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e Fine-grained Latent Activity and Home Location Detection using Twitter data DATASET
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user drinking alcohol vs. the user drinking alcohol at the time of tweeting Remove users with

. : : c : : less than 5 tweets Question to Turker:
* using 3 hierarchical SVM classifiers, with high accuracy (F-score > 0.83) v . was this tweet sent from home?

SVM TRAINING

e using SVM with accuracy > 70%, covering 71% of active users (users S — SVM Features for a location:
with at least 5 geo-tagged tweets) MARGIN (A, B): Difference of * Frequency of check-ins

e Analyses: where drinkers live, when and where drinkers drink frequency between check-ins Late night check-in frequency
at location A and at location B Margin with next most frequent location

—requency as the last check-in of the day

« Home Location Prediction (within 100 meters)

 Comparison of alcohol use patterns in large city (New York City) and in
suburban/rural area (Monroe County in upstate New York)
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« Amazon Mechanical Turks answered 3 questions In order:
Q1: is the tweet making reference to drinking alcohol? AnaIySiS
Q2: if so, is the tweet about the tweeter himself drinking alcohol?
Qs: if so, was the tweet sent when the user was drinking alcohol?

NYC Monroe
No. of geo-tagged tweets 1,931,662 | 1,537,979

Passed keyword filter 51,321 26,858
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Trigram linguistic features (& hashtags) the activity e Alcohol Outlet Density: no. of businesses that map showing “drinking hotspots

: o (drinking alcohol) serve alcohol per 100 meter grid
K most frequent features in training 4
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Training data shrinks down the hierarchy

: Tweet is about user doing user not doing activity

hierarchy (user tweeting while drunk) (tweeting while not drunk)

Latent Activity Detection Flowchart

Explore how social interactions and peer pressure in social media influence drinking tendency
Study user demographics and settings people go to drink-and-tweet (house, stadium, parks, etc.).
RESU LTS Examine the rate of in-flow and out-flow of drinkers between neighborhoods

Wl Q2 Q3 Use our methods to understand other behaviors that impact community health (e.g. drug use, violence)
Class size (0, 1) || 2321, 3238 | 579, 2044 | 642, 934

Precision 0.922 0.844 0.820
Recall 0.897 0.966 0.845
e (Class imbalance issues F-score 0.909 0.901 0.833
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 Deeper questions hard to answer



http://cs.rochester.edu/u/nhossain/icwsm-16-data.zip

