability p since oth-

erwise the right-interaction does not complete the commitment phase. Therefore, the expected number of
restarts for a particular right interaction is p× 1

p = 1. We remark here that, proving the running time of the
actual simulator is bounded, essentially follows from the indistinguishability of the hybrids.

Claim 2. The following ensembles are computationally indistinguishable{
(v1 . . . , vm)← Dn : hyb0

A(1n, v1, . . . , vm, z)
}
n∈N,z∈{0,1}∗

{(v1 . . . , vm)← Dn : hybmA (1n, v1, . . . , vm, z)}n∈N,z∈{0,1}∗
11Simply forward a random puzzle interaction ofA during the straight-line simulation to an external sender of a puzzle execution

and then internally obtain two decommitments of A and extract a witness whenever A equivocates

25

Proof of Claim 2. Assume for contradiction, there exists an adversary A, distinguisher D, polynomial p(·)
such that, for inifinitely many n, D distinguishes the ensembles in the claim with probability at least 1

p(n) .
Then there exists a function i : N → N such that for infinitely many n, D distinguishes the following two
ensembles with probability at least 1

mp(n) .{
(v1 . . . , vm)← Dn : hyb

i(n)−1
A (v1, . . . , vm, z)

}
n∈N,z∈{0,1}∗{

(v1 . . . , vm)← Dn : hyb
i(n)
A (1n, v1, . . . , vm, z)

}
n∈N,z∈{0,1}∗

Let H ′j denote the experiment that proceeds identically to Hj , with the exception that the simulator
performs no rewinding. Let hyb′jA denote the random variable that represents the view output by the sim-
ulator in H ′j . It follows from description that hyb′jA is identically distributed to the view in hybjA since the
rewindings are conducted independent of the main-execution.

We first claim that the following ensembles are indistinguishable for any function j : N → N .{
(v1 . . . , vm)← Dn : hyb′

j(n)−1
A (v1, . . . , vm, z)

}
n∈N,z∈{0,1}∗{

(v1 . . . , vm)← Dn : hyb′
j(n)
A (1n, v1, . . . , vm, z)

}
n∈N,z∈{0,1}∗

This is because the only difference betweenH ′j(n)−1 andH ′j(n) is that the j(n)th left interaction is equiv-
ocated and therefore indistinguishability directly follows from the strong-hiding property of the equivocal
commitment.

Recall that if the values extracted by the simulator is always equal to the value decommitted to by the
adversary, then the above claim implies that hyb

i(n)−1
A and hyb

i(n)
A are indistinguishable. Therefore, it must

be the case that, for infinitely many n, with probability at least 1
2mp(n) the value extracted by the simulator

is different from the value decommitted to by A. Furthermore, there exists a function k : N → N such
that, for infinitely many n, the value extracted by the simulator in the k(n)th right interaction is different
from the value decommited to by A in the main-execution with probability at least 1

2m2p(n)
. Let hybi,kA

denote the view output of the simulator in Hi and the value extracted in the kth right interaction. Then there
exists a function k(n) such that the probability with which the value output is not the value decommitted in
the view jumps by at least 1

2m2p(n)
when comparing hyb

i(n)−1,k(n)
A and hyb

i(n),k(n)
A with probability at least

1
2m2p(n)

for infinitely many n. Lets say that a (view, v) pair is k- cons if v is the value decommited to by

the adversary in kth right-interaction.
We consider the following intermediate hybrid experiments:

Hybrid H̄k
0 = Hi−1: This experiment proceeds identically to Hi−1 with the exception that the simulator

only extracts the decommitment from the kth right interaction. Define hyb
0
A to be the view output and

the value extracted by the simulator, i.e. hyb
0
A = hybi−1,k

A .

Hybrid H̄k
1 : In the kth right-interaction, we say that a particular WIPOK is a safe WIPOK, if the “safe-

point” of this interaction w.r.t ith left interaction corresponds to this WIPOK. The definition of safe-
point is analogous and identical to the safe-points defined in [34].12The experiment H̄k

1 proceeds
identically to H̄k

0 with the exception that it rewinds the adversary to a safe WIPOK in the kth right
interaction instead of a choosing a random WIPOK and the ith left interaction. Define hyb

1
A to be the

view output and the value extracted by the simulator.
12Intuitively, a safe-point ρ of a right interaction, is a point in ∆ that lies in between the first two messages αr and βr of a

WIPOK proof (αr, βr, γr) in the right interaction k, such that, when rewinding from ρ to γr , if A uses the same “scheduling of
messages” as in ∆, then the left interaction can be emulated without affecting the hiding property. See [34] for more details.

26

Hybrid H̄k
2 : This experiment proceeds identically to H̄k

1 with the exception that the ith left interaction is
simulated using fresh randomness in each rewinding. In particular, if the next message in the ith left
interaction is the first message of a WIPOK sub-protocol, then fresh randomness is used to generate
it.13 Recall that, in the actual simulator and previous hybrids, this is not the case and in the rewinding
phase, the randomness of the all the left interactions are fixed. Furthermore, whenever the adversary
tries to corrupt the ith left interaction in a rewinding the simulator cuts off the rewinding and restarts.
Define hyb

2
A to be the view output and the value extracted by the simulator.

Hybrid H̄k
3 : This experiment proceeds identically to hyb

2
A with the exception that in the ith left interaction,

the simulator equivocates the commitment both in the main-execution as well as in the rewindings.
Again, as in the previous hybrid, a fixed random tape is used for all the left-interactions in the rewind-
ings except the ith interaction where fresh randomness is used in the rewindings. Every rewinding
where the adversary tries to corrupt the committer in the ith left-interactions is cancelled. Define hyb

3
A

to be the view output and the value extracted by the simulator.

Hybrid H̄k
4 : The experiment proceeds identically to hyb

3
A with the exception that the ith left interaction is

also simulated using a fixed random tape for the committer in all the rewindings. Define hyb
4
A to be

the view output and the value extracted by the simulator.

Hybrid H̄k
5 = Hi: The experiment proceeds identically to Hi with the exception that the simulator only

extracts from the kth right interaction . Define hyb
5
A to be the view output and the value extracted by

the simulator, i.e. hyb
5
A = hybi,kA .

Since, the difference in probability that hyb
i(n)−1,k(n)
A and hyb

i(n),k(n)
A are k- cons is at least 1

p1(n) =
1

2m2p(n)
for infinitely many n, there must exists a c ∈ {1, 2, 3, 4, 5} such that the difference in probability

that hyb
c−1
A and hyb

c
A are k- cons is at least 1

5p1(n) for infinitely many n. We argue below for every c that
we arrive at a contradiction if the above statement holds for c.

Comparing H̄k
0 and H̄k

1 In this case, we have that, for infinitely many n,

|Pr[hyb
0
A is k-cons]− Pr[hyb

1
A is k-cons]| ≥ 1

5p1(n)

Proof Sketch: Since the only difference between H̄k
0 and H̄k

1 is the WIPOK chosen to rewind and extract the
witness, it must be the case that the probability that the witness extracted from a random WIPOK and the
specific WIPOK chosen from the safe point is different must be at least 1

5p1(n) . Using this fact, we arrive at
a contradiction to the soundness of the puzzle.

First, we note that it is possible for a simulator to check if the value extracted in a random WIPOK
and a safe WIPOK are the same. Recall that in the left interactions of the main execution in H̄k

1 and H̄k
2 ,

the simulator is equivocating the first i commitments and honestly committing in the rest of them. This in
particular means that the value decommitted to in the first i commitments are chosen after the commitment
phase. In the rewinding phase, when the simulator tries to extract the witness from a WIPOK, it simulates the
left interactions by using the honest committer strategy with a fixed random tape. Consider an experiment
Ek0 where the simulator continues the execution until A completes the commitment phase in the kth right-
interaction and then cuts off the simulation. Then it extracts the witness from a random WIPOK and the
safe WIPOK. If the values are different, the simulator extracts the solution of the puzzle and outputs it. It
follows that the simulator outputs the solution of the puzzle with non-negligible probability.

13Jumping ahead, this will allow the ith left-interaction to be forwarded externally to a committer, analogous to [21, 35].

27

We consider of hybrid experiments and show that in each of them the simulator can output a solution
with non-negligible probability and finally arrive at a simulator that violates the soundness of the puzzle.

The first intermediate experiment Ek1 we consider is where the simulator chooses the value to be com-
mitted in the first k left interactions before the interaction begins. This modification does not affect the view
obtained in the main-execution because all values in the left interactions are chosen independently from dis-
tribution D. It also does not affect the rewindings, because the committers strategy is fixed, i.e. its random
tape and commitment are fixed. Therefore, Ek1 and Ek0 proceed identically and the simulator outputs the
solution to the puzzle with non-negligible probability in Ek1 as well.

In Lemma 3, we show that, it is possible to construct an honest committers algorithmC∗ for 〈Scom,Rcom〉
that knows the witness of the common input statement x and receives a polynomial sequence of strings
s1, . . . , sm such that

• The transcript generated by C∗ committing to string v, when the strings received as input s1, . . . , sm
are uniformly random, is identically distributed to the transcript of an interaction with an honest
committer, committing to a value v, and,

• The transcript generated by C∗ committing to string v, when the strings received as input s1, . . . , sm
are random commitments to 1 using Com, is identically distributed to the transcript generated by an
equivocal commitment using the witness for statement x and decommitted to value v.

If the value to be decommitted to is known at the beginning of an execution, then the commitment
phase can be generated using an honest-committer’s strategy that additionally receives as input a particular
sequence of strings that are either uniformly random or commitments to 0 and 1 under 〈S,R〉. We now
observe that in Ek1 , although the simulator is equivocating the first i commitments in the left, the value to be
decommitted to is chosen before the execution begins. Consider the experimentEk2 that proceeds identically
to Ek1 with the exception that the simulator generates the equivocal commitments by using the committer
strategy C∗ that receives as input a sequence of commitments to 1 using Com. This experiment proceeds
identically to Ek1 and the simulator extracts the solution to the puzzle with non-negligible probability.

In the next experiment Ek3 , we consider a simulator that proceeds identically to Ek2 with the exception
that the sequence of strings received by the honest-committers in the first k left interactions are chosen
uniformly at random (as opposed to commitments to 1). It now follows from the pseudo-randomness of the
commitments under Com that the simulator extracts the solution to the puzzle in Ek3 with non-negligible
probability. Now, observe that experiment Ek3 is identical to experiment H0 and this violates the soundness
of the puzzle interaction. Thus, we arrive at a contradiction.

Comparing H̄k
1 and H̄k

2 In this case, we have that, for infinitely many n,

|Pr[hyb
1
A is k-cons]− Pr[hyb

2
A is k-cons]| ≥ 1

5p1(n)

Proof Sketch: We will again show how to construct an adversary that violates the soundness of the puzzle.
The proof of this follows identically as in the previous case. We again consider a simulator that cuts off the
adversary after the commitment phase on the kth right interaction is completed and then rewinds to extract a
witness from the safe WIPOK in two different ways, i.e. as in H̄k

1 and H̄k
2 . Again we have that the simulator

extracts the solution to the puzzle with non-negligible probability as the value extracted are different with
non-negligible probability. We can follow identically as in the previous hybrid, by considering the sequence
of hybrid experiments, Ek0 to Ek3 where the left interactions are all honestly generated. Again we have that
the simulator extracts the solution of the puzzle in Ek3 and this violates the solution of the puzzle.

28

Comparing H̄k
2 and H̄k

3 In this case, we have that, for infinitely many n,

|Pr[hyb
2
A is k-cons]− Pr[hyb

3
A is k-cons]| ≥ 1

5p1(n)

In this case, we will show that A can be used to violate the special-hiding property of a variant of the
commitment scheme.
Proof Sketch: The idea here (that originates from the work in [21], also used in [34], is that the simulation
can be carried out even when the ith left interaction is forwarded externally to a committer participating in
Π̃ which is a slightly altered version of the protocol Π. The only difference of Π̃ from Π is that Π̃ does not
have a fixed scheduling of WIPOKs in the Stage 2 based on the committers identity. Instead, the receiver can
request the committer to provide proofs using WIPOK using designs of its choice. This is analogous to [34].
It was shown in [34], that while rewinding from a safe WIPOK in the kth right-interaction, the messages
for the ith left interaction can be received from an external committer, interacting using Π̃. Consider an
experiment, where the simulator proceeds identically as in H̄k

3 with the exception that the ith left interaction
is forwarded externally to a committer following Π̃ that commits to a value uniformly chosen from D. It
now follows that this experiment proceeds identically to H̄k

2 if the external committer is following the honest
committer strategy in Π̃, and is identical to H̄k

3 if the external committer is equivocating. Therefore, it is
possible to consider an adversary that distinguishes when it receives an honest commitment or a equivocal
commitment using Π̃ on the left, by simply extracting the value from the safe WIPOK. This violates the
special hiding-property of the Π̃ and thus we arrive at a contradiction.

Comparing H̄k
3 and H̄k

4 In this case, we have that, for infinitely many n,

|Pr[hyb
3
A is k-cons]− Pr[hyb

4
A is k-cons]| ≥ 1

5p1(n)

This will follow exactly as with hybrid experiment H̄k
1 and H̄k

2 .

Comparing H̄k
4 and H̄k

5 In this case, we have that, for infinitely many n,

|Pr[hyb
4
A is k-cons]− Pr[hyb

5
A is k-cons]| ≥ 1

5p1(n)

This will follow exactly as with hybrid experiment H̄k
0 and H̄k

1 .

It only remains to state and prove Lemma 3. First, we need some notation. Consider the following exper-
iments exptM,R∗

〈Scom,Rcom〉(0, x, v1, z), exptM,R∗

〈Scom,Rcom〉(1, x, v1, z) where probabilistic polynomial time machines
R∗,M interact using the equivocal non-malleable commitment protocol 〈Scom,Rcom〉 (defined in Section C)
with common input x ∈ L and private input w ∈ R(x):

Experiment exptM,R∗

〈Scom,Rcom〉(b, x, v1, z): R∗ plays the part of receiver in the 〈Scom,Rcom〉 protocol and ini-
tiates a request for a commitment to v1. Upon this request, a sequence of 2t(n) strings is chosen
(s01, . . . , s

0
t(n), s

1
1, . . . , s

1
t(n)) (for some fixed polynomial t(·)) in the following way: If b = 0, then

(s01, . . . , s
0
t(n), s

1
1, . . . , s

1
t(n)) are chosen uniformly at random. If b = 1, (s01, . . . , s

0
t(n)) are chosen

to be random commitments to 0 and (s11, . . . , s
1
t(n)) are chosen to be random commitments to 1. A

machine running the code of M is initiated with input (x,w, v1, (s01, . . . , s
0
t(n), s

1
1, . . . , s

1
t(n))). M in-

teracts with R∗ and at any point after M completes the commitment, R∗ can request a decommitment
from M . Define the output of the experiment staM,R∗

〈Scom,Rcom〉(b, x, v1, z) to be the output of R∗.

29

Lemma 3. There exists a probabilistic polynomial time machine M∗ such that for every probabilistic poly-
nomial time adversary R∗, we have that:

{staM,R∗

〈Scom,Rcom〉(0, x, v1, z)}n∈N,x∈L∩{0,1}n,w∈R(x),v1∈{0,1}n,z∈{0,1}∗

≡ {staR
∗

〈Scom,Rcom〉(x, v1, z)}n∈N,x∈L∩{0,1}n,w∈R(x),v1∈{0,1}n,z∈{0,1}∗

AND

{staM,R∗

〈Scom,Rcom〉(1, x, v1, z)}n∈N,x∈L∩{0,1}n,w∈R(x),v1∈{0,1}n,z∈{0,1}∗

≡ {staR
∗

〈S̃com,Rcom〉
(x,w, z)}n∈N,x∈L∩{0,1}n,w∈R(x),v1∈{0,1}n,z∈{0,1}∗

Proof. On input (x,w, v1, (s01, . . . , s
0
t(n), s

1
1, . . . , s

1
t(n))) M

∗ runs the code of the honest committer Scom in
〈Scom,Rcom〉 with the following exception: Each time Scom uses the honest sender Seq in the 〈Seq,Req〉
protocol to construct a commitment c = EQCom(α) to some bit α, M∗ does the following: If α = 0, M∗

runs the code of the honest sender Seq. If α = 1, M∗ does the following:

1. M∗ uses the trapdoor w to compute an adjacency matrix I that corresponds to an isomorphism of the
graph G = Φ(x) as well as the corresponding adjacency matrix H for the Hamiltonian cycle in I
chooses an adjacency matrix H for a random Hamiltonian cycle.

2. If Hk,j = 1, then M∗ sets the bit commitment at position (k, j) in Comk,j to be Com(1).

3. If Hk,j = 0 and Ik,j = 0, then M∗ sets the bit commitment at position (k, j) in Comk,j to be an
element from the sequence s01, . . . , s

0
t(n) that has not been used yet.

4. If Hk,j = 0 and Ik,j = 1, then M∗ sets the bit commitment at position (k, j) in Comk,j to be an
element from the sequence s11, . . . , s

1
t(n) that has not been used yet.

To decommit, M∗ runs the code of the honest Scom in 〈Scom,Rcom〉.
Recall that equivocal commitments in the 〈Seq,Req〉 scheme are identically distributed to honest commit-

ments to 0 and that the equivocator (S̃com,Adapcom) described in Lemma 1 simply replaces every equivocal
commitment under EQCom (in both Stage 1 and Stage 2) with an equivocal commitment generated by the
equivocator. Therefore, it is clear from inspection that if the 2t(n) strings (s01, . . . , s

0
t(n), s

1
1, . . . , s

1
t(n)) are

chosen uniformly at random, then R∗’s output is identically distributed to the output of R∗(x, z) after re-
ceiving a commitment to v1 using 〈Scom,Rcom〉 and so the random variables staM,R∗

〈Scom,Rcom〉(0, x, v1, z) and

staR
∗

〈Scom,Rcom〉(x,w, z) are identically distributed. On the other hand, if the 2t(n) strings (s01, . . . , s
0
t(n), s

1
1, . . . , s

1
t(n))

are commitments to 0 and 1 respectively, then R∗’s output is identically distributed to the output of R∗(x, z)
after receiving a commitment to v1 using 〈S̃com, Rcom〉 and so the random variables staM,R∗

〈Scom,Rcom〉(1, x, v1, z)
and staR

∗

〈S̃com,Rcom〉
(x, v1, z) are identically distributed. Thus, the lemma is proved.

This concludes the proof of and Lemma 3 Theorem 2.

30

Functionality Fmcom.

Fmcom proceeds as follows, running with parties P1, . . . , Pn and an adversary S:

• Upon receiving input (commit, sid, ssid, Pi, Pj , β) from Pi, where β ∈ {0, 1}, record the tuple
(ssid, Pi, Pj , β) and send the message (receipt, sid, ssid, Pi, Pj) to Pj and S. Ignore any future
commit messages with the same ssid from Pi to Pj .

• Upon receiving a value (reveal, sid, ssid) from Pi: If a tuple (ssid, Pi, Pj , β) was previously
recorded, then send the message (reveal, sid, ssid, Pi, Pj , β) to Pj and S. Otherwise, ignore.

• Upon receiving a message (corrupt−Pi, sid) from the adversary, send (ssid, Pi, Pj , β) to the adver-
sary for each recorded tuple where Pi is the committer. Furthermore, if the adversary now provides a
value β′, and the receipt output was not yet written to Pj’s tape, then change the recorded value to β′.

Figure 5: Fmcom

D Proof of Main Theorem

We restate our main theorem and provide the proof below.

THEOREM 3 (Main Theorem (restatement)). Assume the existence of a (Cenv, Csim)-secure UC-puzzle in a
G-hybrid model, an EQNMCom protocol secure w.r.t cl(Cenv, Csim) and the existence of a simulatable PKE
scheme. Then, for every “well-formed” functionality F , there exists a protocol Π in the G-hybrid model that
realizes F̂ with (Cenv, Csim)-adaptive UC-security.

On a high-level, the compilation proceeds in two steps:

• First, every functionality is compiled into a protocol in theFmcom-hybrid model. In theFmcom-hybrid,
all parties have access to the ideal commitment functionality called Fmcom functionality. This step is
formalized in the Fmcom-lemma (Lemma 4) and essentially follows as corollary from previous works
[11, 17, 30, 14, 13].

• In the second step, assuming the existence of a UC-puzzle and a EQNMCom protocol, we show that
the Fmcom functionality can be securely realized in the real-model. This step is formalized in the
Puzzle-lemma (Lemma 7).

We use the standard definition of the Fmcom functionality [11], the multi-session extension of Fcom-
functionality. See Figure 5 for the definition.

Next, we provide the Fmcom-Lemma and the Puzzle Lemma. The proof of the main theorem follows
using a standard hybrid argument combining the two lemmas.

Lemma 4 (Fmcom-Lemma). Assume the existence of simulatable PKE secure w.r.t Csim. For every well-
formed functionality F , there exists a protocol Π in the Fmcom-hybrid model, such that, for every adversary
A ∈ Csim in the Fmcom-hybrid model, there exists an adversary simulator A′ ∈ Csim, such that for every
environment Z ∈ Cenv, the following two ensembles are indistinguishable w.r.t cl(Cenv, Csim).

•
{

ExecFmcom
Π,A,Z(n)

}
n∈N

•
{

ExecF̂πideal,A′,Z(n)
}

n∈N

31

The main technical contribution of our work is the following lemma:

Lemma 5 (Adaptive-Puzzle-Lemma). Let Π′ be a protocol in the Fmcom-hybrid model. Assume the ex-
istence of a (Cenv, Csim)-secure adaptive puzzle 〈S,R〉 in a G-hybrid model, a stand-alone EQNMCom
〈Scom,Rcom〉 secure w.r.t cl(Csim, Cenv) and simulatable PKE scheme secure w.r.t Csim. Then, there exists
a protocol Π in the G-hybrid such that, for every uniform PPT adversary A, there exists a simulator
A′ ∈ Csim, such that, for every environment Z ∈ Cenv, the following two ensembles are indistinguishable
over N w.r.t Csim.

•
{

ExecGΠ,A,Z(n)
}

n∈N

•
{

ExecFmcom
Π′,A′,Z(n)

}
n∈N

Proof of the Adaptive Puzzle Lemma: First, in Figure 2 we construct a protocol 〈S,R〉 that implements the
Fmcom-functionality. Next, given any protocol Π′ in Fmcom-hybrid model, the protocol Π in the real model
is constructed from Π′ by instantiating the Fmcom functionality using our protocol 〈S,R〉. More precisely,
all invocations of the Fmcom functionality with input (sender,sid, ssid, Pj , β) from an honest party Pi is
replaced with an instance of 〈S,R〉 between Pi and Pj on identity id = (Pi, sid, ssid). We provide the
construction of 〈S,R〉 and then prove correctness.

D.1 The Adaptive Commitment Protocol 〈S, R〉 and the Adaptive UC Simulator

Let (〈S,R〉,R) be a (Cenv, Csim)-secure puzzle in the G-hybrid, 〈Scom,Rcom〉 be a EQNMCom protocol
secure w.r.t cl(Cenv, Csim), 〈Seq,Req〉 be a non-interactive EQCom protocol secure w.r.t. cl(Cenv, Csim). E =
(Gen,Enc,Dec, oGen, oRndEnc, rGen, rRndEnc) be a simulatable PKE scheme (as defined by [17]). Let L
be a language in NP with witness relation RL and let G be a pseudo-random generator (which exists based
on one-way function which in turn can be based on simulatable PKE). See Figure 2 for a formal description
of the protocol 〈S,R〉. An overview of the protocol is given in Section 4.2.

We show that for every adversary A ∈ PPT in the real-model, there exists a simulator A′ ∈ Csim

such that no environment Z ∈ Cenv can distinguish if it is interacting with A in the real-model or A′ in the
Fmcom-hybrid.

ConsiderA′ that internally incorporatesA and emulates an execution withA. A′ forwards all messages
from A externally to its intended recipients except messages that are part of any execution using 〈S,R〉,
which are instead, dealt with internally. Recall that, since A′ ∈ Csim we have that at the end of every puzzle
interaction where A controls the sender, A′ can obtain a witness to the puzzle transcript. For messages that
are part of an execution of 〈S,R〉, A′ does the following:

Simulating the Communication with Z: Every message thatA′ receives from the environment Z is writ-
ten to A’s input tape. Similarly, every output value that A writes to its output tape is copied to A′’s own
output tape (to be read later by Z).

The Sender is Corrupted and the Receiver is Honest: A′ does the following:

Preamble:

1. A′ simulates the Adaptive UC-Puzzle while playing the part of the receiver, producing transcript
TRANS1 while extracting the trapdoor y

2. A′ honestly plays the part of the sender in the Adaptive UC-Puzzle producing transcript TRANS2.

32

Commit Phase:

1. A′ chooses rGen ← {0, 1}k and computes (PK, SK) = Gen(rGen), r = rGen(rGen).

2. A′ uses the simulator for generating equivocal commitments for 〈Scom,Rcom〉 and knowledge of the
trapdoor y to send an equivocal commitment in Step 1 of Stage 1.

3. Upon receiving the string r0S, A′ equivocally decommits to r0R = r ⊕ r0S. A′ chooses r1R at random
and sends to A on behalf of R.

4. Upon receiving (C, S0, S1) from A in Step 3, A′ computes m0 = DecSK(S0) and m1 = DecSK(S1).
If m0 is the valid decommitment of C to bit b, A′ sends the message (commit, sid, ssid, S,R, β) to
the ideal functionality Fmcom on behalf of S. Otherwise, if m1 is the valid decommitment of C to
bit β, A′ sends the message (commit, sid, ssid, S,R, β) to the ideal functionality Fmcom. If both are
invalid, A′ chooses a random bit β and sends (commit, sid, ssid, S,R, β) to the ideal functionality
Fmcom. Additionally, A′ aborts the simulation of R upon A’s decommitment.

Reveal Phase:

1. Upon receiving a valid decommitment from A, A′ sends the message (reveal, sid, ssid) to Fmcom.

2. Upon receiving an invalid decommitment from A, A′ aborts the simulation of R.

The Sender is Honest and the Receiver is Corrupted: A′ does the following:

Preamble:

1. A′ honestly plays the part of the sender in the Adaptive UC-Puzzle producing transcript TRANS1.

2. A′ simulates the Adaptive UC-Puzzle while playing the part of the receiver, producing transcript
TRANS2 while extracting the trapdoor y

Commit Phase:

1. A′ chooses s← {0, 1}n and computes r = G(s).

2. A′ uses the simulator for generating equivocal commitments for 〈Scom,Rcom〉 and knowledge of the
trapdoor y to send an equivocal commitment in Step 1 of Stage 2. A′ chooses r0S at random and sends
to A on behalf of S.

3. Upon receiving the string r1R, A′ equivocally decommits to r1S = r ⊕ r1R. Note that x = r1S ⊕ r1R = r.

4. A′ generates a random bit β. Using its knowledge of the trapdoor for common input x the simulator
generates an equivocal commitment C for protocol 〈Seq,Req〉.

5. A′ sets Sβ to be an encryption under PK of a decommitment ofC to 0 and sets S1−β to be an encryption
under PK of a decommitment of C to 0

6. A′ forwards (C, S0, S1) to A.

33

Reveal Phase: Upon receiving a message (reveal, sid, ssid, S,R, β) from the ideal functionality Fmcom,
A′ does the following:

1. A′ reveals the decommitment information for C corresponding to bit b and the randomness used to
generate the encryption Sv where v = 1− β if b = 1 and v = β if b = 0.

2. The simulator uses rRndEnc to produce randomness rEnc such that oRndEnc(PK, rEnc) = S1−v, and
sends r to the adversary.

The Sender and the Receiver are Honest: A′ must produce a simulated transcript on behalf of the honest
parties. A′ does the following: When sending messages on behalf of the honest sender, A′ acts as in the
case (see above) where the sender is honest and the receiver is corrupted. When sending messages on behalf
of the honest receiver, A′ acts as in the case where the receiver is honest and the sender is corrupted (see
above).

Dealing with Corruptions: When the adversary corrupts the sender S,A′ sends the message (corrupt−S, sid)
to the ideal functionality Fmcom and receives the value of the bit β. Now, A′ needs to provide A with the
randomness consistent with the (C, S0, S1) messages sent on behalf of S as well as the input bit b. A′ does
this in the same way as when simulating commitment (reveal, sid, ssid, S,R, β) messages in the case of
corrupted receiver above.

D.2 Correctness of Simulation

We now proceed to prove correctness of simulation. Recall that the simulator manipulates coin-tosses so
that it can equivocate commitments made to the adversary and extract the ones committed to by the ad-
versary. More precisely, for the left-interactions, where the adversary receives commitments, the simulator
manipulates the coin-toss to generate the CRS and for the right interactions, where the adversary sends com-
mitments, the simulator manipulates the coin-toss to generate the public-key for the simulatable encryption
scheme. In order for the simulation to work successfully, we will require that the adversary not be able to
manipulate the other coin-tosses—the coin-toss for generating the public- keys in the left interactions and
the coin-toss for generating the CRS in the right interactions. We ensure this property by relying on the
non-malleability of the equivocal commitment scheme. In other words, we show that the adversary can
never equivocate commitments made using 〈Scom,Rcom〉 in those coin-toss interactions.

Towards proving correctness, we consider a series of intermediate hybrid experiments from the real-
world to the Fcom-hybrid world with the adversary A. Additionally, we define the following property that
we maintain as invariant across all hybrids and intuitively, will hold true only if the adversary does not
equivocate any of the commitments made using 〈Scom,Rcom〉: We say that the adversary A is non-abusing
if the following two distributions are indistinguishable

Expr1n(z): Emulate a complete execution with adversaryA(1n), environmentZ with auxiliary input z and
all honest parties. In the emulated view, choose at random a 〈Icoin,Rcoin〉 interaction whereA controls
the initiator Icoin. If A corrupts the corresponding responder Rcoin before Step 3 of the 〈Icoin,Rcoin〉
protocol or fails to complete the interaction, output (ViewA,⊥), where ViewA is the view of the
adversary in the simulation. Otherwise, if the 〈Icoin,Rcoin〉 interaction completes successfully with
outcome r, then (ViewA, r).

Expr2n(z): As before, emulate an execution with adversary A(1n) environment Z with auxiliary input
z and all honest parties. Choose at random a 〈Icoin,Rcoin〉 interaction where A controls the initiator
Icoin and continue the emulation until the completion of the 〈Icoin,Rcoin〉 interaction. If A corrupts the

34

corresponding responder Rcoin before Step 3 of the 〈Icoin,Rcoin〉 protocol, or fails to complete the in-
teraction, output (ViewA,⊥), where ViewA is the view of the adversary in the simulation. Otherwise,
if the 〈Icoin,Rcoin〉 interaction completes successfully with outcome r, let rI be the string sent by A in
Step 3 of the 〈Icoin,Rcoin〉 protocol. Repeat the following:

• Choose string r∗ uniformly at random.

• Rewind A to the point right before Step 2 of the 〈Icoin,Rcoin〉 protocol.

• Send string r∗ ⊕ rI to A on behalf of Rcoin in Step 2 of the of the 〈Icoin,Rcoin〉 protocol.

• Continue simulation untilA decommits. If the adversary fails to decommit or tries to adaptively
corrupt the responder, cancel the simulation and start over. Otherwise, let the value decommitted
to be r̃I

until the 〈Icoin,Rcoin〉 interaction completes successfully with outcome r̃. If r̃ 6= r∗ then output a
special symbol ⊥FAIL. Otherwise, output the (ViewA, r̃).

Remark 2. If the distributions of Expr1n(z) and Expr2n(z) are indistinguishable then it implies that the
adversary decommits to the same string rI with high-probability, i.e. does not equivocate.

Remark 3. ViewA outputted in Expr1n(z) and Expr2n(z) are identically distributed.

Remark 4. The experiment Expr2n(z), in expectation, takes polynomial time to simulate. This is because,
even though the simulator rewinds the adversary repeatedly, each rewinding is simulated identically as
the main simulation with independent randomness. More formally, if p is the probability with which the
adversary decommits successfully from Step 2 of the coin-toss without corrupting the responder, then p is
the probability with which the simulator starts rewinding and in expectation rewinds 1/p times before it
obtains another simulation where the adversary decommits without corrupting the responder. Therefore, in
expectation, the simulator performs simulation p× 1/p = O(1) times. Since each simulation takes at most
poly(n) time, in expectation, Expr2n(z) takes polynomial time to simulate. However, to make Expr2n(z)
useful in our analysis, we introduce the experiment EffExpr2n(z, q(·)) an efficient version of Expr2n, which
runs in strict polynomial time.

Before continuing to the Hybrids, we introduce some useful modified experiments. Let m(·) be a func-
tion that describes a bound on the maximum number of interactions. Consider the experiment Expr1kn(z)
(resp. Expr2kn(z)) that proceeds exactly like Expr1kn(z) (resp. Expr2kn(z)) with the exception that it chooses
the kth coin-toss, where the order of the coin-tosses is determined by the order in which A decommits in
Step 3 and where the adversary controls the initiator. Moreover, in Expr2kn the rewinding is repeated until
both of the following hold:

• The 〈Icoin,Rcoin〉 protocol successfully completes.

• The decommitment corresponding to the rewound coin-toss is again the k-th decommitment of the
experiment.

We note that if Expr1n(z) and Expr2n(z) are indistinguishable then, for every 1 ≤ k ≤ m(n), Expr1kn(z)
and Expr2kn(z) are also indistinguishable.

Note that although Expr2kn(z) runs in expected polynomial time, it may not run in strict polynomial
time. This is because the number of rewindings in a given execution may be unbounded. Thus, we define
an analogous experiment to Expr2kn(x), called EffExpr2kn(z, q(·)), which has a bounded run time. Formally,
for any polynomial q(·), we define the following experiment:

35

EffExpr2kn(z, q(·)): The experiment proceeds identically to Expr2kn(z) except that there are at most q(n)
rewinding attempts. If after q(n) rewinds, the 〈Icoin,Rcoin〉 protocol has not successfully completed or
the corresponding decommitment is not the kth decommitment, abort the experiment and output ⊥.
Otherwise, output whatever Expr2kn(z) outputs.

The next claim quantifies (as a function of q(·)) the statistical distance between the distribution over the
output of EffExpr2k and the distribution over the output of Expr2k:

Claim 3. For every polynomial q(·) and for every n ∈ N, the statistical distance between the following two
probability ensembles is at most m(n)

q(n) :

• {Expr2
k
n(z)}z∈{0,1}∗

• {EffExpr2
k
n(z, q(·))}z∈{0,1}∗

where Expr2
k
n(z) and EffExpr2

k
n(z, q(·)) are the outputs of Expr2kn(z) and EffExpr2kn(z, q(·)), respectively.

Proof. We note that unless an abort occurs in experiment EffExpr2, the random variables Expr2n(z) and
EffExpr2n(z, q(·)) are identically distributed. Thus, the statistical distance can be upperbounded by the
probability that EffExpr2 aborts without successful completion of the 〈Icoin,Rcoin〉 protocol in the rewinding
stage.

By a standard argument we have that the expected number of rewindings before a successful completion
of 〈Icoin,Rcoin〉 in experiment Expr2 is m(n). Therefore, by Markov’s inequality, the probability that more
than q(n) number of rewindings are necessary for successful completion of the 〈Icoin,Rcoin〉 protocol in
Expr2 is at mostm(n)/q(n). So the probability that EffExpr2n(z, q(·)) aborts without successful completion
of the 〈Icoin,Rcoin〉 protocol in the rewinding stage is at most m(n)/q(n) and the claim is proved.

The hybrid experiments are as follows:

Hybrid H0 or the real-world experiment: Since this is the real-world experiment there is no indistin-
guishability requirement. However, we need to show that A is non-abusing in H0. Intuitively, this holds
since from the binding property of the commitment scheme 〈Scom,Rcom〉 we have that if the adversary
equivocates, then we can extract the solution of the adaptive UC-puzzle and this violates the soundness of
the puzzle. More formally, we prove the following claim:

Claim 4. A is non-abusing in H0

Assume for contradiction there exists a distinguisherD and polynomial p(·) such that for infinitely many
n, D distinguishes Expr1n(z) and Expr2n(z) with probability at least 1

p(n) . Since r∗ is chosen uniformly at
random in each rewound execution (and thus r∗ ⊕ rI is also uniformly distributed), if r∗ = r̃ always, then
Expr1n(z) and Expr2n(z) are identically distributed. Hence if D distinguishes the two experiments with
probability 1

p(n) , it must be the case that Expr2n(z) outputs ⊥FAIL with probability at least 1
p(n) . However,

we now show that the existence of such an A implies that there exists a probabilistic polynomial-time
adversary A violating the soundness of the adaptive UC-puzzle.

On a high-level, this follows from the fact that whenever Expr2n(z) outputs ⊥FAIL, the adversary is
equivocating, which in turn means a solution to the adaptive UC-puzzle can be extracted and this violates
the soundness condition of the puzzle. More formally, consider A for which Expr2n(z) outputs ⊥FAIL with
probability 1

p(n) for infinitely many n. Fix an n for which this happens.

On input 1n and auxiliary input z, A internally incorporates A(1n), Z(z) and all honest parties and
begins emulating an execution of hybrid experimentH0 with the following exceptions: A chooses a random

36

〈S,R〉 interaction where the adversary controls one of the parties and forwards externally the puzzle inter-
action where A controls the receiver. On completion, A chooses the 〈Icoin,Rcoin〉 interaction from the same
〈S,R〉 interaction where A controls the initiator Icoin. After completion of Stage 3 of the 〈Icoin,Rcoin〉 inter-
action, if A fails to decommit, A outputs ⊥. Otherwise, it stores the decommitment as rl. Next, it rewinds
to the end of Stage 1 and starts a new emulation (just as in Expr2n). If the adversary fails to decommit, A
rewinds again. Otherwise, it stores the second decommitment as r̃l. Finally, if rl 6= r̃l, it extracts the witness
for the puzzle transcript corresponding to this interaction and outputs the witness. Otherwise it outputs ⊥.
Also, if at any point A tries to adaptive corrupt the other party, A aborts the current execution and rewinds
again.

We claim that with non-negligible probability A outputs a witness of the puzzle, thus violating the
soundness of the puzzle. Towards this, consider a modified experiment Expr2kn(z) that proceeds exactly
like Expr2n with the exception that it chooses the kth coin-toss where the adversary controls the initiator
instead of a random interaction. By an averaging argument, it holds that there exists a particular k for
which Expr2kn(z) outputs ⊥FAIL with some non-negligible probability 1/p(n). Now, A begins its internal
emulation. If the kth 〈Icoin,Rcoin〉 interaction fails to complete successfully, A halts. Otherwise, assume
A successfully decommits to some value rl in the chosen execution of 〈Icoin,Rcoin〉 interaction. Then A
rewinds A to the point right before A sends r1R on behalf of the responder and instead sends a new random
value r∗⊕r1 A continues to rewindA for at most 4p(n) times or until the 〈Icoin,Rcoin〉 protocol successfully
completes. Note that the execution of A is distributed identically to an execution of EffExpr2kn(z, 4m(n) ·
p(n)). Thus, since the statistical distance between EffExpr2kn(z, 4m(n) · p(n)) and Expr2kn(z) is at most
1/4p(n), it follows that with non-negligible probability of at least 1/p(n) − 1/4p(n) A outputs a value
r̃l 6= rl in the rewound execution. But in the case that r̃l 6= rl, A extracts the witness for the puzzle
transcript corresponding to this interaction and outputs the witness. Thus, A violates the soundness of the
adaptive UC-puzzle and so the claim is proved.

Hybrid H1: This hybrid proceeds identically to H0 with the exception that all puzzle-interactions where
the honest party plays the part of the receiver are simulated. For every adversary A, we construct another
adversary A ∈ Csim that internally emulates A and simulates puzzles while extracting trapdoors for all
puzzles where A plays the role of sender.

In more detail, an execution in H1 proceeds identically to the real-execution, with the exception that all
parties running 〈S,R〉, instead of participating in the preamble phase of 〈S,R〉, receive a simulated puzzle-
transcript from A. Furthermore, for every puzzle interaction where the party controlled by the adversary
is the sender and the receiver is honest, A outputs a witness w corresponding to the simulated puzzle-
transcript (in a special-output tape). Additionally, upon adaptive corruption of the receiver in a puzzle
interaction, where the sender is controlled by the adversary,A produces random coins for an honest receiver
that are consistent with the simulated puzzle-transcript. To construct such an A given A, we rely on the
adaptive simulatability of the puzzle in a concurrent puzzle execution. We consider an adversary Apuz that
incorporates A internally and forwards all puzzle interactions with A as the sender to external receivers.
This Apuz also simulates all other puzzle interactions internally. All other interactions of A are forwarded
byApuz to the puzzle environment that incorporatesA and the other honest parties. Since this can be viewed
as a concurrent puzzle execution, there must exist a simulator A′puz that simulates all puzzle interactions,
outputs a witness w, and successfully simulates adaptive corruptions. Finally, to constructA we incorporate
A′puz and emulate an execution by forwarding the messages between A′puz and the actual parties instead of
sending to Zpuz.

The proof of indisintguishability follows identically as in [35] and we omit it. The non-abusing property
follows from the statistical indistinguishability of A’s view14 in H0 and H1. Hence we have the following

14If A is non-abusing, then just as in proof of Claim 4, we can conclude that A is equivocating in H1. Then with non-negligible
probability over the random-tapes for A and partial transcripts where A completes a commitment using 〈Scom,Rcom〉, it holds that

37

claims.

Claim 5. The output of Z in H0 and H1 is indistinguishable.

Claim 6. A is non-abusing in H1

In subsequent hybrids, the adversary we consider is A. However, to avoid confusion in notation, we
denote the adversary by A only.

Hybrid H2: This hybrid proceeds identically to H1 with the exception that in all interactions with an
honest receiver, the commitments received in Stage 1 are switched to simulated equivocal commitments.
More specifically, the protocol 〈Scom,Rcom〉 occurring in Step 1 of the two coin-tosses in Stage 1, is modified
for interactions where the adversary plays the part of receiver in 〈Scom,Rcom〉 in the following ways:

• The first commitment sent by S in the 〈Scom,Rcom〉 protocol is replaced by a simulated (equivocal)
commitment which can be opened to any value.

• The WIPOK’s are replaced with simulated adaptively-secure WIPOK’s which can be opened consis-
tently with any valid witness.

• When a decommitment is requested, a value r0R or r1S (as appropriate) is chosen uniformly at random
and a decommitment to the chosen value is produced.

Note that, in particular, this means that in Expr2n(z), commitments produced by 〈Scom,Rcom〉 (where the
adversary played the role of receiver) will be decommitted to different values in the initial and rewound
views.

Claim 7. The output of Z in H1 and H2 is indistinguishable.

Claim 8. A is non-abusing in H2

Proof: We prove both the above claims simultaneously. They follow essentially from the simulation-
extracaibility property of 〈Scom,Rcom〉. Recall from proof of Claim 4 that if the outputs of the two exper-
iments are distinguishable, then it implies that Expr2n(z) outputs ⊥FAIL. Consider the following adversary
A that violates the simulation-extractability property of 〈Scom,Rcom〉.

On input 1n and auxiliary input z, A internally incorporates A(1n), Z(z) and all honest parties and
begins emulating an execution of hybrid experiment H1 with the following exception: A forwards all
〈Scom,Rcom〉 interactions that are part of 〈Icoin,Rcoin〉 interactions where the adversary controls the receiver
are forwarded externally to honest committers on the left and all 〈Scom,Rcom〉 interactions that are part of
〈Icoin,Rcoin〉 interactions where the adversary controls the sender are forwarded to external receivers on the
right. WheneverA requests a decommitment for the coin-toss interactions on the left, A externally requests
a decommitment. For the decommitment phase on the right, A simply forwards the decommitment made
by A in the internal 〈Icoin,Rcoin〉 interactions. At the end A outputs A’s view and all the value decom-
mitted to in the right interactions. Observe that when the left commitments are sent by honest committers
the view output is identical to view output in H1 and when the commitments are equivocated, the view
is identical to one output in H2. Furthermore, the simulation proceeds identically to the simulator for the
〈Scom,Rcom〉 protocol. Since Expr2n(z) outputs ⊥FAIL with non-negligible probability, following the proof
of Claim 4, it holds that, when the commitment in the left are equivocated, there exists a particular k for

A equivocates with non-negligible probability. This violates the statistical-indistinguishability as for the fixed random tape, A
never equivocates and an unbounded prover, given a partial transcript and random tape, can find the unique value A decommits to
and distinguish from the value decommitted to by A.

38

which A equivocates in kth right-interaction with non-negligible probability. This means that we can sim-
ulate EffExpr2kn(4m(n) · p(n), z) and with non-negligible probability A decommits to a different value in
the rewound execution. However, from the simulation-extractability property of 〈Scom,Rcom〉, it holds that,
whenever the left-commitments are equivocated, there is a unique value that any adversary can decommit to
after the commitment stage is completed. Thus, we arrive at a contradiction.

Hybrid H3: This hybrid proceeds identically to H2 with the exception that the protocol 〈Scom,Rcom〉
occurring in Step 1 of the first coin-toss in Stage 1 is modified for interactions where the adversary plays
the part of receiver in 〈Scom,Rcom〉 so that instead of sampling a uniformly random r0R and decommitting to
this value, we sample r0R as follows:

• Using Gen(rGen) sample a public-key, secret-key pair (pk, sk).

• Run rGen(rGen) to obtain the string s such that oGen(s) = PK.

• Decommit to r0R = r0S ⊕ s.

We show that both the indistinguishability and the non-abusing property reduce to the indistinguisha-
bility of random strings s to strings s sampled by running rGen(rGen) where rGen is sampled uniformly at
random. Note that a simulator A emulating an execution in Hybrid H3 onward can extract the adversary’s
committed values by decommitting to r = rS⊕s such thatA knows the corresponding SK for oGen(s) = PK

and then decrypting the decommitment information contained in S0 and/or S1.

Claim 9. The output of Z in H2 and H3 is indistinguishable.

Proof. Assume that there exists a PPT algorithm D that distinguishes the output of Z in H2 and H3 with
probability 1

p(n) for some polynomial p(·) and infinitely many n. We construct an adversary A that will be
able to distinguish strings s chosen uniformly at random from string s = rGen(rGen) where rGen is chosen
uniformly at random (and thus breaks the oblivious generation property of the simulatable PKE).

Consider a machine A that on input 1n and auxiliary input z, participates in an execution with a chal-
lenger C and internally incorporates A, Z , and all the honest parties and emulates an interaction in H2. A
receives from C a sequence of values {s1, . . . , sm(n)} chosen either uniformly at random or chosen such
that si = rGen(riGen). A continues the emulation of A as in H2 with the difference that in the i-th the
commitment protocol 〈Scom,Rcom〉, A decommits to the value r0R = r0S⊕ si. At the end of the execution, A
runs D on the output of Z and outputs whatever D outputs.

Note that when the strings {s1, . . . , sm(n)} are generated via rGen(rGen) then the emulation produces
a view for Z that is identical to its view in H3. On the other hand, when the strings {s1, . . . , sm(n)}
are chosen uniformly at random then the emulation produces a view for Z that is identical to its view in
H2. Thus, A distinguishes random strings s from strings s sampled by running rGen(rGen) where rGen is
sampled uniformly at random with the same probability that D distinguishes the ouput of Z in H2 and H3.
This implies that A distinguishes with non-negligible probability, which is a contradiction to the security of
the simulatable PKE scheme E and so the claim is proved.

Claim 10. A is non-abusing in H3

Proof. The proof for A being non-abusing essentially follows from the proof of Claim 9 above. Details
follow.

Assume towards contradiction thatA is abusing inH3. Recall that this implies that for some polynomial
p(·), some fixed k and for infinitely many n, Expr2kn(z) outputs⊥FAIL with probability 1/p(n). UsingA, we
will construct an adversaryA that breaks the security of the simulatable PKE scheme E . Consider the follow-
ing adversary A: On input 1n and auxiliary input z, A internally incorporates A(1n), Z(z) and all honest

39

parties. Additionally, A receives externally a sequence of 4m2(n) · p(n) values, {s1, . . . , s4m2(n)·p(n)}.
A begins emulating an execution of hybrid experiment H3 and chooses a random 〈Icoin,Rcoin〉 interaction
whereA controls the initiator Icoin. A continues the emulation ofA with the difference that in the k-th com-
mitment protocol 〈Scom,Rcom〉, A decommits to the value r0R = r0S⊕ sk. After completion of Stage 3 of the
〈Icoin,Rcoin〉 interaction, if A fails to decommit, A outputs ⊥. Otherwise, it stores the decommitment as r.
Next, it rewinds to the end of Stage 1 and starts a new emulation (just as in EffExpr2kn). Again, in the k-th the
commitment protocol 〈Scom,Rcom〉 of the rewound execution,A decommits to the value r0R = r0S⊕sm(n)+k.
If the adversary fails to decommit, A rewinds again, continuing the experiment for at most 4m(n) · p(n)
number of rewindings. If at the end of the rewinding attempts, A decommits to r̃ where r̃ 6= r, A outputs 1;
if r̃ = r, A outputs 0.

Note that when the strings {s1, . . . , s4m2(n)·p(n)} are generated via rGen(rGen) then the emulation pro-
duces a view for A that is identical to its view in EffExpr2kn(z) of H3. Since the distribution of outputs
of EffExpr2kn(z) and Expr2kn(z) have statistical distance at most 1/4p(n), this implies that in H3, A out-
puts 1 with non-negligible probability of at least 1/p(n) − 1/4p(n). On the other hand, when the strings
{s1, . . . , s4m2(n)·p(n)} are chosen uniformly at random then the emulation produces a view for A that is
identical to its view in EffExpr2kn(z) of H2. Since A is non-abusing in H2, we have in this case that A
outputs 1 with negligible probability.

So we have that when {s1, . . . , s4m2(n)p(n)} are chosen via rGen(rGen) A outputs 1 with non-negligible
probability and when {s1, . . . , s4m2(n)p(n)} are chosen uniformly at random A outputs 1 with negligible
probability. Thus, A distinguishes random strings s and strings s sampled by running rGen(rGen) where
rGen is sampled uniformly at random. This is a contradiction to the security of E and so the claim is
proved.

Hybrid H4: This hybrid proceeds identically to H3 with the exception that the protocol 〈Scom,Rcom〉
occurring in Step 1 of the second coin-toss in Stage 1 is modified for interactions where the adversary plays
the part of receiver in 〈Scom,Rcom〉 so that instead of sampling a uniformly random r1S and decommitting to
this value, we sample r1S as follows:

• Sample s uniformly at random and set r = G(s).

• Decommit to r1S = r1R ⊕ r.

Claim 11. The output of Z in H3 and H4 is indistinguishable. Moreover, A is non-abusing in H4

The proof of Claim 11 proceeds analogously to the proofs of Claims 9 and 10. Here we consider an
adversaryA that receives externally a sequence of strings {s1, . . . , s4m2(n)·p(n)} which are either uniformly
random or generated via the pseudorandom generator G. We show that A perfectly emulates an execution
in H3 (or emulates Expr2n(z) in H3) when the received strings are uniformly random and that A perfectly
emulates an execution in H4 (or emulates Expr2n(z) in H4) when the received strings are pseudorandom.
Thus, if the output of Z in H3 and H4 is distinguishable or if A is abusing in H4 (and not abusing in
H3), then A distinguishes random and pseudorandom strings. This is a contradiction to the security of the
pseudorandom generator G, and so the claim is proved.

Hybrid H5: This hybrid proceeds identically to H4 with the exception that the protocol 〈Seq,Req〉 occur-
ring in Step 1 of Stage 2 is modified for interactions in which the adversary plays the part of receiver in
the following way: The commitment C is replaced by a simulated (equivocal) commitment which can be
opened to both 0 and 1.

We show that both the indistinguishability and the non-abusing property reduce to the special-hiding
property of 〈Seq,Req〉.

40

Claim 12. The output of Z in H4 and H5 is indistinguishable. Moreover, A is non-abusing in H5.

Proof. The proof of Claim 12 proceeds analogously to the proofs of Claims 9 and 10. Assume for contra-
diction there exists an environment Z that distinguishes the experiments H4 and H5. More precisely, there
exists D and polynomial p(·) such that D distinguishes the output of Z in both the experiments. We show
given D,Z and A how to violate the special-hiding property of the commitment (See Definition 2).

Consider a machine A that on input 1n and auxiliary input z, internally incorporates A, Z , and all
the honest parties and emulates an interaction in H4. Whenever A wishes to receive a commitment from
an honest receiver to a bit β in Stage 2 of 〈S,R〉, instead of constructing C by emulating the 〈Seq,Req〉
interaction internally, A makes a request externally for a commitment C to bit β. When A expects a
decommitment in the internal emulation A again requests the external committer for a decommitment of C
to bit β. Finally, A runs D on the output of Z and outputs what D outputs.

Observe that when the external committer runs the code of the honest committer S in 〈Seq,Req〉, then the
output of A is identically distributed to the output of D in H4. Similarly, whenever the external committer
runs the code of the equivocator in 〈Seq,Req〉, then the output of A is identically distributed to the output
of D in H5. Therefore, D distinguishes honest and simulated commitments, which is a contradiction to the
special-hiding property of 〈Seq,Req〉.

The proof for A being non-abusing essentially follows from above. Assume towards contradiction
that A is abusing and thus for some polynomial p(·), some fixed k and for infinitely many n, Expr2kn(z)
outputs ⊥FAIL with probability 1/p(n). In this case,A will need to request additional external commitments
C so that it can simulate EffExpr2kn(4m(n) · p(n), z). Specifically, A begins emulating an execution of
hybrid experiment H5 and chooses a random 〈Icoin,Rcoin〉 interaction where A controls the initiator Icoin.
A continues the emulation of A with the difference that whenever an equivocal commitment is required in
Stage 2 of a 〈S,R〉 protocol where A plays the receiver, A requests an external commitment C and embeds
it in the transcript. After completion of Stage 3 of the 〈Icoin,Rcoin〉 interaction, if A fails to decommit, A
outputs ⊥. Otherwise, it stores the decommitment as r. Next, it rewinds to the end of Stage 1 and starts
a new emulation (just as in EffExpr2kn). Again, replacing the equivocal commitment in Stage 2 with an
externally supplied commitment. If the adversary fails to decommit, A continues rewinding attempts for at
most 4m(n) · p(n) number of times. At the end of the rewinding attempts, ifA decommits to r̃ where r̃ 6= r,
A outputs 1; if r̃ = r, A outputs 0.

Note that when the external commitments are generated via 〈Seq,Req〉 then the emulation produces a
view for A that is identical to its view in EffExpr2kn(4m(n) · p(n), z) of H4. Since A is non-abusing in
H4, we have in this case that A outputs 1 with negligible probability. On the other hand, when the external
commitments are generated via 〈Seq,Req〉 then the emulation produces a view for A that is identical to its
view in Expr2n(z) of H5. Since the distribution of outputs of EffExpr2kn(z) and Expr2kn(z) have statistical
distance at most 1/4p(n), this implies that in H4, A outputs 1 with non-negligible probability of at least
1/p(n)− 1/4p(n).

So we have that when the external commitments are generated via 〈Seq,Req〉, A outputs 1 with non-
negligible probability and when the external commitments are generated via 〈Seq,Req〉, A outputs 1 with
negligible probability. Thus, A distinguishes commitments generated by 〈Seq,Req〉 and commitments gen-
erated by 〈Seq,Req〉. This is a contradiction to the special-hiding property of 〈Seq,Req〉 and so the claim is
proved.

We are now ready to prove our correctness claim:

Claim 13. For every adversary A in H5 that successfully commits to a bit β in Stage 2, it is the case that A
encrypts decommitment information for both 0 and 1 in S0, S1 with negligible probability.

Proof. Assume for contradiction there exists an adversaryA and a value j (where 1 ≤ j ≤ m(n)), such that
in the jth 〈S,R〉 interaction where A plays the part of sender, it is the case that A encrypts decommitment
information for both 0 and 1 in S0, S1 probability 1/p(n) for some polynomial p(·).

41

Consider a machine A that on input 1n, auxiliary input z, and non-uniform advice p(·), participates in a
security experiment with adversaryA. A chooses a sequence of uniformly random strings ρ1, . . . , ρ4m(n)·p(n),
internally incorporates A, Z and all the honest parties and emulates an interaction in H5. Note that with
all but negligible probability, none of ρ1, . . . , ρ4m(n)·p(n) are in the range of the pseudorandom generator
G. A choose s the 〈Icoin,Rcoin〉 interaction corresponding to the jth 〈S,R〉 interaction where A controls the
initiator Icoin of the coin-toss. Call this 〈Icoin,Rcoin〉 interaction the kth 〈Icoin,Rcoin〉 interaction. A will then
attempt to fix the outcome of the kth coin toss to some ρi for 1 ≤ i ≤ 4m(n) · p(n) so that x = ρi in the
Stage 2 〈Seq,Req〉 interaction.

To this end, A begins its internal emulation. If the kth 〈Icoin,Rcoin〉 interaction fails to complete suc-
cessfully, A halts. Otherwise, assume A successfully decommits to some value r1S in Step 3 of the chosen
execution of 〈Scom,Rcom〉 (within the 〈Icoin,Rcoin〉 interaction) and 〈Icoin,Rcoin〉 completes with outcome r.
Then A rewinds A to the point right before A sends r1R on behalf of the responder and instead sends the
value (r1)′R = ρ1 ⊕ r1S. A continues to rewind A for at most 4m(n) · p(n) times or until the 〈Icoin,Rcoin〉
protocol successfully completes. Note that the execution of A is distributed identically to an execution of
EffExpr2kn(z, 4m(n) · p(n)). Moreover, note that A in H5 can decrypt and extract the committed values of
the adversary, if the adversary starts to construct commitments in Stage 2 with decommitment information
to both 0 and 1 encrypted in S0, S1. Thus, due to the non-abusing property of H5, the fact that the outputs
of EffExpr2kn(z, 4m(n) · p(n)) and Expr2kn(z) are 1/4p(n)-close, and the fact that ViewA is identically dis-
tributed in Expr1kn(z) and Expr2kn(z), we have that the 〈Icoin,Rcoin〉 protocol completes successfully in the
rewound execution with an outcome ρi andA encrypts decommitment information for both 0 and 1 in S0, S1

is at least 1/p(n)− 1/4p(n)−neg(n). But this is impossible, since with all but negligible probability, none
of ρ1, . . . , ρ4m(n)·p(n) are in the range of G. Thus, we have reached contradiction.

Hybrid H6: In this hybrid, Step 2 of Stage 2 of 〈S,R〉 is modified for interactions in which the adversary
plays the part of receiver in the following way: Decommitment information for both bits 0 and 1 is encrypted
in S0, S1.

Indistinguishability and the statistical binding property will be reduced to the security properties of the
simulatable PKE scheme. Note that to reduce to the indistinguishability of encryptions Enc(PK∗,m, r) of
a specified message m and strings generated at random via oRndEnc(PK∗, rEnc) (where PK∗ is generated
via oGen with uniform randomness r′ which is also given to the adversary), we need to ensure that the
outcome of the first coin-toss in Stage 1 of 〈S,R〉 yields the target public key PK∗. Fixing the outcome of
the coin-toss will require rewinding the adversary and in order to guarantee that the rewinding strategy is
successful, we will rely on the fact that the adversary is non-abusing. More specifically, we consider the
intermediate hybrids H0

6 , H
1
6 , . . . ,H

m(n)
6 where H0

6 = H5 and H i
6 is the hybrid where the m(n) − i + 1-

th through m(n)-th commitments in interactions 〈S,R〉 where the adversary plays the part of the receiver,
are constructed such that decommitment information to both 0 and 1 is encrypted in strings S0, S1 of Stage 2.

We are now ready to prove indistinguishability of the Hybrid experiments:

Claim 14. For 1 ≤ k ≤ m(n) the output of Z in Hk−1
6 and Hk

6 is indistinguishable.

Note that Claim 14 immediately implies that the output of Z inH5 andH6 is indistinguishable. We now
proceed to prove Claim 14.

Proof. Assume for contradiction there exists an adversary A, an environment Z , a value k (where 1 ≤ k ≤
m(n)), a distinguisher D and a polynomial p(·) such that for infinitely many n, D distinguishes the output
of Z in Hk−1

6 and Hk
6 with probability 1/p(n) for some polynomial p(·).

Consider a machine Ak that on input 1n, auxiliary input z, and non-uniform advice p(·), participates in
a security experiment for the simulatable PKE scheme E : Ak receives externally a sequence of uniformly

42

random values {r∗1, . . . , r∗4m(n)·p(n)} such that for each 1 ≤ i ≤ 4m(n) · p(n), oGen(r∗i) = PK∗i , internally
incorporates A(1n), Z(z) and all the honest parties and emulates an interaction in H6. Intuitively, Ak will
embed one of the challenge obliviously generated public keys and ciphertexts from the external security
experiment in Stage 2 of the m(n) − i + 1-th execution of the coin tossing protocol 〈Icoin,Rcoin〉 (where
coin-tosses are ordered according to the order of the decommitments in Step 3). To this end, on input
bit β, Ak will play the role of sender and interact with A in 〈Seq,Req〉 using common input x. Ak runs
the equivocator for 〈Seq,Req〉 to construct an equivocal commitment C which it can decommitment to
both 0 and 1. Ak chooses b ∈ {0, 1} at random and sets Sb to be an encryption of a decommitment to
β. Next, Ak sets the message m in the external experiment to be a correct decommitment to bit 1 − β

and receives challenge ciphertexts {S1
1−b, . . . , S

4m(n)·p(n)
1−b } (one for each challenge public key). Ak must

distinguish whether the ciphertexts {S1
1−b, . . . , S

4m(n)·p(n)
1−b } are all encryptions of a decommitment to 1−β

or whether the ciphertexts {S1
1−b, . . . , S

4m(n)·p(n)
1−b } are all outputted by oRndEnc(PK∗i , r

i
Enc) where riEnc is

chosen uniformly at random.
Next, Ai begins to run its internal emulation. If A successfully decommits in the m(n) − i + 1-th

〈Scom,Rcom〉 interaction in the first coin toss of Stage 1 to some value r0R and the 〈Icoin,Rcoin〉 interaction
completes, thenAk rewindsA to the point right beforeAi sends r0S and instead sends the value r0S = r∗1⊕r0R.
Ak continues to rewind A for at most 4m(n) · p(n) times or until the 〈Icoin,Rcoin〉 protocol successfully
completes and the decommitment corresponding to the rewound coin-toss is the k-th decommitment of the
rewound execution. Note that up to the m(n) − i + 1-th 〈Scom,Rcom〉 interaction, the execution of Ak is
distributed identically to an execution of EffExpr2kn(z, 4m(n) · p(n)) in H5.

Thus, due to the non-abusing property of A in H5, and the fact that the output of EffExpr2kn(z, 4m(n) ·
p(n)) and Expr2kn(z) are statistically 1/4p(n)-close, we have that with probability at least 1 − 1/4p(n) −
neg(n), the outcome of the coin toss in the rewound execution is r∗i = r∗i ⊕ r0R⊕ r0R = r0S⊕ r0R (for some i).
Thus, since oGen(r∗i) = PK∗i , Ak can embed its challenge ciphertext Si1−b (which is encrypted under public
key PK∗i) in Stage 2 of 〈S,R〉 for the m(n)− i+ 1-th commitment.

For the m(n) − i + 2-th through m(n)-th commitments, Ai chooses b ∈ {0, 1} uniformly at random,
sets Sb to be an encryption of the decommitment information corresponding to β and sets S1−b to be an
encryption of the decommitment information corresponding to 1− β.

Finally,Ak runsD on the output ofZ and outputs whateverD outputs. Note that if {S1
1−b, . . . , S

4m(n)·p(n)
1−b }

are all outputted by oRndEnc(PK∗i , r
i
Enc), then the output of Z is 1/4p(n)-close to the output of Z in

Hk−1
6 . On the other hand, if {S1

1−b, . . . , S
4m(n)·p(n)
1−b } are encryptions of a decommitment to 1 − β under

PK∗1, . . . , PK∗4m(n)·p(n), then the output of Z is 1/4p(n)-close to the output of Z in Hk
6 . Thus, the difference

between the probability that D outputs 1 in the first case and D outputs 1 in the second case is at least
1/p(n) − 1/4p(n) − 1/4p(n) = 1/2p(n). So Ak distinguishes between encryptions of decommitment to
1 − β and obliviously generated ciphertexts with non-negligible probability. This yields a contradiction to
the security of E and so the claim is proved.

Claim 15. For every adversary A in H5 that successfully commits to a bit β in Stage 2, it is the case that A
encrypts decommitment information for both 0 and 1 in S0, S1 with negligible probability.

Proof. Since A’s commitments can be extracted in H5 and H6, this follows immediately from the indistin-
guishability of the output of Z in H5 and H6.

43

E Puzzle Instantiations

E.1 Adaptive UC in the Common Reference String (CRS) Model

In the common reference string model [8] the parties have access to a CRS choses from a specified trusted
distributionD, which is captured via the following ideal functionality FDCRS (Figure 6) that samples a string
r from the distribution D and sets it as a CRS.

Functionality FDCRS

1. Upon activation with an id sid run the sampling algorithmD with uniformly distributed random input
ρ ∈ {0, 1}n to obtain a reference string r = D(ρ). Store D, ρ, r and send (sid, r) to the adversary.

2. On input (CRS, sid) from a party P with session id sid′, return (sid, r) to that party only if sid =
sid′, and ignore the message, otherwise.

Figure 6: Common Reference String Functionality

We construct a puzzle in the FGCRS-hybrid, where G is a pseudorandom generator.

Protocol 〈S,R〉: On input sid, S and R request a common reference string from ideal functionality FGCRS
by sending sid.

Relation: R = {(x, y)|y = G(x)}

Figure 7: Common Reference String Puzzle

THEOREM 4. Assume the existence of a simulatable PKE scheme and the existence of an EQNMCom
scheme. LetG be a pseudorandom generator. Then, for every well-formed ideal functionality F , there exists
a protocol π that realizes F̂ with adaptive UC security in the FGCRS-hybrid.

E.2 Adaptive UC in the Uniform Reference String (URS) Model

When the distribution D in the CRS model is fixed as the uniform distribution, we obtain the uniform
reference string model [11]. Let the URS-functionality be FURS = FICRS , where I is the identity function.
Since the FGCRS-functionality implements FURS-functionality when G is pseudo-random generator, any
protocol that realizes f in the FGCRS-hybrid also realized the same functionality in the FURS-hybrid.

THEOREM 5. Assume the existence of a simulatable PKE scheme and the existence of an EQNMCom
scheme. Then, for every well-formed ideal functionality F , there exists a protocol π that realizes F̂ with
adaptive UC security in the FGURS-hybrid.

E.3 Adaptive UC in the Key Registration Model

In the key registration model [2] includes a service that allows all parties to obtain a public key derived
from a seed, which is kept secret by the service. The service is modeled as an ideal functionality FfKR
parameterized by a function f : {0, 1}∗ → {0, 1}∗, which is presented in Figure 8.

Using the KR-functionality we construct a puzzle as follows:

44

Functionality FfKR

Upon activation with input sid and security parameter n initialize a set R of empty strings.

Registration: On input message (register, sid) from party P1 send to the adversaryA (register, sid, Pi)
and receive a value p′. If p′ ∈ R, then set p ← p′. Otherwise, choose r ← {0, 1}n and set p ← f(r)
and add p to R. Finally, record (Pi, p) and return (sid, p) to both Pi and A.

Registration by corrupted party: On input message (register, sid, r) from a corrupted party Pi, add
Pi, f(r) but does not add f(r) to R.

Retrieval: On input (retrieve, sid, Pi, Pj) from party Pj , send (retrieve, sid, Pi, Pj) to A and get back
a value p. If (Pi, p) is recorder, return (sid, Pi, p) to Pj . Otherwise, return (sid, Pi,⊥) to Pj

Figure 8: Key Registration functionality

Protocol 〈S,R〉: On input sid, R sends (retrieve, sid, S,R) to the ideal functionality FfKR to obtain a
public key.

Relation: R = {(x, y)|y = f(x)}

Figure 9: Key Registration Model Puzzle

THEOREM 6. Assume the existence of a simulatable PKE scheme and the existence of an EQNMCom
scheme. Let f be a one-way function. Then, for every well-formed ideal functionality F , there exists a
protocol π that realizes F̂ with adaptive UC security in the FfKR-hybrid.

E.4 Non-Uniform Adaptive UC

In this model, we consider environments that are PPT machines and ideal-model adversaries that are
n.u.PPT machines. First, we construct an adaptive puzzle in this model and then state our main theorem.
To construct an adaptive puzzle in this model, we make the same complexity theoretic assumptions as those
made in [35]; namely, we assume the existence of an evasive set L in P.

Recall the definition of an evasive set [35]:

Definition 10. A set L is said to be evasive, if for all n, S ∩ {0, 1}n 6= ∅ and for any PPT machine M ,
there is a negligible function v(·), such that, Pr[M(1n) ∈ S ∩ {0, 1}n] ≤ v(n)

In [35], several other assumptions sufficient for constructing puzzles in this model. We note that in
the adaptive case we can also construct puzzles under each of the assumptions used by [35]. However, for
simplicity, we focus only on the assumption that there exists an an evasive set in P.

Lemma 6. Assume the existence of an evasive setL in P. Then there exists an adaptive puzzle in (PPT , n.u.PPT)
with an empty protocol.

Proof. Let λ denote the empty string. Define the puzzle Pnu = (〈S,R〉,R) as follows (see Figure 10):
We prove soundness and adaptive, statistical simulatability of the puzzle.

45

Protocol 〈S,R〉: S and R on input 1n run the empty protocol.

Relation: R = {(x, λ)|x ∈ L}

Figure 10: Non-uniform Puzzle

Soundness: Since L is evasive, no cheating PPT receiver can output x such that (x, λ) ∈ R, i.e. x ∈ L
with more than negligible probability.
Adaptive Simulatability: Consider an adversary A that participates in a concurrent adaptive puzzle execu-
tion with environment Z . We construct a n.u.PPT adversary A′ that receives δ ∈ L as non-uniform advice
and proceeds as follows: It incorporates A internally and emulates an execution with A. It forwards all
messages from A to Z , except the messages involved in the puzzle interactions with A. However, since the
protocol is empty, there are no messages exchanged in the puzzle interaction. Clearly, dealing with adaptive
corruptions is trivial since no messages are exchanged in the puzzle interaction. To outputs a witness, A′
simply outputs δ on its special output tape whenever A sends (TRANS = λ,C) to Z for a puzzle interac-
tion. Finally, since the interaction between A′ with Z is identical to the interaction between A with Z , the
real and ideal executions are perfectly indistinguishable to Z .

THEOREM 7. Assume the existence of simulatable PKE secure against n.u.PPT , the existence of an
EQNMCom scheme secure against n.u.PPT , and the existence of an evasive set L. Then, for every well-
formed ideal functionality F , there exists a protocol π that realizes F̂ with adaptive Non-Uniform UC
security.

E.5 Quasi-Polynomial Adaptive UC

Recall that the Quasi-Polynomial Simulation model is a relaxation of the standard simulation-based defini-
tion of security, allowing for a super polynomial-time or Quasi-polynomial simulation (QPS).

THEOREM 8. Assume the existence of simulatable PKE secure againstPQT , the existence of an EQNMCom
scheme secure against PQT , and the existence of one-way functions that can be inverted with probability
1 in PQT . Then, for every well-formed ideal functionality F , there exists a protocol π that realizes F̂ with
adaptive QPS-UC security.

We remark that one-way functions that are invertible by PQT machines as well as EQNMCom schemes
can be constructed based on one-way functions with sub-exponential hardness. Thus, assuming simulatable
PKE secure against PQT and one-way function with subexponential hardness, we obtain as a corollary a
protocol that securely realizes any functionality with adaptive QPS-UC security.

The notion of security we achieve is analagous to the one in [35] which guarantees that the output of the
simulator is indistinguishable also for PQT . This means that anything an attacker can learn “on-line” (in
poly-time) can be simulated “off-line” (in qpoly-time) in a way that is indistinguishable also “off-line”.

We present the following Adaptive UC-Puzzle in the QPS model (See Figure 11). Let f be a one-way
function that can be inverted with probability 1 in PQT .
Soundness: This follows directly from the one-wayness of f and the witness-hiding property of the proof
given by the sender.
Adaptive Simulatability: The simulatorA′ simply plays the part of the honest receiver. Upon adaptive cor-
ruption, A′ reveals the randomness of the honest receiver. Clearly, this simulation is identically distributed
to a real execution. To output a witness, we require A′ to compute the inverse of y = f(x) for a random x.
While emulatingA, ifA completes a puzzle-interaction by convincing the receiver in the WHPOK, thenA′

46

Protocol 〈S,R〉:

S → R: Pick x← {0, 1}n and send y = f(x) to R.

S ↔ R: a witness-hiding argument of knowledge of the statement that there exists x′ such that
y = f(x′).

Relation: R = {(x, y)|y = f(x)}

Figure 11: QPS Puzzle

Functionality Fsun.

1. Upon activation with session id sid proceed as follows. Send the message (Activated, sid) to the
adversary, and wait to receive bad a message (n, sid,D). Run the sampling algorithm d on a uniformly
distributed random input ρ from {0, 1}n to obtain a reference string r = D(ρ). Store D, ρ, r and send
(CRS, sid, r, ρ) to the adversary.

2. When receiving input (CRS, sid) from some party P with session id sid′, send (CRS, sid, r) to that
party if sid = sid′; otherwise ignore the message.

Figure 12: Fsun

inverts x to obtain a witness y such that y = f(x). If an inverse exists, it finds one since f is invertible by
PQT machines. From the soundness property of the WHPOK, it follows that, if A convinces the receiver,
then except with negligible probability, x has an inverse w.r.t. f .

E.6 Adaptive UC in the Sunspots model

Below we describe the functionality Fsun (See Figure 12).
We construct an adaptive UC-puzzle in the sunspots model which relies on a statistically hiding com-

mitments 〈C,R〉 with additional algorithms (C∗,Adap) that have the following properties:

Invertibility: For every (expected) PPT machine R∗, let τ be the transcript of the interaction between R∗

and C on input bit β and random tape r ∈ {0, 1}∗ for C. Then Adap(r, τ) produces a random tape r′

such that 〈C∗, R∗〉 yields transcript τ when C∗ uses random tape r′.

Strong Oblivious Simulation: For every (expected) PPT machine R∗, it holds that, the following ensem-
bles are statistically indistinguishable over n ∈ N .

• {(staR
∗,r1
〈C∗,R〉,r1(z), r1)}n∈N,r1,r2∈{0,1}n,z∈{0,1}∗,β∈{0,1}

• {(staR
∗

〈C,R〉,r2(β, z),Adap(r2, τ))}n∈N,r1,r2∈{0,1}n,z∈{0,1}∗,β∈{0,1}

where staR
∗,r1
〈C∗,R〉(β, z) denotes the random variable describing the output of R∗ after receiving a com-

mitment from C∗ using random tape r1, staR
∗

〈C,R〉,r2(β, z) denotes the random variable describing the
output of R∗ after receiving a commitment from C to bit β using random tape r2 and τ denotes the
transcript produced by 〈C,R〉.

47

We note that the standard construction of statistically-hiding commitment scheme from collision-resistant
hash function (CRHF) fulfills the above definition when the CRHF has ”random outputs” (i.e. for randomly
chosen input x, the output of the CRHF is statistically indistinguishable from random). Such a CRHF was
constructed by [28] from lattice-based assumptions. Additionally, the construction of statistically-hiding
commitment from one-way permutation (OWP) of [40] has the desired properties, since C∗ can simply
choose a random image y = π(x) of the OWP π, without knowing the corresponding x and run the in-
teractive hashing protocol obliviously. We note that the construction of [40] relies on a general hardness
assumption but requires poly(n) rounds while the construction of [28] relies on a concrete hardness as-
sumption but is constant-round. For concreteness, we state the theorem below for the case of CRHF with
random output. Our proof is written for the general case, assuming any commitment scheme that satisfies
the properties above.

THEOREM 9. Assume the existence of simulatable PKE, collision-resistant hash-functions with random
output, and an EQNMCom scheme. Then, for every well-formed ideal functionalityF , there exists a protocol
π in the Fsun-hybrid that realizes F̂ with adaptive UC-security w.r.t. (µ, d, t)-conforming adversaries where
µ(n)− d(n) > nε for some ε > 0.

We first consider a FGsun-hybrid model, where FGsun is the ideal functionality identical fo Fsun, with the
exception that, instead of running the sampling algorithm D on a uniformly distributed ρ, it runs D on input
G(x) for a uniformly random x, where G is a pseudo-random generator. We conclude that the protocol
constructed in the FGsun-hybrid also securely realizes the functionality in the Fsun-hybrid.

We proceed towards constructing a puzzle in the FGsun-hybrid. Let G : {0, 1}nδ → {0, 1}∗ be a pseudo-
random generator that expands a seed of length nδ (for δ > 0) to a stream of bits such that d(n)+nδ+ |G| <
µ(n). Such a δ(n) is guaranteed to exist since µ(n)− d(n) > nε. Such a generator can be constructed from
any one-way function, which exists under the assumption of simulatable PKE.

Our construction of the puzzle is similar to the construction used in [35] (which is based on [12]), the
only difference is the type of commitment we use in the construction.

Let (V1, P1, V2, P2, V3) be the respective verifier and prover algorithms for a public-coin universal argu-
ment for the language

LKOL = {r | r ∈ {0, 1}n and KOL(r) < n
ε+δ
2 },

where KOL(x) is the Kolmogorov complexity of a string x. Such a system can be constructed based on
collision-resistant hash functions. We describe a language of transcripts of universal arguments in which
the prover’s messages are committed instead of sent to the verifier. In order to commit, we use a special
statistically hiding commitment scheme 〈C,R〉, which satisfies the properties listed above. We describe the
puzzle construction below (See Figure 13).
Soundness: Suppose a PPT receiver R∗ is able to break the soundness by outputting the witness for a
puzzle with probability p. We use R∗ to construct another efficient algorithm P which breaks the sound-
ness property of the universal argument system with probability poly(p). The soundness of the universal
argument system therefore implies that p must be negligible which implies the soundness of the puzzle. We
show that P breaks the soundness of the universal argument w.p. poly(p) on the statement that the reference
string r sampled from FGsun-functionality has a “short” description. Since G is pseudo-random, if p is non-
negligible, then P breaks the soundness with non-negligible probability in the hybrid experiment when r is

sampled from the Fsun functionality. Since, D has min-entropy µ(n), w.p. at most 2−n
ε−δ
2 = 2−O(nε), r has

a short description and therefore no computationally bounded prover can succeed in the universal argument
with non-negligible probability. Thus, p is negligible.

More precisely, P upon receiving the verifier message v1, feeds v1 toR and then internally simulates the
rest of the puzzle until R outputs the witness. By hypothesis, this succeeds with probability p. Let p1 be a
decommitment to the first message sent by R. P forwards p1 externally to the verifier and receives the next

48

Protocol 〈S,R〉: S and R obtain the reference string r from the FGsun-functionality.

S → R: Pick v1 ← V1(r, n) and send to R.

R↔ S: R and S interact using 〈C∗, R〉, whereR plays the role ofC∗. We denote by c1 the resulting
transcript.

S → R: Pick v2 ← V2(r, n) and send to R.

R↔ S: R and S interact using 〈C∗, R〉, whereR plays the role ofC∗. We denote by c2 the resulting
transcript.

Relation:

R =

(TRANS, w) |
TRANS = (r, v1, c1, v2, c2), w = ((p1, r1), (p2, r2))
c1 ← 〈S,R〉(p1, r1), c2 ← 〈S,R〉(p2, r2) and
V3(s, v1, p1, v2, p2) = 1

Figure 13: Sun Spots Puzzle

message v2. At this point, P rewinds R and feeds v2 instead of the second message (simulated before) from
the verifier and continues to simulate the rest of the puzzle. If R outputs a witness ((p′1, r

′
1), (p2, r2)) then

we argue that the p′1 outputted must, with all but negligible probability, be the same as p1 outputted during
the first simulation. Otherwise, R breaks the binding of the equivocal commitment and we obtain a witness
M to r ∈ LKOL. In particular, this means that R distinguishes the output of G from a truly random string.
Now, we argue that with probability at least p2, the transcript (v1, p1, v2, p2) is an accepting transcript for
the universal argument.
Adaptive Simulatability: We achieve statistical simulation by allowing the simulatorA′ to set the reference
string and obtain the witness, which is the description of D, G and x, whose combined size by construction
is nδ + O(1) + d(n) < n

ε+δ
2 . Furthermore, while emulating a receiver in a puzzle with adversary A,

instead of following the honest receiver’s code, A′ runs the protocol 〈S,R〉 with the sender S in the second
and fourth step of the puzzle interaction. The simulator runs the code of an honest prover (P1, P2) in the
universal argument with witness (D,G, x) obtaining transcript (v1, p1, v2, p2) and sends commitments to p1

and p2 using 〈S,R〉. Thus, the values committed to by A′ and the randomness used to commit amount to a
trapdoor for the puzzle. Upon adaptive corruption, A′ uses Adap to produce randomness r′ to show that the
transcript ”could have” been produced using C∗. Notice that, due to the properties of 〈S,R〉, even after the
randomness r′ has been produced, the puzzle sender’s view is statistically indistinguishable in the real and
simulated interaction.

E.7 Adaptive Bounded Concurrent MPC in the plain model

As in the sunspots model, we construct an adaptive UC-puzzle in the bounded concurrent setting which relies
on a statistically hiding commitments 〈C,R〉 with additional algorithms (C∗,Adap). For concreteness, we
again state the theorem below for the case of CRHF with random output. Our proof is written for the general
case, assuming any commitment scheme that satisfies the required properties.

THEOREM 10. Assume the existence of simulatable PKE, collision-resistant hash-functions with random
output, and an EQNMCom scheme. Then, for every well-formed functionality F , there exists a protocol π
in the standard model that realizes F̂ with adaptive security under m-bounded concurrent composition.

Our construction of the puzzle leverages the non-black box techniques of Barak [1] (which were sub-

49

Common input: 1n

Length paramter: `(n)

Protocol 〈S,R〉:
Trapdoor Generation:

S → R: Choose h← {0, 1}n (where h defines a collision resistant hash function with range {0, 1}n)
and send to R.

R↔ S: R and S interact using 〈C∗, R〉, where R plays the role of C∗. We denote by c the resulting
transcript.

S → R: In the i-th concurrent execution, Choose r ← PRFs(i), where PRF is a pseudorandom
function and s is a secret key used by S in all concurrent executions and send r to R.

Universal Argument

S → R: Pick v1 ← V1(r, n) and send to R.

R↔ S: R and S interact using 〈C∗, R〉, whereR plays the role ofC∗. We denote by c1 the resulting
transcript.

S → R: Pick v2 ← V2(r, n) and send to R.

R↔ S: R and S interact using 〈C∗, R〉, whereR plays the role ofC∗. We denote by c2 the resulting
transcript.

Relation:

R =

(TRANS, w) |

TRANS = (h, c, r, v1, c1, v2, c2), w = (M, s, s1, s2, y, p1, p2)
c← 〈S,R〉(h(M), s), c1 ← 〈S,R〉(p1, r1), c2 ← 〈S,R〉(p2, r2) and
V3(s, v1, p1, v2, p2) = 1 and
U(M, c, y) outputs r within nlog logn steps, where U is a universal Turing
machine and|y| ≤ |r| − n.

Figure 14: Bounded Concurrent Puzzle

sequently extended to the setting of bounded concurrent secure computation of general functionalities
[36, 43]). The main difference is the type of commitment we use in the construction. We remark that
our construction is inspired by [26], where they show how to construct stand-alone adaptively secure multi-
party computation. While they need Barak’s protocol to be non-malleable and rely on techniques from [42],
we only need the original construction by Barak.

We define the following relation RT (n)
U . We say that (〈M,x, t〉, w) ∈ R

T (n)
U , where M is a descrip-

tion of a Turing machine, x,w are strings and t is a number, if M accepts (x,w) within t steps and
t ≤ T (|〈M, s, t〉|). We define the language LT (n)

U = L(RT (n)
U).

Let (V1, P1, V2, P2, V3) be the respective verifier and prover algorithms for the public-coin universal
argument presented in [1] for the language Ln

log logn

U .
We describe the puzzle construction in Figure 14.
In the puzzle protocol defined in Figure 14, we require that `(n) fulfills the following requirement: All

messages sent to S in concurrent executions between the time that R sends the commitment c and S replies

50

with r ∈ {0, 1}`(n) can be described in less than `(n) bits. Assume that the length of all party’s messages
(except the string r sent when the party plays the part of the puzzle Sender in the Trapdoor Generation
phase) in a single execution of the protocol computing some functionality f is bounded by a polynomial
q(n). We will show below that for m concurrent executions, taking `(n) = m · q(n) + 2n is sufficient.
Soundness: Suppose a PPT receiver R∗ is able to break the soundness by outputting the witness for
a puzzle with probability p. We use R∗ to construct another efficient algorithm A which either breaks the
security of the CRHF h, breaks the binding property of the commitment scheme 〈S,R〉 or breaks the security
of the PRF.

More precisely, A plays the role of the honest sender S with R∗ and simulates the entire puzzle pro-
tocol until R outputs the witness. However, A sends random strings r instead of pseudorandom strings.
By hypothesis, this succeeds with probability p (otherwise we can distinguish between pseudorandom and
random strings). Let ((p1, r1), (p2, r2)) be the witness outputted by R∗, where the corresponding transcript
(v1, p1, v2, p2) is an accepting transcript for the universal argument. Now, we may rewind again and submit
a different message v′2. With probability p, R∗ will output a witness ((p′1, r

′
1), (p′2, r

′
2)) where the transcript

(v1, p1, v
′
2, p
′
2) is an accepting transcript. Moreover, the p′1 outputted must, with all but negligible prob-

ability, be the same as p1 outputted during the first simulation. Otherwise, R∗ breaks the binding of the
commitment 〈S,R〉. We repeat this process a polynomial (expected) number of times until we are able to
extract the witness M, s.

Next, we rewind to the Trapdoor Generation phase of the protocol and send a different message r in
the second message from S to R∗. Now, by repeating the process described above, we ultimately extract a
different witnessM ′, s′ such that c = 〈S,R〉(h(M), s) = 〈S,R〉(h(M ′), s′). Thus either finding a collision
in the CRHF h or breaking the binding property of the commitment scheme 〈S,R〉.
Adaptive Simulatability: We achieve statistical simulation by having the simulator A′ do the following:

• If the simulator A′ plays the part of the puzzle Receiver in the i-th execution, A′ commits to the code
of the adversary, the simulated incoming messages (other than the incoming strings r) and to the PRF
key s, as in [1, 45]. Note that the length of this commitment is at mostm ·q(n)+n and that it correctly
describes the next message function of the adversary.

• The simulator runs the code of an honest prover (P1, P2) in the universal argument obtaining transcript
(v1, p1, v2, p2) and sends commitments to p1 and p2 using 〈S,R〉. Thus, the values committed to by
A′ and the randomness used to commit amount to a trapdoor for the puzzle.

• Upon adaptive corruption, A′ uses Adap to produce randomness r′ to show that the transcript ”could
have” been produced using C∗. Notice that, due to the properties of 〈S,R〉, even after the random-
ness r′ has been produced, the puzzle sender’s view is statistically indistinguishable in the real and
simulated interaction.

E.8 Adaptive UC in the Timing model

We prove feasibility of our result in the timing model, which is the same as presented in [35], in the following
theorem.

THEOREM 11. Let ε > 1 and ∆ > 0 be constants. Assume the existence of simulatable PKE and a 2ε2∆-
delayed EQNMCom scheme. Then, for every well-formed ideal functionality F , there exists a protocol π
that realizes F̂ with (∆, ε, 2ε2∆)-timed adaptive UC-security.

For the proof of the above theorem we need to show that Lemma 5 holds the timing model and also adapt
the definition of a puzzle to handle entities with clock tapes. To achieve the first task we require that the
puzzle environment is δ-delaying and soundness and simulatability hold with respect to ε-drift preserving
adversaries. Thus we obtain the following claim for the lemma:

51

Lemma 7 (Adaptive-Puzzle-Lemma in the Timing Model). Let ε > 1 and ∆ > 0 be constants. Let
Π′ be a ε2∆-delayed protocol in the Fmcom-hybrid model. Assume the existence of a (Cenv, Csim)-secure
adaptive puzzle 〈S,R〉 in a G-hybrid model, ε2∆-delayed stand-alone EQNMCom 〈Scom,Rcom〉 secure w.r.t
cl(Csim, Cenv) and simulatable PKE scheme secure w.r.t Csim. Then, there exists a protocol Π in the G-hybrid
such that, for every uniform PPT adversaryA that is ε-drift preserving, there exists a simulatorA′ ∈ Csim,
such that, for every ε2∆-delaying environment Z ∈ Cenv, the following two ensembles are indistinguishable
over N w.r.t Csim.

•
{

ExecGΠ,A,Z(n)
}

n∈N

•
{

ExecFmcom
Π′,A′,Z(n)

}
n∈N

We adapt the proof of Lemma 5 to the timing model. There we considered a sequence of hybrid experi-
ments starting with the execution of the adversaryA in the real world to the execution with the simulatorA′
in the Fcom-hybrid world. We constructed non-abusing adversaries in each of the hybrids and showed that
the executions in the hybrids are indistinguishable for the environment Z . The first step was to construct
an adversary relying on the simulatability of the puzzles. In hybrid H1 we construct an adversary A′ that
incorporates A and simulates all puzzles interactions. In order to show that hybrid H0 (the real world) and
hybrid H1 are indistinguishable we constructed an adversary Apuz in a concurrent puzzle execution, which
incorporates A and emulates the interaction of A’s environment. Thus the indistinguishability of H0 and
H1 is reduced to indistinguishability of Zpuz in concurrent puzzle execution with Apuz and its simulator
A′puz . To ensure that this holds in the timing model we require that (1) Zpuz is ε2δ-delaying environment
and (2) the internal emulation of the execution by Apuz is identical to H0. The first conditions holds since
Zpuz incorporates Z and the honest parties and emulates only the interactions of these parties that are not
part of the puzzle-interactions. Thus all messages sent from Z or the honest parties to the adversary that
are forwarded from Zpuz to Apuz are ε2δ-delayed since Z is ε2δ-delaying, and messages from the honest
parties which are not part of the puzzles interactions are ε2δ-delayed.

In order to satisfy the second condition we have to account for the special messages (time, ∗, ∗) and
(reset − time, ∗, ∗) that the adversary A can send to alter the parties’ clock-tapes. We introduce two
modifications of Apuz and Zpuz to achieve this. First, we require that Apuz forward all special messages
from A to Zpuz and also adjust appropriately the local clock-tapes of the parties in the internal emulation.
Since Apuz forwards to the external receiver the messages between A and the honest parties where A acts
as a sender, we need to synchronize the clocks of those external receivers for the puzzle interactions. For
this we require that Zpuz forward the appropriate message for the clock-tapes to the external receives. The
above modifications of Apuz and Zpuz suffice for the proof of the non-abusing property as well (the only
difference in the puzzle environment is the final output). The rest of the hybrids in the proof of the lemma
are the same as before since they use the simulated puzzles and rely only on the EQNMCOM properties.

We turn towards constructing an adaptive puzzle in the timing model. Define the puzzlePtim(〈S,R〉,R)
as follows (see Figure 15).
Soundness: The soundness of the puzzle follows directly from the one-wayness of f and the witness-hiding
property of the protocols.
Adaptive Simulatability: To simulate a concurrent puzzle-execution with A and its environment Z , A′, as
before, internally emulates an execution withA while playing the role of the honest receiver. Upon adaptive
corruption, A′ simply reveals the inputs and randomness used while running the code of the honest receiver
during puzzle interactions (note that the inputs and randomness used in puzzle interactions are independent
of the inputs of the honest receiver to the commitment functionality). To extract the witness in a puzzle
challenged byA,A′ essentially rewindsA in the witness-hiding proof-of-knowledge sub-protocol to obtain
another accepting transcript. Using the special-sound property of the proof-of-knowledge protocol, the

52

Protocol 〈S,R〉:

S → R: Pick x← {0, 1}n and send y = f(x) to R.

S ↔ R: a witness-hiding special-sound argument of knowledge of the statement that there exists x′

such that y = f(x′). R issues a time− out if more than 2ε∆ local time units elapsed since the
challenge in the WHPOK was issued and the response was received from S.

Relation: R = {(x, y)|y = f(x)}

Figure 15: Timing Model Puzzle

adversary A′ can then extract the witness used in the proof and outputs that as the witness for the puzzle
transcript.

More formally, whenever A completes a puzzle-interaction with a receiver, A′ temporarily stalls the
emulation and rewinds A to the state where it receives a challenge in the WHPOK sub-protocol. It feeds
a new challenge and continues the emulation to obtain a response. While performing emulation from a
given challenge, A expects to exchange messages with Z and other receivers. Since, the receivers are
internally emulated, messages exchanged betweenA and the receivers can be emulated internally. Messages
exchanged withZ are delicate, since we cannot rewind the externalZ . Note, however, that in a rewinding,A
receives two kinds of messages from Z: (1) messages that were sent before the new challenge was fed to A
in a rewinding, and (2) messages that were sent after. The former messages were received by A in the main
execution can be replayed by A′ to A. For the latter kind of messages, we claim that A′ does not have to
emulate them. As A is ε-drift-preserving, the receivers clock-tape advances at least 2ε∆1

ε time units before
the puzzle-environment’s clock-tape advances 2ε∆ time units. Since, the receiver issues a time-out when its
clock-tape advances 2ε∆ steps since it sent the challenge, A needs to respond to the challenge before the
message from Z reaches A. Finally, messages to Z from A in a rewinding are ignored by A′. Finally we
need to argue that A′ runs in polynomial time. Let q(n) be the expected time that A′ spends to extract the
witness. Let p be the probability that the receiver is not corrupted during the rewinding and A responds to
a challenge in the WHPOK of the puzzle before the receiver times out. Then the expected number of times
that A′ has to rewind before A responds to the challenge before the receiver times out (conditioned that the
receiver is not corrupted) is 1

p . Therefore, the total time spent is p · 1
p · q(n), which is polynomial.

E.9 Adaptive UC in the Tamper-Proof Hardware Model

The tamper-proof hardware model introduces a physical assumption that enables protocols to be executed
in an isolated environment. This assumption is instantiated through the existence of tamper-proof hardware
tokens, which allows a party Pi to create a hardware token that implements a functionality F and give this
token to any party Pj . Now the party Pj can interact with the token and access the embedded functionality
in a black-box manner. The tamper-proof property means that an adversary that has a token can do nothing
more than observe the input and output from the interaction with it, i.e. he cannot alter in anyway the
functionality that the token implements. The notion of a tamper-proof hardware token in formalized though
the ideal functionality Fwrap in Figure 16 introduced by Katz [33].

The following theorem states our result in the tamper-proof model.

THEOREM 12. Assume the existence of simulateable PKE and an EQNMCom scheme. Then, for every
well-formed ideal functionality F , there exists a protocol π that realizes F̂ with adaptive UC-security in the
Fwrap-hybrid model.

53

Functionality Fwrap.

Let p be a polynomial and n be a security parameter for Fwrap.

Create: On input (create, sid, Pi, Pj ,M) from Pi, where Pj is another user of the system and M is an
interactive Turing machine, do:

1. Send (create, sid, Pi, Pj ,M) to Pj .

2. If there is no tuple of the form (Pi, Pj , ∗, ∗, ∗) stored, then store (Pi, Pj ,M, 0,).

Execute: On input (run, sid, P,msg) from P ′, find the unique stored tuple (P, P ′,M, i, state) (if no such
tuple exists, then do nothing). Then do:

Case 1 (i = 0): Choose random w ← {0, 1}p(k). Run M(msg;w) for at most p(k) steps, and let out
be the response (set out =⊥ if M does not respond in the allotted time). Send (sid, P, out) to
P ′. Store (P, P ′,M, 1, (msg,w)) and erase (P, P ′,M, i, state).

Case 1 (i = 1): Parse state as (msg1, w). Run M(msg1||msg;w) for at most p(k) steps, and let out
be the response (set out =⊥ if M does not respond in the allotted time). Send (sid, P, out) to
P ′. Store (P, P ′,M, 0,) and erase (P, P ′,M, i, state).

Figure 16: Fwrap

In order to prove the theorem it suffices to construct an adaptive UC puzzle in the Fwrap-hybrid model.
Unlike the other puzzles this will be a ”stateful” puzzle in the sense that a party is required to spawn
a subroutine of S at the beginning of the execution and use this subroutine to generate any consecutive
puzzle. This routine can keep state across multiple executions and thus the generated puzzle instances are
not independent. Figure 17 presents the resulting puzzle in the tamper-proof model.

We argue the soundness and simulatability properties of the puzzle in Figure 17 as follows:

Soundness: It follows from the one-wayness the function f and the witness-hiding property of the proto-
col.

Simulation: To simulated concurrent puzzle execution with the adversary A and the environment Z , A′
emulates internally an execution withAwhere it acts asFwrap. A′ obtains the message (create, sid, Pi, Pj ,M∗)
sent by A. Later in a challenge protocol by A to Pj , A′ extract the witness to a puzzle y by rewinding M∗

in the witness-hiding argument-of-knowledge sub-protocol. Since M∗ does not receive messages from any
other parties other than Pj during the execution (and the rewinding), the extraction can finish in isolation
without intervening the adversary A and the environment Z . If party Pj is corrupted during rewinding, A′
does not have to execute the simulation.

E.10 Adaptive, Partially Isolated Adversaries Model

In this section, we consider a model that incorporates the physical assumption that protocols can be run in a
(partially) isolated environment. In particular, we assume that a player Pj can ensure that another player Pi
is partially isolated for a short portion of the computation. During this time, Pi can only exchange a limited
number of bits with the environment but Pj’s communication is unrestricted. More specifically, we assume

54

Protocol 〈S,R〉:

S proceeds in two phases:

• When it is first spawned and invoked on inputs the identity of the sender Pi and the session
id sid, it uniformly picks a string x ∈ {0, 1}n, computes its image y through the one-way
function f , and stores (y, Pi, sid) as an internal state.
• Later when S is invoked on inputs the identity of the puzzle receiver Pj to challenge Pj , S

checks whether this is the first time interacting with party Pj , if so, it ”creates” and ”gives”
Pj a token, which encapsulates the functionality M that gives a witness-hiding argument-
of-knowledge of the statement that y is in the image set of f , by sending the message
(create, sid, Pi, Pj ,M) to Fwrap. To actually challenge Pj , S simply sends y as the puzzle
to the receiver.

Upon receiving y from the sender, R accesses M via Fwrap as follows: it sends (run, sid, S, ε) to
Fwrap (ε is an empty string), and then receives from M a WHAOK of the statement that y is in
the image set of f (forwarded by Fwrap).

Relation: R = {(x, y)|y = f(x)}

Figure 17: Tamper-Proof Model Puzzle

the existence of some threshold `, such that Pj can prevent Pi from exchanging more than ` bits with the
environment.

The partially isolated adversaries model was introduced by [19, 20], and formalized as the isolate ideal
functionality Fisolate. We recall the formal description of Fisolate as in [20] in Figure 18.

We obtain an analogue of the result of [20], using our puzzle framework:

THEOREM 13. Assume the existence of simulatable PKE scheme, and the existence of an EQNMCom
scheme. Then, for every well-formed ideal functionality F , there exists a protocol π that realizes F̂ in
the Adaptive, Partially Isolated Adversaries model.

To prove the theorem, it suffices to construct a puzzle in the Fisolate-hybrid model. In all the previous
models, the puzzle protocols 〈S,R〉 are executed in a ”stateless” way, that is, whenever a party intends
to challenge (acting as the sender of the puzzle) another, it spawns independently a new subroutine of S
to generate the puzzle. In this model, we consider a ”stateful” puzzle, which requires a party to spawn
a subroutine of S at the beginning of its execution, and use this subroutine to generate all the puzzles it
needs throughout its lifetime. (Note that the receiver part of the puzzle protocol is still ”stateless”.) It is
stateful in the sense that the subroutine can keep states across multiple invocations, and hence the puzzle
instances generated are not independent to each other, but correlated. More precisely, we define the puzzle
Pisolate = (〈S,R〉,R) for the Fisolate-hybrid model as follows. The interactive Turing machine S, proceeds
in two phases:

• When it is first spawned and invoked on inputs the identity of the sender Pi and the session id sid–
called the initialization phase–it uniformly picks a string x ∈ {0, 1}n, computes its image y through
the one-way function f , and stores (y, Pi, sid) as an internal state.

• Let Π be an `-Isolated Proof of Knowledge Protocol as defined by [19], where parties Pi, Pj interact
and Pi proves that it knows a witness w to an NP-statement z. We note that by definition, such a
protocol is standalone zero-knowledge and hence, is also witness-hiding.

55

The Fisolate ideal functionality is parameterized by an isolation paramter `, a security paramter κ and a
polynomial p.

Isolation of Pi: Wait until receiving messages (isolate, sid, Pi, Pj) from Pj and (isolate, sid, Pi, Pj ,M)
from Pi. If there is already a stored tuple of the form (Pi, Pj , ·, ·, ·, ·) then ignore the command.
Otherwise:

1. Parse the string M as the description of an ITM with four communication tapes; two tapes (”in”
and ”out”) for regular protocol communication with Pj and two tapes for secret communication
with Pi. Let the value state encode the initial state of M (including the value of a work tape
and an initialized random tape). Define new values inCom = 0, outCom = 0 and store the tuple
(Pi, Pj ,M, state, inCom, outCom).

2. Send (isolate, sid, Pi) to Pj .

Interaction with Pj: On input (run, sid, Pi, Pj ,msg) from Pj , retrieve the tuple
(Pi, Pj ,M, state, inCom, outCom). If there is no such tuple then ignore the command.

1. Place the string msg on the ”in” tape designated for Pi and run M for p(κ) steps.

2. If there is any value msg′ on the output tape for Pj then send the message (reply, sid, Pi,msg′)
to Pj .

3. If there is any value msg′ on the output tape for Pi and outCom + |msg′| < ` then send the
message (secretCom, sid, Pj , Pi,msg′) to Pi and update outCom = outCom + |msg′|.

4. Update the value of state in the stored tuple to encode the updated state of M and the values of
its tapes.

Communication: On input (secretCom, sid, Pi, Pj ,msg) from Pi, if there is no tuple of the form
(Pi, Pj ,M, state, inCom, outCom) then ignore. Also if the tuple has inCom + |msg| > ` then ig-
nore the command. Otherwise:

1. Update inCom = inCom + |msg|, place msg on the ”in” tape for Pi and run M for p(κ) steps.

2. Proceed with steps 2, 3, 4 of the above command.

Release of Pi: On input (release, sid, Pi, Pj) from Pj , retrieve the tuple
(Pi, Pj ,M, state, inCom, outCom) and send (release, sid, Pi, Pj , state) to Pi.

Figure 18: The Fisolate Ideal Functionality

56

Pj , playing the part of receiver, initializes a puzzle interaction with S by sending the message (isolate,
sid, Pi, Pj) to the Ideal Functionality. S replies with the message (isolate, sid, Pi, Pj ,M), where M
is a description of an ITM playing the part of the Prover in protocol Π, interacting via protocol
communication with verifier Pj and via secret communication with Pi. The NP-statement being
proved is simply that y is in the range of f , and by the end of the protocol, Pj should be convinced
that Pi knows x such that f(x) = y.

S and Pj interact withM via the Ideal Functionality messages run and secretCom. When the protocol
completes, Pj sends a message (release, sid, Pi, Pj) to the Ideal Functionality.

To actually challenge Pj , S simply sends y as the puzzle to the receiver. The puzzle relation R is
simply {(x, y) | y = f(x)}.

The soundness of the puzzle follows directly from the one-wayness of the function f and the witness-
hiding property of the protocol. Furthermore, to adaptively simulate a concurrent puzzle interaction with
adversary A and environment Z , A′ internally emulates an execution with A and acts as the Fisolate func-
tionality for A. Whenever A sends a message (isolate, sid, Pi, Pj ,M) to Fisolate, A′ obtains the message.
Later to extract the witness of a puzzle y challenged by A (controlling Pi) to Pj , A′ simply runs the knowl-
edge extractor of the `-Isolated Proof of Knowledge to extract the witness. Using the [19] construction
of `-Isolated Proofs of Knowledge, we have that the simulation of A′ is perfect; addtionally, we note that
since the [19] verifier is public-coin, dealing with adaptive corruptions is trivial. Thus, we achieve perfect,
adaptive simulation.

F Constructing Non-Interactive, Language-Based, Equivocal Commitments

LetCom be a non-interactive commitment scheme with a pseudorandom range. Such a commitment scheme
can be constructed from OWF.

Let L be an NP-Language and R, the associated NP-relation. Since the language L ∈ NP, we can
reduce L to the NP-complete problem Hamiltonian Cycle. Thus, given the public input x (which may or
may not be in L), we can use a (deterministic) Karp reduction to a graph G which contains a Hamiltonian
cycle. Moreover, finding a Hamiltonian cycle H in the graph G, implies finding a trapdoor w such that
R(x,w) = 1. Let Φ denote the deterministic mapping from strings x to a graphs G induced by the Karp
reduction.

The protocol is specified in Figures 19, 20 and has appeared before in [11]. For completeness, we present
it again here and show that it satisfies the properties of an equivocal commitment scheme as specified in
Definition 2

We omit the security analysis of the non-interactive, language-based equivocal commitment scheme
〈Seq,Req〉 presented in Figures 19 and 20, since it is standard.

G Constructing Adaptively-secure WIPOK

The adaptively-secure (without erasures) WIPOK construction given here is similar to the one given in [38].
As in [38], it is based on Blum’s Σ-protocol for graph Hamiltonicity [5]. Let Com be any commitment
scheme. The Σ-protocol proceeds as follows (see figure 21):

We construct adaptively-secure WIPOK by replacing each commitment Com in the Σ-protocol with a
non-interactive equivocal commitment Com∗(π(G′)i,j), as constructed above.

Lemma 8. When commitments Com are replaced with equivocal commitments Com∗ generated by running
the protocol 〈Seq,Req〉 presented in Figures 19 and 20 then we have that the protocol in Figure 21 is a
WIPOK (with soundness 1/2) and is secure under adaptive corruptions.

57

〈Seq,Req〉 on common input x and private input β: Commitment phase

To commit to β = 1:

1. Seq chooses an n× n adjacency matrix H of a random n-node Hamiltonian cycle.

2. Seq sends a matrix Com of n× n strings where the following holds:

• Comi,j contains a random commitment to 1 under Com iff Hi,j = 1.
• Comi,j contains a random string iff Hi,j = 0.

To commit to β = 0:

1. Seq chooses an n× n adjacency matrix I which corresponds to a random isomorphism of G =
Φ(x).

2. Seq sends a matrix Com of n× n strings where the following holds:

• Comi,j contains a random commitment to 1 under Com iff Ii,j = 1.
• Comi,j contains a random commitment to 0 under Com iff Ii,j = 0.

Let C = EQComx(β; r) denote the transcript of the commit phase when Seq uses randomness r.

〈Seq,Req〉 on common input x: Decommitment phase

To decommit to a 0:

1. Seq opens the commitments in Com where Comi,j is a commitment to 1 and shows that these
correspond to a random Hamiltonian cycle.

2. Seq produces the randomness it used to sample the remaining random strings in the matrix Com.

To decommit to a 1:

1. Seq opens the commitments in Com to obtain adjacency matrix I and shows an isomorphism
from G = Φ(x) to this graph.

Figure 19: Non-interactive, language-based equivocal commitment scheme 〈Seq,Req〉

sketch. The analysis of the soundness of the protocol follows from the analysis of the underlying Σ-protocol,
which we omit since it is by now a standard argument.

Next we need to prove the witness-indistinguishability and proof of knowledge properties as well as the
fact that the protocol is secure under adaptive corruptions. In fact, we show that the above construction is not
only a WIPOK, but is a Zero Knowledge Proof of Knowledge. We now present a simulator which satisfies
the zero-knowledge property and can also handle adaptive corruptions (for simplicity, we consider here only
post-execution corruptions). This implies that the scheme above is zero-knowledge as well as secure under
adaptive corruptions.

On input graph G′, the Simulator does the following:

Simulation of Prover’s first message: Use the simulator for 〈Seq,Req〉 to compute a commitment for each
position in an n× n matrix (each position in the matrix can now be opened to either 0 or 1).

Simulation of Prover’s second message

58

〈S̃eq, Req〉 on common input x ∈ L and private input w where w ∈ R(x): Equivocal Commitment

1. S̃eq chooses an n× n adjacency matrix I which corresponds to a random isomorphism of G = Φ(x).

2. S̃eq sends a matrix Com of n× n strings where the following holds:

• Comi,j contains a random commitment to 1 under Com iff Ii,j = 1.

• Comi,j contains a random commitment to 0 under Com iff Ii,j = 0.

Let C = EQCom∗x(r) denote the transcript of the commit phase when S̃eq uses randomness r.

Adapeq(x,w, r, τ, v), where τ is the transcript generated by 〈S̃eq, Req〉 on common input x ∈ L:
Equivocal Decommitment

Adapeq decommits to v = 0 as follows:

1. Adapeq opens all the commitments in Com to reveal adjacency matrix I and shows an isomor-
phism from G = Φ(x) to this graph.

Adapeq decommits to v = 1 as follows:

1. Adapeq uses w to open the commitments in Com that correspond to the Hamiltonian cycle in
G = Φ(x) and shows that these correspond to a random Hamiltonian cycle.

2. Adapeq produces random coins for sampling the remaining strings in Com at random.

Figure 20: Non-interactive, language-based equivocal commitment scheme–Equivocator (S̃eq,Adapeq)

• If b = 0, choose a random permutation π and equivocally open the commitments of the n × n
matrix to be consistent with π(G′).

• If b = 1, choose a random cycle C and equivocally open the commitments that correspond to
the Hamiltonian cycle to be consistent with the cycle.

Upon post-execution corruption of Prover: Upon corruption, the simulator learns the witness, the cycle
H of graph G′.

• If b = 0, all the commitments have already been opened, the permutation π has been revealed
and there is no additional information revealed to the adversary upon corruption.

• If b = 1, find some permutation π′ of the vertices of G′ such that π′(H) = C. Note that since
H and C are simply n-node cycles, finding such a π′ takes linear time. Equivocally open the
commitments of the remaining entries of the n× n matrix to be consistent with π′(G′).

We omit the analysis of the above simulator. It is straightforward to check that the simulator simultane-
ously satisfies the zero-knowledge property and also simulates adaptive corruptions successfully.

We additionally omit the proof that the protocol is a proof of knowledge, which is also straightforward.

59

Σ Protocol

Prover’s input: Graph G′ (we also use the notation G′ to represent the adjacency matrix of G′) with
Hamiltonian cycle H .

Prover’s first message:

• Choose a permutation π of the vertices of G′.

• Commit to the adjacency matrix of π(G′) by sending [Com(π(G′)i,j)]1≤i≤n,1≤j≤n to the Veri-
fier.

Verifier’s message: Verifier chooses b ∈ {0, 1} at random and sends to Prover.

Prover’s second message:

• If b = 0, reveal π and open the commitments of the entire adjacency matrix.

• If b = 1, reveal only the cycle π(H) in π(G′) by opening the commitments that correspond to
the Hamiltonian cycle.

Verifier checks the following:

• If b = 0, do the following: Given π, check that the opened adjacency matrix is equal to π(G′).
Check that each of the commitments was opened correctly.

• If b = 1, check that the opened commitments correspond to a Hamiltonian cycle. Check that
each of the commitments was opened correctly.

Figure 21: Σ Protocol

60

