
1

Programming Language 
Design and Implementation

Instructor: Sandhya Dwarkadas
TAs: Bijun He and John Kramer

http://www.cs.rochester.edu/u/sandhya/csc254

What is a programming language?

A means for precisely expressing (syntax and 
semantics) what you want a computer to do 

User: Way of expressing algorithms

Implementer: abstraction of machine
• Why are there so many languages?

– Evolution
– Socio-economic factors
– Orientation toward special purposes
– Diverse ideas about what is pleasant to use

What makes a language 
successful?

• Ease of learning (BASIC, Pascal, Scheme)
• Ease of expression (C++, Perl, Lisp)
• Ease of implementation (BASIC)

• Ease of optimization (Fortran)
• Sponsorship

• Wide dissemination (Pascal, Java)

Programming language views

• User’s perspective
– Ease of use

– Expressive power

• Implementer’s perspective
– Ease of implementation

– Ease of optimization

Why study programming 
languages?

• Help you choose a language
• Make it easier to learn a new language
• Make better use of language features

• Help you understand other systems 
software

• Further study in language design or 
implementation

Types of languages

• Imperative
– Von Neumann (Fortran, Pascal, BASIC, C, …)

– Object-oriented (C++/Java, Smalltalk, …)

• Declarative
– Functional (Scheme, Lisp, ML, …)

– Logic, constraint-based (Prolog, VisiCalc, …)



2

Compilation vs. Interpretation

Compiler: Translates the high-level source 
program into an equivalent target program 
for later execution

Advantage: better performance
Interpreter: Implements a virtual machine 

and executes program “on-the-fly”
Advantage: greater flexibility, 

better diagnostics

Phases of Compilation

• Scanning (lexical analysis)
• Parsing (syntax analysis)
• Semantic analysis

• Intermediate code generation
• Optimization

• Target code generation


