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Abstract. In a Byzantine agreement protocol, a synchronous network of
n interconnected processes of which t may be faulty, starts with an initial
binary value associated with each process; after exchanging messages, all
correct processes must agree on one of the initial values of the non-faulty
processes.
If the network consists of only unicast channels (i.e. a 2-uniform hyper-
graph), then Byzantine agreement is possible if and only if n ≥ 3t + 1
(Pease et. al. [11]). However, Fitzi and Maurer ([7]) show that if, in
addition to all unicast channels, there exists local broadcast among ev-
ery three processes in the network (i.e. a complete (2, 3)-uniform hyper-
graph), n ≥ 2t + 1 is necessary and sufficient for Byzantine agreement.
In this paper, we show that optimum tolerance of n ≥ 2t + 1 can be
achieved even if a substantial fraction of the local broadcast channels
are not available. Specifically, we model the network as a (2, 3)-uniform
hypergraph H = (P, E), where P denotes the set of n processes and E
is a set of 2-tuples and/or 3-tuples of processes (edges or 3-hyperedges),
wherein each 3-hyperedge represents a local broadcast among the three
processes; we obtain a characterization of the hypergraphs on which
Byzantine agreement is possible. Using this characterization, we show
that for n = 2t + 1,

(
2
3
t3 + Θ(t2)

)
3-hyperedges are necessary and suffi-

cient to enable Byzantine agreement. This settles an open problem raised
by Fitzi and Maurer in [7]. An efficient protocol is also given whenever
Byzantine agreement is possible.

1 Introduction

The problem of Byzantine agreement is a classic problem in distributed com-
puting introduced by Lamport et al. in [12]. In many practical situations, it is
necessary for a group of processes in a distributed system to agree on some issue,
despite the presence of some faulty processes. More precisely, a protocol among
a group of n processes (t of which may be faulty), each having a value, is said to
achieve Byzantine agreement, if, at the end of the protocol, all honest processes
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agree on a value and the following conditions hold: (1) Agreement: All honest
processes agree on the same value; (2) Validity: If all honest processes start with
the value v ∈ {0, 1}, then all honest processes agree on v; (3) Termination: All
honest processes eventually agree.

In this paper, we shall use the simple and standard model of a synchronous
network wherein any communication protocol evolves as a series of rounds, dur-
ing which the players send messages, receive them and perform (polynomial
time) local computations according to the protocol.

The processes’ mutual distrust in the network is typically modeled via a
(fictitious) centralized adversary that is assumed to control/corrupt the faulty
processes. In the threshold adversary model, a fixed upper bound t is set for the
number of faulty processes.

Over a complete graph (of point-to-point authenticated channels), it was
proved [11] that, Byzantine agreement is achievable on a set of n processes
with t (Byzantine) faults if and only if t < n

3 . Subsequently, there have been
(successful) attempts on “improving” the above bound.

One approach has been to study the problem in a non-threshold adversary
model like in [8, 6, 1]. In this model the adversary is characterized by an adversary
structure which is a monotone set of subsets of processes from which processes
in any one of the subsets may be corrupted; it was proved [6] that Byzantine
agreement is possible if and only if the adversary structure Aadv satisfies Q(3),
i.e., no three sets in Aadv cover the full set of processes.

A second approach is to assume (stronger) communication primitives in ad-
dition to the point-to-point authenticated links. For example in [7], a broadcast
among three processes was assumed to be available among every set of three
processes and the bound was improved to t < n

2 .
In another line of research, Dolev et. al. in [5] study the possibility of Byzan-

tine agreement over incomplete graphs. If n > 3t, they prove that Byzantine
agreement is achievable if and only if the underlying graph is at least (2t + 1)-
connected. Generalizing this result using the first approach, Kumar et. al. [9]
show that if the adversary structure A satisfies Q(3), Byzantine agreement is
achievable if and only if the underlying graph is A(2)-connected, that is, the
union of no two sets in the adversary structure is a vertex cut-set of the graph.

With this as the state-of-the-art, the following question (mentioned as an
open problem in [7]) arises: what is a necessary and sufficient condition for
achieving Byzantine agreement over incomplete (2, 3)-uniform hypergraphs? In
this paper, we provide a concise characterization that generalizes the results of
[5] (which uses the 1-cast model) to the (2, 3)-uniform hypergraph model.

2 Motivation and Contributions

In practice one finds local broadcast channels in various networks in the form
of LAN (Local Area Network) like an Ethernet or Token ring system. Another
example is wireless communication, which is inherently broadcast in nature. A
particular case when there is a local broadcast among every three players, that
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is, a complete (2, 3)-uniform hypergraph, has been studied in [7]. We investigate
the strength of arbitrary (2, 3)-uniform hypergraphs in the context of achieving
Byzantine agreement. Recall that even over complete (2, 3)-uniform hypergraphs
on n processes of which up to t may be Byzantine faulty, Byzantine agreement
is achievable if and only if n > 2t [7]. We characterize the (im)possibility of
Byzantine agreement on an arbitrary network.

Definition 1. A hypergraph H is said to be (α, β)-hyper-γ-connected if on re-
moval of any (γ − 1) vertices, for any partition of the remaining vertices into α
sets of maximum size β, there exists a hyperedge which has non-empty intersec-
tion with every set of the partition.

In Section 4 we prove that Byzantine agreement among n > 2t processes con-
nected via a (2, 3)-uniform hypergraph H is possible if and only if H satisfies the
following three conditions: (i) if n = 2t+1, then H is 2-hyperedge complete; (ii)
if n > 2t + 1, then H is (2, n)-hyper-(2t + 1)-connected, and (iii) if 2t < n ≤ 3t,
then H is (3, t)-hyper-(3t− n + 1)-connected.

Implicit in the characterization are the principles for fault-tolerant network
design using (2, 3)-hyperedges. Nevertheless, we provide explicit constructions of
minimally connected optimally tolerant 3-uniform hypergraphs (in Section 5).

The impact of our results can be seen from the following implications:

Implication 1 For any n > 3t, addition of (any number of) 3-hyperedges does
not reduce the (2t + 1)-connectivity requirement.
Remark: Note that any hypergraph H is (2, n)-hyper-(2t + 1)-connected if and
only if its underlying graph is (2t+1)-connected. By underlying graph, we mean
the graph obtained by replacing each 3-hyperedge by its corresponding three
edges.

Implication 2 The optimum of n = (2t+1) can be achieved even if a consider-
able fraction of the 3-hyperedges are absent. Furthermore, the minimum number
of 3-hyperedges necessary to facilitate agreement reduces as (n/t) increases.
Remark: We will present in Section 5, the design of networks that allow Byzantine
agreement with at most 1

2 (3t − k − 1)(t + k + 1)(k + 1) 3-hyperedges, where
n = 3t − k, for 0 ≤ k < t.

Implication 3 There are several scenarios (networks) for which no known pro-
tocol can achieve Byzantine agreement while our protocol succeeds.
Remark: For example, consider the network H(P, E) on five nodes two of which
may be faulty and contains eight 3-hyperedges, P = {p1, p2, p3, p4, p5} and
Ebasis = {{p1, p2, p3}, {p1, p2, p4}, {p2, p3, p4}, {p3, p4, p5}, {p4, p5, p1}, {p1, p2,
p5}, {p2, p3, p5}, {p1, p3, p5}}. Note that H satisfies the conditions1 of Theo-
rem 1; hence our protocol of Section 4 achieves agreement while all the extant
protocols fail.
1 For any hypergraph on five nodes tolerating two faults, it can in fact be shown that

it is impossible to satisfy the conditions of Theorem 1 using any set of seven (or less)
3-hyperedges. Thus, our example is tight.
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3 Definitions and the Model

Definition 2. A hypergraph H is defined as the ordered pair (P, E) where P is a
set of vertices and E ⊆ 2P is a monotone2 set of hyperedges. A set e ∈ E is called
a |e|-hyperedge. The maximal basis of E is {e ∈ E| no proper superset of e is
in E}.
We model the network as a hypergraph H(P, E) where P = {p1, p2, . . . , pn}
is the set of processes and {p1, p2, ..., pk} ∈ E if and only if p1, p2, ..., pk are
connected by a local broadcast.
Definition 3. A 3-uniform hypergraph is a hypergraph H(P, E) in which all hy-
peredges in the maximal basis of E are 3-hyperedges. A (2, 3)-uniform hypergraph
is a hypergraph H(P, E) in which every hyperedge in the maximal basis of E is
either a 2-hyperedge or a 3-hyperedge.

In this paper, we work with networks that are modeled by a (2, 3)-uniform
hypergraph.
Definition 4. If P1, P2, . . . , Pm are mutually disjoint non empty sets of size
≤ t such that P1 ∪ P2 ∪ . . . ∪ Pm = P , then we say (P1, P2, . . . , Pm) forms a
(m, t)-partition of P . Formally, (P1, P2, . . . , Pm) forms a (m, t)-partition of P if
1 ≤ |Pi| ≤ t for all i, 1 ≤ i ≤ m, (Pi ∩ Pj) = ∅ for all i, j, 1 ≤ i < j ≤ m and
P1∪P2∪ . . .∪Pm = P . A hypergraph H(P, E) is said to be (m, t)-hyperconnected
if for every (m, t)-partition (P1, P2, . . . Pm) of P , ∃e ∈ E such that (e ∩ Pi) �= ∅
for 1 ≤ i ≤ m. A hypergraph H is (m, t)-hyper-k-connected if on removal of any
(k − 1) vertices, the hypergraph remains (m, t)-hyperconnected.

Remark: A k-(vertex)connected graph on n nodes is a (2, n)-hyper-k-connected
hypergraph.

A hypergraph is said to be 2-hyperedge complete if it contains all 2-hyper-
edges (2-hyperedges among every 2 vertices).

Definition 5. An adversary structure, Aadv, is a monotone3 set of subsets of
the process set P . We abuse the notation Aadv to also denote the maximal basis.
Any adversary characterized by Aadv can corrupt the processes in any one set of
his choice from Aadv. The adversary structure Aadv is said to satisfy Q(k) if the
union of no k sets in Aadv equals P .

4 Characterization of Byzantine Agreement

Theorem 1. Let H(P, E), |P | = n be a (2, 3)-uniform hypergraph. There exists
a deterministic protocol for Byzantine agreement on H tolerating t faults if and
only if all the following hold:

1. If n = 2t + 1, then H should have all 2-hyperedges.
2. If n > 2t + 1, then H is (2, n)-hyper-(2t + 1)-connected.4
3. If 2t < n ≤ 3t, then H is (3, t)-hyper-(3t − n + 1)-connected.

2 If S ∈ E and S′ ⊆ S then S′ ∈ E.
3 If S ∈ Aadv then S′ ∈ Aadv for every S′ ⊂ S
4 This condition implies that we still need (2t + 1)-edge connectivity with respect to

2-hyperedges.
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Proof (Necessity of conditions 1 and 2): The proof is similar to the proof
for (2t + 1)-connectivity on normal graphs in [10]. The main idea of the proof is
illustrated in the Lemma 1.

The key idea behind Lemma 1 is to design a distributed system with contra-
dicting behavior assuming the existence of a protocol satisfying the conditions
stated in the lemma. Note that the newly constructed system need not solve the
Byzantine agreement problem. The processors in the new system behave exactly
as specified in the (assumed) protocol.

Lemma 1. Byzantine agreement is not achievable on a four node hypergraph H
tolerating one fault if the hypergraph is not (2, 4)-hyper-3-connected.

Proof: Suppose, for the sake of contradiction, that there is a protocol A that
achieves agreement among the four players p1, p2, p3 and p4 connected by a
hypergraph H which is not (2, 4)-hyper-3-connected.

Assume without loss of generality that {p2, p4} disconnects H . The maxi-
mal hypergraph H1 that is not (2, 4)-hyper-3-connected which has {p2, p4} as a
cut-set is as shown in Figure 1. The only two 3-hyperedges possible in H1 are
{p1, p2, p4} and {p2, p3, p4}. Since H is a subgraph of H1, the protocol also works
on H1. Without loss of generality assume that all communication is through the
two 3-hyperedges {p1, p2, p4} and {p2, p3, p4}5.

Let π1, π2, π3, π4 denote the local programs of p1, p2, p3, p4 respectively.6 For
each i ∈ {0, . . . , 3} let p′i be an identical copy of player pi.

We construct a new system S of eight players (the original ones along with
their copies) connected by the hypergraph H ′

1 as shown in the Figure 1. The
3-hyperedges in H ′

1 are {{p1, p2, p
′
4}, {p2, p3, p4}, {p′1, p′2, p4}, {p′2, p′3, p′4}}. In S,

both pi and its copy p′i run the same local program πi. Notice that some
hyperedges to which pi was connected in the original network H1 are sub-
stituted by other hyperdeges in the new network H ′

1. For each player pi, we
specify a mapping Mpi : E(H1)− > E(H ′

1) such that if pi communicates
along e ∈ H1 in A then it communicates along Mpi(e) in the new system.
Mp1({p1, p2, p4}) = {p1, p2, p

′
4}, Mp3({p2, p3, p4}) = {p2, p3, p4},

Mp2({p1, p2, p4}) = {p1, p2, p
′
4}, Mp2({p2, p3, p4}) = {p2, p3, p4},

Mp4({p1, p2, p4}) = {p′1, p′2, p4}, Mp4({p2, p3, p4}) = {p2, p3, p4}
The mapping for p′i is obtained by substituting p′j for pj and vice versa in the
mapping for pi. The mapping becomes clear from Figure 1.

The rest of the proof follows as in the proof of Theorem [6.39] of [10]. 	

Observe that in the proof, we only used the corruptibility of the processes p2

and p4. Thus we have the following

5 If p1 wants to send some message to p2 along {p1, p2}, he sends it along {p1, p2, p4}
and addresses it to p2. If p2 wants to send a message to p4 he sends it along {p1, p2, p4}
and {p2, p3, p4} and addresses them to p4.

6 By ‘local program’ we mean the version of the protocol as run at a particular player.
An execution of a local program is dependent only on his input value and on the
messages he receives during the course of the protocol.
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Fig. 1. Views: {p1, p2, p3},{p′
1, p

′
2, p

′
3} & {p′

1, p4, p3}.

Observation 1 Byzantine agreement is not achievable on four node hypergraph
H tolerating the adversary A characterized by the adversary structure Aadv =
{{p2}, {p4}} if {p2, p4} disconnects the hypergraph.

We shall now continue with the proof of the necessity of conditions 1 and 2
of Theorem 1. Specifically we prove that Byzantine agreement is not achievable
among n processes tolerating t faults if the hypergraph is not (2, n)-hyper-(2t +
1)-connected.

On the contrary, assume a protocol Π exists for Byzantine agreement on
some hypergraph H(P, E) that is not (2, n)-hyper-(2t+ 1)-connected. The main
idea of the proof is to construct a protocol Π ′ that achieves Byzantine agree-
ment on a four node hypergraph H ′ tolerating the adversary A characterized
by the adversary structure Aadv = {{p2}, {p4}} where {p2, p4} disconnects the
hypergraph H ′. This leads to a contradiction since existence of such Π ′ violates
Observation 1.

Let n > (2t+1), assume that H(P, E) is not (2, n)-hyper-(2t+1)-connected.
That is there exist a set of 2t processes that disconnect H . Partition this set
into two sets of t processes each, say P2 and P4. On removal of the 2t processes,
the hypergraph disconnects into at least two components, let the processes in
one component be P1 and the processes in the remaining components be P3.
Processes in P1 and P3 are disconnected from each other. Thus there does not
exist a hyperedge in E which has non empty intersection with both P1 and P3.

Construct a hypergraph H ′(P ′, E′) on four processes where P ′ = {p1, p2, p3,
p4}, {pi, pj} ∈ E′ if Pi and Pj are connected in H (there is a hyperedge e ∈ E
that has non empty intersection with each of Pi, Pj) and {pi, pj , pk} ∈ E′ if
Pi, Pj and Pk are connected in H (there is a hyperedge e ∈ E that has non
empty intersection with each of Pi, Pj , Pk). It follows from the earlier argument
that {p1, p3} �∈ E′ and hence {p2, p4} disconnects H ′.

Using the protocol Π , construct a protocol Π ′ for Byzantine agreement
among the processes in P ′ connected by the hypergraph H ′ by allowing pi sim-
ulate the behavior of processes in Pi for i = 1, 2, 3, 4. Processes pi simulate the
behavior of processes in Pi as follows: (a) Set the inputs of all players in Pi as
the input of pi, (b) In each round, messages sent among p ∈ Pi and q ∈ Pj using
the hyperedge {p, q} ∈ E are sent using the hyperedge {i, j} ∈ E′ ({i, j} ∈ E′
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by the definition of E′) and messages sent among p ∈ Pi, q ∈ Pj and r ∈ Pk

using the hyperedge {p, q, r} ∈ E are sent using the hyperedge {i, j, k} ∈ E′

({i, j, k} ∈ E′ by the definition of E′) and (c) At the end of simulation of Π , pi

accepts the value of a process in Pi.
Observe that if Π tolerates t faults, specifically if Π tolerates the adversary

characterized by the adversary structure {P2, P4} where P2 ∪ P4 disconnects
H then Π ′ tolerates the adversary characterized by the adversary structure
{{p2}, {p4}} where {p2, p4} disconnects H ′. This leads to a contradiction to
Corollary 1.

To prove the case for n = (2t+1), assume the contrary i.e., there is a protocol
that achieves Byzantine agreement on a (2t + 1)-node hypergraph that is not 2-
hyperedge complete. Consider the set of P ′ of (2t− 1) processes that disconnect
H . Partition P ′ into two sets P2 and P4 of sizes t and (t − 1) respectively
and continue as in the above case. This completes the proof of the necessity of
conditions 1 and 2 of Theorem 1 	


We shall now turn to the proof of the necessity of condition 3 of Theorem 1.
It is crucial to understand connectivity of hypergraphs from a set theoretic view
at this point.

Lemma 2. Let |P| = n, 2t < n ≤ 3t, P1, P2, P3 ⊂ P and |P1| = |P2| = |P3| = t.
If (P1 ∪P2 ∪P3) = P then |P1 − (P2∪P3)|+ |P2 − (P1 ∪P3)|+ |P3 − (P2 ∪P1)| ≥
(2n − 3t).
Proof:
|P1 − (P2 ∪ P3)| + |P2 − (P1 ∪ P3)| + |P3 − (P2 ∪ P1)|
= n − |(P1 ∩ P2) − P3| − |(P2 ∩ P3) − P1| − |(P1 ∩ P3) − P2| − |P1 ∩ P2 ∩ P3|
= n − |P1 ∩ P2| − |P2 ∩ P3| − |P3 ∩ P1| + 2|P1 ∩ P2 ∩ P3|
= n − (3t − n + |P1 ∩ P2 ∩ P3|) + 2|P1 ∩ P2 ∩ P3|
= 2n − 3t + |P1 ∩ P2 ∩ P3| ≥ 2n − 3t. ��
Lemma 3. Let |P | = n, 2t < n ≤ 3t. Hypergraph H(P, E) is (3, t)-hyper-(3t −
n+1)-connected if and only if for every P1∪P2∪P3 = P and |P1| = |P2| = |P3| =
t, there exists a 3-hyperedge across P1 − (P2 ∪P3), P2 − (P1 ∪P3), P3 − (P2 ∪P1)
i.e., ∃i ∈ P1 − (P2 ∪ P3), j ∈ P2 − (P1 ∪ P3), k ∈ P3 − (P2 ∪ P1) such that
{i, j, k} ∈ E.

Proof: (=⇒) Let H(P, E) be (3, t)-hyper-(3t − n + 1)-connected. |(P1 ∩ P2) −
P3|+ |(P2 ∩ P3)− P1|+ |(P1 ∩ P3)− P2|+ |P1 ∩ P2 ∩ P3| ≤ 3t− n from proof of
Lemma 2. Further each of the sets P1−(P2∪P3), P2−(P1∪P3) and P3−(P2∪P1)
are non empty since |Pi ∪ Pj | ≤ 2t < n. Since H is (3, t)-hyper-(3t − n + 1)-
connected, there is a 3-hyperedge across the sets P1 − (P2 ∪ P3), P2 − (P1 ∪ P3)
and P3 − (P2 ∪ P1).
(⇐=) Assume the contrary, i.e. there exists a hypergraph H(P, E) such that for
some t (2t < n ≤ 3t) H is not (3, t)-hyper-(3t−n+1)-connected but there exists
a 3-hyperedge across P1 − (P2 ∪ P3), P2 − (P1 ∪ P3), P3 − (P2 ∪ P1) whenever
P1 ∪ P2 ∪ P3 = P and |P1| = |P2| = |P3| = t. Since H is not (3, t)-hyper-
(3t − n + 1), there exists a set C of (3t − n) nodes and a partition of P − C
into 3 sets S1, S2, S3 with 1 ≤ |Si| ≤ t, such that there is no 3-hyperedge across
S1, S2, S3.
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Partition C into 3 sets C1, C2, C3 such that |Ci| = 2t + |Si| − n. Construct
P1, P2, P3 such that P1 = S1∪C2∪C3, P2 = S2∪C1∪C3 and P3 = S3∪C1∪C2.
Observe that P1∪P2∪P3 = S1∪S2∪S3∪C = P . Further |P1| = |S1|+ |C2|+ |C3|
= |S1|+ |C| − |C1| = |S1|+ 3t− n− 2t− |Si|+ n = t. Similarly, |P2| = |P3| = t.
So there exists a 3-hyperedge across S1, S2, S3. This is a contradiction. Hence H
is (3, t)-hyper-(3t− n + 1)-connected. 	

Proof (Necessity of the condition 3): Assume the contrary, i.e., H(P, E) is
not (3, t)-hyper-(3t−n+1)-connected. Then, from Lemma 3 it follows that there
exist P1, P2, P3 ∈ Aadv such that |P1| = |P2| = |P3| = t, P1 ∪ P2 ∪ P3 = P with
no 3-hyperedge across P1 − (P2 ∪ P3), P2 − (P1 ∪ P3), P3 − (P2 ∪ P1). Let Π be
the protocol for Byzantine agreement tolerating the adversary B characterized
by the adversary structure Aadv, the protocol also tolerates the adversary B′

characterized by the adversary structure A′
adv = {P1, P2, P3}. We show that

there cannot exist a protocol for Byzantine agreement among the processes of
P1∪P2∪P3 tolerating the adversary B′ when P1− (P2∪P3), P2− (P1∪P3), P3−
(P2 ∪ P1) are not connected by a 3-hyperedge.

Assume that the protocol runs for r rounds. Informally, the proof aims to
construct three scenarios of protocol execution by defining the process inputs
and behavior in each case such that the requirements of Byzantine agreement in
these three scenarios imply a contradiction. The proof is similar to the proof of
Theorem 3.1 in [1].

Before proceeding to the proof, we first introduce some notation. We denote
the messages sent from process x to process y in round r as M r

xy(δ) where δ
is the scenario under consideration. We also let Mr

x(δ) denote the ordered list
of all the messages sent to the process x through rounds 1, 2, ..., r. We define
two scenarios X and Y to be indistinguishable with respect to process x after r
rounds if Mr

x(X) = Mr
x(Y ) and the process x’s input in X and Y is the same.

We now describe three scenarios, α, β and γ of protocol execution and show

Fig. 2. Scenarios α, β and γ.

that the requirements of Byzantine agreement in these three scenarios imply a
contradiction to the existence of a protocol. For each scenario we specify the
behavior of players belonging to each adversary set.
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– Scenario α: In this scenario, the adversary corrupts processes belonging to
the set P3. Processes in (P1 ∪P2)−P3 are all honest and start with input 0.

– Scenario β: The adversary corrupts processes belonging to the set P2. Pro-
cesses in P3 − (P1 ∪ P2) have input 1 while processes in P1 − P2 have input
0.

– Scenario γ: The adversary corrupts processes belonging to the set P1. Pro-
cesses in (P3 ∪ P2) − P1 are honest and start with input 1.

We now describe the adversary strategy for each of the scenarios.

– In scenario α, the faulty processes imitate their behavior in scenario β. For-
mally, M r

zx(α) = M r
zx(β) ∀r, z ∈ P3,(i.e. In the first round every one acts

honestly in all three scenarios. From the next round every player in P3 in
scenario α would behave as how they would behave in scenario β in that
round.)

– In scenario γ, the faulty processes imitate their behavior in scenario β. For-
mally, M r

zx(γ) = M r
zx(β) ∀r, z ∈ P1.

– In scenario β, the adversary corrupts processes belonging to the adversary
set P2. In their communication with processes in P1 − (P2 ∪ P3) the faulty
processes send the same messages that were sent by them in scenario α. And
in their communication with players in P3 − (P2 ∪ P1) the faulty processes
send the same messages that were sent by them in scenario γ7.

– Processes belonging to more than one adversary set send the same messages
as in the scenario in which they are honest. Therefore, they send the same
messages in all the three scenarios.

We complete the proof by separately proving the following statement: No pro-
tocol can achieve agreement in all three scenarios (see Lemma 6). Evidently the
above statement completes the contradiction to the assumption that Byzantine
agreement is possible if the hypergraph is not (3, t)-hyper-(3t−n+1)-connected.

Lemma 4. The two scenarios, α and β are indistinguishable to any process
belonging to P1 − (P2 ∪ P3).

Proof: Processes belonging to P1 − (P2 ∪P3) start with the same inputs in both
the scenarios α and β. Hence they behave similarly in the first round of both the
scenarios. By the specified adversarial strategy, processes belonging to P2 and
P3 send the same message to processes in P1 − (P2 ∪ P3) in both the scenarios.
By induction on the number of rounds, it follows that processes in P1−(P2∪P3)
receive the same messages in both the scenarios, i.e., ∀r Mr

x(α) = Mr
x(β),

x ∈ P1 − (P2 ∪ P3). 	

Lemma 5. The two scenarios, β and γ are indistinguishable to any process
belonging to P3 − (P1 ∪ P2).
7 Had there been a 3-hyperedge across P2−(P1∪P3), P1−(P2∪P3) and P3−(P2∪P1),

the protocol would have forced the players in P2 − (P1 ∪P3) to use the 3-hyperedges
whenever they have to send messages to P1− (P2∪P3) or P3 − (P2∪P1). This would
have prevented the double dealing of the processes that is being described here.
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Proof: Similar to the proof of Lemma 4. 	

Lemma 6. No protocol can achieve agreement in all three scenarios.

Proof: Suppose there exists a protocol which achieves agreement in all the three
scenarios. From the validity condition for agreement, it follows that the honest
processes must agree on the value 0 in scenario α, and the value 1 in the scenario
γ. Processes in P1 − (P2 ∪ P3), who behave honestly in both the scenarios, α
and β perceive both these scenarios to be indistinguishable (Lemma 4), hence
decide on the same value in both the scenarios, viz, 0. Similarly, the processes
in P3 − (P1 ∪P2) decide on the same value in scenarios β and γ, namely 1. This
contradicts the agreement condition for Byzantine agreement in scenario β. 	

This completes the proof of necessity of all the conditions for Theorem 1. We
shall now prove the sufficiency of the three conditions stated in Theorem 1.

Proof Sufficiency: [4] gives a protocol for achieving consensus tolerating
Byzantine faults whenever n > 3t and the conditions of Theorem 1 are satisfied.
When n ≤ 3t, we give a protocol (Figure 3) that achieves consensus tolerat-
ing Byzantine faults whenever a hypergraph H(P, E) satisfies the conditions of
Theorem 1. We only use the 3-hyperedges of H .

In a hypergraph H(P, E), every 3-hyperedge e ∈ E can locally agree on a
single value by a triple majority voting protocol (MV P )8 [7]. Thus the set e
can act as a virtual process Pe, as exploited by [1]. We denote the set of virtual
processes {Pe|e ∈ E and |e| = 3} as VP.

Observe that the value of a virtual process P{p,q,r} can be successfully re-
constructed by a honest process whenever two or more processes of {p, q, r} are
honest. We say that a set Ai in the adversary structure Aadv dominates a virtual
process e = {p, q, r} ∈ E if |e∩Ai| ≥ 2. The value of a virtual process pe that is
dominated by Ai might not be uniquely re-constructable by all honest processes
when Ai dominates pe, so pe can behave ”dishonestly” when Ai is corrupted.
The combined adversary set over real and virtual processes AP∪VP

adv is given
by {B(Ai)|Ai ∈ A} where B(Ai) =

⋃
j{ej where ej ∈ E, and Ai dominates ej}

∪Ai.
From Lemma 3 it follows that for every three (adversary) sets from A(P∪VP)

adv

we have a virtual player {i, j, k} such that no two of {i, j, k} belongs to a single
adversary set (among the three). This means that none of the three adversary sets
can corrupt this virtual player. Thus the adversary structure satisfies Q(3). Hence
a simple extension of the Phase King protocol as described in [2, 3] achieves
Byzantine agreement. 	

Complexity of the protocol: Real players can exchange values reliably since
the hypergraph is (2,n)-hyper-(2t + 1)-connected. A universal exchange among
the virtual players can be simulated by a universal exchange among the real
players, followed by a local computation of all the virtual players values. The
reconstruction is successful if the virtual player is honest. This reduces the com-
plexity of universal exchange in each phase from O(|VP|2) to O(|P|.|VP|). As in
8 In a MVP every process broadcasts its value and agrees via a local majority
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for k = 1 to |P| do (* Set of kings *)
begin (* Start of a phase *)

send(value)a (*Universal Exchange 1*)
receive(V)

V i = {r ∈ P ∪ VP, r sent i}, i = 0, 1

if V 0 ⊂ of some adversary set in A(P∪VP)
adv

send(1)
else

send(0) (*Universal Exchange 2*)
receive(R)

Ri = {r ∈ P ∪ VP, r sent i }, i = 0, 1

if R1 �⊂ of any adversary set in A(P∪VP)
adv

value = 1
else

value = 0
(for the king pk only)

send(value) (* King’s Broadcast *)
receive(king’s value)

if R0 ⊂ of some adversary set in A(P∪VP)
adv

value =1

if R1 ⊂ of some adversary set in A(P∪VP)
adv

value =0
else value = king’s value

end (* End of the phase *)

a
By send(x) we mean sending x reliably to all processes
(if required) using a sub-protocol like that of [5].

Fig. 3. Description of the Phase King protocol for a process in P ∪ VP .

[5, 10], O(t) communication is required for reliably communicating 1 bit between
vi, vj if {vi, vj} �∈ E. Further since |VP| = O(t3), the complexity of each phase
is O(nt4) and hence the above protocol has an overall bit complexity of O(nt5).

5 Network Design

For n > 3t, Byzantine agreement is possible if and only if the graph is (2t + 1)-
connected [4, 10]. Therefore the graph with the minimal number of edges on
which Byzantine agreement is possible is a graph on n nodes that is (2t + 1)-
connected and has the minimal number of edges. The problem of finding the
minimal edge graph on n nodes that is k-connected is a well studied problem in
graph theory.

In this section we ask a similar question, for 2t < n ≤ 3t, what is the “min-
imal” (2, 3)-hypergraph on which Byzantine agreement is possible. We assume
that the hypergraph is 2-hyperedge complete and give a placement of (nearly)
as few 3-hyperedges as possible satisfying the conditions of Theorem 1. In other
words, for n = (3t−k), 0 ≤ k < t, we give a (3, t)-hyper-(3t−n+1)-connected hy-
pergraph that has O(kt2) 3-hyperedges. For n = 3t this implies that an addition
of O(t2) 3-hyperedges makes Byzantine agreement possible among 3t players.
Furthermore, for n = (2t + 1) we give a construction that provably uses an
asymptotically optimum (ratio bound 1 + o(1)) number of 3-hyperedges.
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5.1 Design for n = (3t − k)

Definition 6 (Edge Graph). Given a 3-uniform hypergraph H(P, E), the edge
graph of a node v ∈ P is defined as Gv(Pv, Ev) where Pv = P − {v} and
Ev = {{i, j}|{i, j, v} ∈ E}.

For constructing a (3,t)-hyper-(3t − n + 1)-connected hypergraph H(P, E)
on n = (3t − k) nodes, we consider P ′ = {v0, v1, v2, . . . , vk} ⊂ P and place 3-
hyperedges such that for each i, 0 ≤ i ≤ k, vi’s edge graph is (t + k)-connected.
The edge graph is isomorphic to G(V, E) where V = {1, 2, . . . , n−1} and {i, j} ∈
E whenever (i − j) mod (n − 1) ≤ ⌈

t+k
2

⌉
. Clearly G(V, E) is (t + k)-connected.

Claim. H(P, E) is (3,t)-hyper-(3t− n + 1)-connected.

Proof: Consider a partition of P into P1, P2, P3 each of size t. It is enough to show
that there exists a hyperedge across P1− (P2∪P3), P2− (P1∪P3), P3− (P2∪P1)
(Lemma 3). Let us call these sets P ′

1, P
′
2 and P ′

3 respectively. These sets are
disjoint and of size ≤ t by definition and from Lemma 2, |P ′

1 ∪ P ′
2 ∪ P ′

3| =
|P ′

1| + |P ′
2| + |P ′

3| ≥ (2n − 3t) = (3t − 2k). Hence |P − (P ′
1 ∪ P ′

2 ∪ P ′
3)| ≤ k.

Since |P ′| = (k + 1), there exists a v ∈ P ′ such that v ∈ P ′
1 ∪ P ′

2 ∪ P ′
3.

Without loss of generality let v ∈ P ′
1. Let G be the subgraph induced by P ′

2 ∪P ′
3

on Gv. Note that G is obtained from Gv by removing ≤ t + k− 1 nodes from Pv

(|Pv| = 3t − k − 1 and |P ′
2 ∪ P ′

3| ≥ 2t − 2k). Since Gv is (t + k) connected, G is
1-connected. This means there exists a pair (i, j) with i ∈ P ′

2 and j ∈ P ′
3 such

that the edge {i, j} ∈ Ev, i.e. {i, j, v} ∈ E. Therefore the required 3-hyperedge
across P ′

1, P ′
2 and P ′

3 is {i, j, v}. 	

In H each of the (k+1) nodes of P ′ are part of O(k+t)n = O(t2) hyperedges.

Therefore the total number of 3-hyperedges in our construction = O(kt2).

5.2 Lower Bound for n = (2t + 1)

Claim. Consider any hypergraph H(P, E) on |P | = (2t + 1) nodes such that
Byzantine Agreement is possible between the nodes (processes) in P tolerating
t faults. Every pair of nodes in H(P, E) is part of at least t 3-hyperedges.

Proof: On the contrary, suppose there exist nodes p1 and p2 such that they
form less than t 3-hyperedges i.e. |P ′ = {p|{p, p1, p2} ∈ E}| < t. Consider
the partition of a (t + 2) subset of P − P ′ into 3 sets P1, P2, P3, such that
P1 = {p1}, P2 = {p2}. Since Byzantine Agreement is possible among the nodes
in P tolerating t faults, from Theorem 1, H must be (3, t)-hyper-t-connected, i.e.
there exists a 3-hyperedge {p1, p2, p3} ∈ E such that p1 ∈ P1, p2 ∈ P2, p3 ∈ P3.
But P3 ∩ P ′ = ∅; this is a contradiction. 	


Observation 2 From the above claim we find that the total number of 3-hyper-

edges is at least (2t+1
2 )×t

3 = (2t+1)t2

3
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5.3 Design for n = (2t + 1)

We give an inductive construction which yields an asymptotically optimum num-
ber of 3-hyperedges.
Basis: The base case starts with t = 1 (n = 3). Since there are only 3 nodes,
one 3-hyperedge is necessary and sufficient.
Induction: Given a hypergraph H(P, E) on n = (2t + 1) nodes (t ≥ 1) which
is (3, t)-hyper-t-connected, we give a construction of a hypergraph H ′(P ′, E′)
on n = (2t + 3) nodes that is (3, t + 1)-hyper-(t + 1)-connected. We construct
H ′(P ′, E′) by extending H(P, E) i.e., P ⊂ P ′, E ⊂ E′ . Let the two additional
nodes be x and y i.e. P ′ = P ∪ {x, y}.

Consider the complete 2-uniform hypergraph on the vertex set P ; it can be
decomposed into t vertex disjoint Hamilton cycles C1, C2, C3, . . . , Ct. Define

Cx = C1 ∪ C2 ∪ . . . ∪ C t
2

Cy = C t
2+1 ∪ C t

2+2 ∪ . . . ∪ Ct

}
t even

Cx = C1 ∪ C2 ∪ . . . ∪ C t+1
2

Cy = C t+1
2

∪ C t+1
2 +1 ∪ . . . ∪ Ct

}

t odd

Let the subgraphs induced by Cx and Cy be Gx(P, Cx) and Gy(P, Cy) respec-
tively. Note that Gx and Gy are (2,n)-hyper-t-connected and their union is
the complete 2-uniform hypergraph. The additional 3-hyperedges added are:
Ex = {{x} ∪ e|e ∈ Cx}, Ey = {{y} ∪ e|e ∈ Cy}, Exy = {{x, y, v}|v ∈ P}, E′ =
E ∪ Ex ∪ Ey ∪ Exy

Lemma 7. The hypergraph H ′(P ′, E′) is (3, t + 1)-hyper-(t + 1)-connected.

Proof: We need to show that for every partition of any (t + 3) subset S of P ′

into 3 sets S1, S2, and S3, there is a 3-hyperedge that has non empty intersection
with each of S1, S2, S3. We consider the different cases of partitions that arise
for the (t + 3) set.
Case S ⊂ P : By induction hypothesis we know that for every 3 partition of
any (t + 2) subset of P the condition is satisfied and hence will be satisfied for
any 3 partition of a (t + 3) subset also.
Case S − {x} ⊂ P and x ∈ P1: Two cases arise depending on the size of the
partition P1.

If |P1| > 1, consider the (t + 2) set S′ = S −{x} (subset of P ). By induction
hypothesis, the result is true on S′ with the partition P1 − {x}, P2,and P3.

In the case |P1| = 1 i.e., P1 = {x}. The pair of nodes in P which forms
3-hyperedges with x are precisely the edges in Cx. We need one of those edges to
be across P2 and P3 for the condition to be valid. This means that the subgraph
induced by P2∪P3 on Gx must be (2,n)-hyperconnected. Now |P2∪P3| = (t+2)
implying that Gx must be (2,n)-hyper-t-connected.
Case {x, y} ⊂ S: Two cases arise depending on whether x and y occur in the
same partition or in different partitions.

If they occur in the same partition say P1, then by virtue of the fact that
every pair of nodes in P forms a 3-hyperedge with either x or y since Gx ∪Gy is
the complete 2-uniform hypergraph on 2t + 1 nodes we get that for any u ∈ P2

and v ∈ P3 the 2-hyperedge {u, v} must form a triangle with either x or y.



On Byzantine Agreement over (2, 3)-Uniform Hypergraphs 463

If they occur in different partitions, x ∈ P1 and y ∈ P2, then for any v ∈ P3

we have the hyperedge {x, y, v} ∈ Exy ⊂ E′. 	

Let N(k) denote the number of 3-hyperedges in the above construction for

n = (2k + 1) then N(k) is given by:

N(k + 1) = N(k) + |Ex(k)| + |Ey(k)| + |Exy(k)| =

{
N(k) + 2k2 + 3k + 1 (t even)
N(k) + 2k2 + 5k + 2 (t odd)

Solving the recursion we find N(k) = 2
3 t3 + Θ(t2). Since the lower bound on

the minimum number of 3-hyperedges required is (2t+1)t2

3 , the above construction
is asymptotically optimum with ratio bound 1 + o(1).

6 Conclusion

In this paper, we generalized the following well-known theorem in the literature:
Theorem([5, 10]): Byzantine agreement in a graph (or 2-uniform hypergraph) of
n processes of which up to t may be faulty is possible if and only if n > 3t and
the graph is (2t + 1)-connected.
Our Generalization: See Theorem 1.

Using this generalization, we solve an open problem of [7], viz., for n =
(2t+1), what is the minimum number of 3-hyperedges required to enable Byzan-
tine agreement? We show that

(
2
3 t3 + Θ(t2)

)
3-hyperedges are necessary and

sufficient.
Whenever n > 2t and the minimal connectivity requirements (or more) are

satisfied, we presented efficient protocols for Byzantine agreement over (2, 3)-
hypergraphs.

There are many interesting open questions in a wide variety of directions.
We list four natural directions that could be explored.

First, one could consider the complexity issues regarding Byzantine agree-
ment protocols over hypergraphs. For instance, on a complete 2-uniform hyper-
graph, t+1 rounds are necessary and sufficient for agreement; what is the round
complexity for the case of hypergraphs?(See [13] for some results).

Next, the lower bounds on the minimum number of hyperedges to achieve
agreement seem to be interestingly connected to extremal hypergraph theory. For
instance, when n = 3t computing the lower bound in the case of 3-hyperedges
becomes the problem of computing a specific Hypergraph Turan number.9

A third interesting line of research is about the complexity of the follow-
ing decision problem: given the required fault-tolerance, is Byzantine agreement
possible on the given hypergraph? For instance, in the case of 2-uniform hyper-
graphs, verifying 2t + 1-connectivity is easy (polynomial time algorithms exist);
however, for 3-uniform hypergraphs, the status is unknown; nevertheless, there
exist very interesting connections to algorithmic hypergraph theory.

Finally, one could extend our results to the non-threshold adversarial model.
A straightforward application of the ideas of this paper would result in the
following characterization.
9 The Turan number for a hypergraph H denoted as ex(n,H) is the maximum number

of hyperedges on a n vertex hypergraph which (up to an isomorphism) does not
contain H as its subgraph.
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Theorem 2. Byzantine agreement on a (2, 3)-uniform hypergraph H(P, E) tol-
erating any adversary characterized by the adversary structure Aadv that satisfies
Q(2) is possible if and only if

1. For every node v such that there exist two sets A and B in Aadv with P −
(A ∪ B) = {v}, the edge {v, w} belongs to E for every w ∈ P where w �= v.

2. If for all A and B in Aadv, |A ∪ B| < (n − 1), then the underlying graph of
H(P, E) is A(2)-connected.

3. If Aadv does not satisfy Q(3), then for every three sets S1, S2 and S3 in Aadv

such that (S1 ∪ S2 ∪ S3) = P , there exists e ∈ E such that e has non empty
intersection with the sets S1 − (S2 ∪ S3), S2 − (S1 ∪ S3) and S3 − (S1 ∪ S2).

However, complexity and placement issues for the non-threshold model are still
to be looked into.
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