
1

Context-Free Grammars

Context-Free Grammars

• Adds recursion/allows non-terminals to be
expressed in terms of themselves

• Can be used to count/impart structure – e.g.,
nested parentheses

• Notation – grammar G(S,N,T,P)
– S is the start symbol
– N is a set of non-terminal symbols (LHS)
– T is a set of terminal symbols (tokens)
– P is a ser of productions or rewrite rules

(P : N � N U T)

Derivations

• A sequence of application of the rewrite
rules is a derivation or a parse (e.g.,
deriving the string x + 2 – y)

• The process of discovering a derivation is
called parsing

Parse Trees

A parse tree for a grammar G is a tree where
– The root is the start symbol for G
– The interior nodes are non-terminals of G
– The leaf nodes are terminal symbols of G
– The children of a node T (from left to right)

correspond to the symbols on the right hand side of
some production for T in G

Every terminal string generated by a grammar has
at least one corresponding parse tree; every
valid parse tree represents a string generated by
the grammar (yield of the parse tree)

Advantages of CFGs

• Precise syntactic specification of a programming
language

• Easy to understand, avoids ad hoc definition

• Easier to maintain, add new language features
• Can automatically construct efficient parser

• Parser construction reveals ambiguity, other
difficulties

• Imparts structure to language
• Supports syntax-directed translation

Calculator Example

• All variables are integers
• There are no declarations
• The only statements are assignments,

input, and output
• Expressions use one of four arithmetic

operators and parentheses
• Operators are left associative, with the

usual precedence
• There are no unary operators

2

Regular Expressions

id � letter (letter | digit)*
literal � digit digit*
read, write, “:=“, “+”, “-”, “*”, “/”, “(“, “)”

$$ /* end of input */

Grammar for Calculator

<pgm> � <stmtlist> $$

<stmtlist> � <stmtlist> <stmt> | �

<stmt> � id := <expr> | read <id> | write <expr>

<expr> � <term> | <expr> <add op> <term>

<term> � <factor> | <term> <multop> <factor>
<factor> � (<expr>) | id | literal

<addop> � + | -

<multop> � *| /

Types of derivations

• Leftmost derivation
– The leftmost non-terminal is replaced at each

step

• Rightmost derivation
– The rightmost non-terminal is replaced at

each step

• Ambiguous grammar – one with multiple
leftmost (or multiple rightmost) derivations
for a single sentential form

Types of parsers

• Top-down (LL) parsers
– Left to right, leftmost derivation
– Starts at the root of the derivation tree and fills in
– Predicts next state with n lookahead

• Bottom-up (LR) parsers
– Left to right, rightmost derivation
– Starts at the leaves and fills in
– Start with input string, end with start symbol
– Starts in a state valid for legal first tokens
– Change state to encode possibilities as input is

consumed
– Use a stack to store both state and sentential form

Top-Down Parsing

• At a node labeled A, select a production
with A on its LHS and for each symbol on
its RHS, construct the appropriate child

• When a terminal is added that does not
match the input, backtrack

• Find the next node to be expanded (must
have a label in NT)

Eliminating Left Recursion

• A grammar is left recursive if there exists A in
NT such that A�A

�
for some string �

• Transform the grammar to remove left recursion
<foo> � <foo> �

| µ
�

<foo> � µ <bar>
<bar> � � <bar> | �
where <bar> is a new non-terminal

3

Eliminating Common Prefixes

foo � bar �
� bar (µ)

�

foo � bar footail
footail � � | (µ)

LL Grammar for Calculator

<pgm> � <stmtlist> $$
<stmtlist> � <stmt> <stmtlist> | �
<stmt> � id := <expr> | read <id> | write <expr>
<expr> � <term> <termtail>
<termtail> � <addop> <term> <termtail> | �
<term> � <factor> <factortail>
<factortail> � <multop> <factor> <factortail> | �
<factor> � (<expr>) | id | literal
<addop> � + | -
<multop> � *| /

Parser Construction

• Recursive descent parsing
– Top-down parsing algorithm

– Built on procedure calls (may be recursive)

– Write procedure for each non-terminal, turning
each production into clause

– Insert call to procedure A() for non-terminal A
and to match(x) for terminal x

– Start by invoking procedure for start symbol S

Predictive (Table-Driven) Parser

Scanner

Parser
Generator

Parse
Table

Code Tokens Table-
Driven

Parser

Grammar
Rules

Stack

Predictive (Table-Driven) Parsing

• Actions –
– Match a terminal
– Predict a production
– Announce a syntax error

• Push as yet unseen portions of
productions onto a stack

• Use –
– FIRST (A)
– FOLLOW(A)

The FIRST Set

• FIRST(α) is the set of terminal symbols that
begin strings derived from α

• To build FIRST(X):
– If X is a terminal, FIRST(X) is {X}
– If X�ε, then ε � FIRST(X)
– If X�Y1 Y2 … Yk then put FIRST(Y1) in FIRST(X)
– If X is a non-terminal and X�Y1 Y2 … Yk, then a �

FIRST(X) if a � FIRST(Yi) and ε � FIRST(Yj), for all
1≤j<i

4

The Follow Set
• For a non-terminal A, FOLLOW(A) is the set

of terminals that can appear immediately to
the right of A in some sentential form

• To build FOLLOW(B) for all B -
– Starting with goal, place eof in FOLLOW(<goal>)
– If A�αBβ, then put {FIRST(β)-ε} in FOLLOW(B)
– If A�αB, then put FOLLOW(A) in FOLLOW(B)
– If A�αBβ and ε � FIRST(β), then put

FOLLOW(A) in FOLLOW(B)

Using FIRST and FOLLOW

• For each production A�α and lookahead
token
– Expand A using the production if token �

FIRST(α)
– If ε � FIRST(�), expand A using the production

if token � FOLLOW(A)
– All other tokens return error

• If there are multiple choices, the grammar
is not LL(1) (predictive)

LL(1) Grammars

A Grammar G is LL(1) if and only if, for all
non-terminals A, each distinct pair of
productions A � α and A�β satisfy the
condition FIRST(α) ∩ FIRST(β) = Φ, i.e.,

For each set of productions A� α1|α2|…|αn
� FIRST(α1), FIRST(α2), …, FIRST(αn)

are all pairwise disjoint
�If αi �ε for any i, then FIRST(αj) ∩

FOLLOW(A) = Φ, for all j
�
i

The Complexity of LL(1) Parsing

• Inside main loop – bounded by constant
(function of symbols on RHS)

• How many times does the main loop
execute?
– Number of iterations is the number of nodes

in the parse tree, which is N*P (N is the
number of tokens in the input, P is the number
of productions)

– P is a constant, therefore running time is O(N)

CFGs versus Regular Expressions

• CFGs strictly more powerful than REs
– Any language that can be generated using an

RE can be generated by a CFG (proof by
induction)

– There are languages that can be generated
by a CFG that cannot be generated by an RE
(proof by contradiction)

Example non-LL Grammar
Construct

stmt � if condition then_clause else_clause
| other_stmt

then_clause � then stmt

else_clause � else stmt | �

�Ambiguous – allows dangling else to be
paired with either then in

if A then if B then C else D

5

Fix – Bottom-up parsing (LR)

stmt � balanced_stmt | unbalanced_stmt
balanced_stmt � if condition then balanced_stmt

else balanced_stmt
| other_stmt

unbalanced_stmt � if condition then stmt
| if condition then balanced_stmt

else unbalanced_stmt
--

OR
Use special disambiguating rules� use production

that occurs first in case of conflict

