
1

CS254: Programming Language 
Design and Implementation

Overview

Types of languages

• Imperative
– Von Neumann (Fortran, Pascal, BASIC, C, …)

– Object-oriented (C++/Java, Smalltalk, …)

• Declarative
– Functional (Scheme, Lisp, ML, …)

– Logic, constraint-based (Prolog, VisiCalc, …)

Phases of Compilation

• Scanning (lexical analysis)
• Parsing (syntax analysis)
• Semantic analysis

• Intermediate code generation
• Optimization

• Target code generation

Scanners

• Use regular expressions to express tokens

• Defines a set of strings over the characters 
contained in some alphabet, defining a language

• Three basic operations
– Union – e.g., a|b
– Concatenation – e.g., ab
– Closure – (Kleene closure) – e.g., a* - where a can be 

a set concatenated with itself zero or more times

Identifier

letter � (a|b|c| … |z|A|B|C| … |Z)
digit � (0|1|2|3|4|5|6|7|8|9)

id � letter (letter|digit)*

Recognizers

S3

S0 S2S1

letter
digit

otherletter

digit
other accept

error

Parsers
• Check input for grammatical correctness
• Determine syntax of token stream
• Constructs intermediate representation

• Produces meaningful error messages

Needs mathematical model of syntax�grammar
Needs algorithm for testing syntax � parsing



2

Types of parsers

• Top-down (LL) parsers
– Left to right, leftmost derivation
– Starts at the root of the derivation tree and fills in
– Predicts next state with n lookahead

• Bottom-up (LR) parsers 
– Left to right, rightmost derivation
– Starts at the leaves and fills in
– Start with input string, end with start symbol 
– Starts in a state valid for legal first tokens
– Change state to encode possibilities as input is 

consumed
– Use a stack to store both state and sentential form 

Attribute Grammars

• Generalization of context-free gammars
• Each grammar symbol has an associated 

set of attributes
• Augment grammar with rules that define 

values 
– Not allowed to refer to any variables or 

attributes outside the current production

• High-level specification, independent of 
evaluation scheme

Scope Rules

• Scope
– a program region of maximal size in which no bindings change
– name space that maps a set of names to a set of variables

• Scope of a binding 
– Static – can be determined based purely on textual rules at 

compile time
– Dynamic – depends on the flow of execution at run time

• Lifetime of a variable – single execution of the scope or 
multiple executions of the scope (decides where data 
can be allocated)

Types
• Types

– Values that share a set of common properties
– Defined by language and/or programmer

• Type system
– Set of types in a programming language
– Rules that use types to specify program behavior

• Example type rules 
– If operands of addition are of type integer, then result is of type integer
– The result of the unary & operator is a pointer to the object referred to 

by the operand
• Advantages of typed languages

– Ensure run-time safety
– Expressiveness (overloading, polymorphism)
– Provide information for code generation

Basic Paradigms for Control Flow

• Sequencing
• Selection
• Iteration

• Procedural abstraction
• Recursion

• Non-determinacy
• concurrency

Code Generation



3

• Imperative programming models: compute 
via iteration and side effects

• Functional programming model: compute 
via recursion and substitution of 
parameters into functions

• Logic programming model: compute via 
resolution of logical statements, driven by 
the ability to unify variables and terms

Functional Programming

• E.g., Lisp, Scheme
• Formalism: Church’s lambda calculus
• Key idea: no mutable state/side effects; 

everything done by composing functions

Functional Programming Design 
Features and Issues

• First-class and higher-order functions
• Polymorphism
• Recursion

• Garbage collection
• Control flow and evaluation order

• Support for list-based data

Logic Programming Model

• E.g., Prolog
• Formalism: Predicate calculus
• Key idea: collection of axioms from which 

theorems can be proven

Logic Programming Design Issues

• Horn clauses and terms
• Resolution and unification
• Search and execution order

• List manipulation
• High-order predicates for inspection and 

modification of the database

Data Abstractions

• Scopes and lifetime
– Global variables (introduced by Basic)

• Lifetime and scope spans program execution 
– Local variables (introduced by Fortran)

• Lifetime and scope limited to execution of subroutine 
– Nested scopes (Algol 60)

• Allows subroutines or blocks to themselves be local
– Static variables (Fortran)

• Lifetime spans execution, names visible in a single scope
– Modules (Modula-2)

• Allow a collection of subroutines to share a set of static variables
– Module types (Euclid)

• Allow instantiation of multiple instances of a given abstraction
– Classes (Smalltalk, C++, Java)

• Allow definition of families of related abstractions



4

Why abstractions?

• Reduce conceptual load
– Hide implementation details

• Independence among program components
– Replacement of pieces without rewriting others
– Organizational compartmentalization

• Fault containment
– Enforce division of labor
– Prevent access to things you shouldn’t see

Object-Oriented Programming 

• Fundamental concepts
– Encapsulation

– Inheritance

– Dynamic method binding

• Class – module as the abstract type 
including data and method definition

• Object – instance of a class

Concurrency in the form of

• Explicitly concurrent languages 
– e.g., Algol 68, Java

• Compiler-supported extensions 
– e.g., HPF, Power C/Fortran

• Library packages outside the language 
proper 
– e.g., pthreads

Code Improvement

• Peep-hole optimization
– Short sequences of instructions

• Local optimization
– Basic blocks

• Intra-procedural optimization
– Across basic blocks but within a 

procedure/subroutine

• Inter-procedural optimization
– Across procedures/subroutines

Peephole Optimization

• Constant folding – e.g., 3X2 � 6
• Constant propagation
• Elimination of redundant loads and stores
• Common subexpression elimination
• Copy propagation
• Strength reduction
• Load and branch delays
• Elimination of useless instructions
• Exploitation of instruction set

Redundancy Elimination

• Can be done at the basic block and 
intraprocedural level as well

• Requires data flow analysis
– Static single assignment (SSA) form

– Global value numbering
• Assign the same name (number) to any two or 

more symbolically equivalent computations



5

Loop optimizations

• Loop invariants – move out of body
• Loop unrolling and software pipelining

– Helps improve instruction scheduling

• Loop reordering
– Requires dependence analysis
– Can improve locality and parallelism

Elements of a Compiler
• Scanner (lexical analysis) (input – character stream, ouput – token stream)
• Parser (syntax analysis) (output – parse tree)
• Semantic analysis (output – AST with annotations)

• Machine-independent
– Intermediate code generation (output – CFG with basic block pseudo-code)
– Local redundancy elimination (output - modified CFG)
– Global redundancy elimination (output - modified CFG)
– Loop improvement (output - modified CFG)

• Machine-specific
– Target code generation (output – assembly language)
– Preliminary instruction scheduling (output – modified assembly)
– Register allocation (output – modified assembly)
– Final instruction scheduling (output – modified assembly)
– Peephole optimization (output – modified assembly)


