
1

Concurrency

• A process or thread is a potentially active
execution context

• Classic von Neumann model – single
thread of control, single active execution
context

• Concurrency – two or more execution
contexts may be active at the same time

Why concurrency?

• Capture the logical structure of certain
apps (e.g., netscape, video
games/interactive I/O)

• Cope with independent physical devices
(e.g., via device interrupts to the OS)

• Performance through use of multiple
processors

Concurrency in the form of

• Explicitly concurrent languages
– e.g., Algol 68, Java

• Compiler-supported extensions
– e.g., HPF, Power C/Fortran

• Library packages outside the language
proper
– e.g., pthreads

• Multiple threads of control can come from
– Multiple CPUs
– Kernel-level multiplexing of single physical machine
– Language or library-level multiplexing of kernel-level

abstraction

• They can run
– In parallel
– Unpredictably interleaved
– Run-until block

Thread Creation Syntax

• Co-begin (e.g., Algol 68)
• Parallel loops (e.g., Occam, Fortran90)
• Launch at elaboration (e.g., Ada, SR)

• Fork-join (e.g., Ada, Modula-3, Java)
• Implicit-receipt

• Early reply

2

Thread Implementation

• Schedulers give us the ability to switch
execution contexts
– Start with coroutines (e.g., Simula, Modula-2)

– Make uniprocessor run-until-block threads
– Add preemption

– Add multiple processors

Types of Parallelism

• Data
• Functional (task)

Task Parallelism

• Each process performs a different task.
• Two principal flavors:

– pipelines
– task queues

• Program Examples: PIPE (pipeline), TSP
(task queue).

Coordination and Communication

• Two fundamental models
– Shared memory

– Message passing

Synchronization

• Two basic types
– Mutual exclusion

• Ensure that only 1 thread is executing a region of
code or accessing a data element at any given
time

– Condition synchronization
• Blocks thread until a specific condition holds

Components of a Synchronization
Event

• Acquire method
– Process tries to get the right to a sync operation

(enter critical section, proceed past event)

• Waiting algorithm
– Method used to wait for resource to become available

• Busy-waiting/spinning
• Blocking

• Release method
– Enable other processes to proceed past a

synchronization event

3

Shared Memory

proc1 proc2 proc3 procN

Shared memory space

Distributed Memory - Message Passing

proc1 proc2 proc3 procN

mem1 mem2 mem3 memN

network

Programming vs. Hardware

• One can implement
– a shared memory programming model

– on shared or distributed memory hardware

– (also in software or in hardware)

• One can implement
– a message passing programming model
– on shared or distributed memory hardware

Parallel Processing Issues

• Data sharing
• Process coordination
• Distributed (NUMA) vs. centralized (UMA)

memory

• Connectivity
• Fault tolerance

Correctness and performance issues: deadlock, livelock, starvation

Example Program - Jacobi

for (k = 0; k < 100; k++) {

for (j = 1; j < M-1; j++)
for (i = 1; i < M-1; i++)

a[j][i] = (b[j][i-1] + b[j][i+1] +
b[j-1][i] + b[j+1][i])/4;

for (j = 1; j < M-1; j++)
for (i = 1; i < M-1; i++)

b[j][i] = a[j][i];
}

Example Jacobi Parallelization

Computation

a(i,j) = F(b(i-1,j),b(i+1,j),b(I,j-1),b(I,j+1))

P0

P1

P2

P3

begin-1

end+1

begin

end

Parallelization

4

Shared Memory Version of Jacobi

for (k = 0; k < 100; k++) {

for (j = begin; j < end; j++)
for (i = 1; i < M-1; i++)

a[j][i] = (b[j][i-1] + b[j][i+1] +
b[j-1][i] + b[j+1][i])/4;

barrier();

for (j = begin; j < end; j++)
for (i = 1; i < M-1; i++)

b[j][i] = a[j][i];
barrier();

}

Message Passing Version of Jacobi
for (k = 0; k < 100; k++) {

for (j = begin; j < end; j++)
for (i = 1; i < M-1; i++)

a[j][i] = (b[j][i-1] + b[j][i+1] + b[j-1][i] + b[j+1][i])/4;

for (j = begin; j < end; j++)
for (i = 1; i < M-1; i++)

b[j][i] = a[j][i];

if (p != (nprocs - 1)) {
send(p+1, b[end-1]);
recv(p+1, b[end]);

}
if (p != 0) {

send(p-1, b[begin]);
recv(p-1, b[begin-1]);

}
}

Data Parallel Version of Jacobi
(Power C)

for (k = 0; k < 100; k++) {

#pragma parallel shared(a, b) local(i,j)
{

#pragma pfor
for (j = 1; j < M-1; j++)

for (i = 1; i < M-1; i++)
a[j][i] = (b[j][i-1] + b[j][i+1] +

b[j-1][i] + b[j+1][i])/4;
}

#pragma parallel shared(a, b) local(i, j)
{

#pragma pfor
for (j = 1; j < M-1; j++)

for (i = 1; i < M-1; i++)
b[j][i] = a[j][i];

}
}

Distributed Memory Hardware

Software Distributed Shared
Memory (S-DSM)

Why is Parallel Computing Hard?

• Amdahl's law - insufficient available
parallelism
– Speedup limited by part that is not parallelized

• Overhead of communication and
coordination

• Portability - knowledge of underlying
architecture often required

5

Shared Memory: A Look
Underneath

proc1 proc2 proc3 procN

Shared memory space

Shared Memory Hardware
(Snoopy-Based Coherence)

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

bus

Shared Memory Hardware
(Directory-Based NUMA)

proc1 proc2 proc3 procN

cache1 cache2 cache3 cacheN

Network

Memory
Memory Memory Memory

CA CA CA CA

Shared Memory Implementation

• Coherence - defines the behavior of reads and
writes to the same memory location
– ensuring that modifications made by a processor

propagate to all copies of the data
– Program order preserved
– Writes to the same location by different processors

serialized

• Synchronization - coordination mechanism
• Consistency - defines the behavior of reads and

writes with respect to access to other memory
locations
– defines when and in what order modifications are

propagated to other processors

Basic Hardware Mechanisms for
Synchronization

• Test-and-set – atomic exchange
• Fetch-and-increment – returns value and

atomically increments it
• Load-locked/store conditional – pair of

instructions – deduce atomicity if second
instruction returns correct value

Implementing Locks Using
Test&Set

• On the SPARC ldstub moves an unsigned byte
into the destination register and rewrites the
same byte in memory to all 1s
_Lock_acquire:

ldstub [%o0], %o1
addcc %g0, %o1, %g0
bne _Lock_acquire
nop

fin:
jmpl %r15+8, %g0
nop

_Lock_release:
st %g0, [%o0]
jmpl %r15+8, %g0
nop

6

Using ll/sc for Atomic Exchange

• Swap the content of R4 with the memory
location specified by R1

try: mov R3, R4 ; mov exchange value
ll R2, 0(R1) ; load linked

sc R3, 0(R1) ; store conditional

beqz R3, try ; branch if store fails
mov R4, R2 ; put load value in R4

Software Synchronization
Algorithms

• Locks - test&test&set, ticket, array-based
queue, MCS (linked list)

• Barriers – centralized/sense-reversing,
software combining trees, tournament,
dissemination

• Some desirable properties - Lock-free,
non-blocking, wait-free

Sequential Consistency

• ``A system is sequentially consistent if the result
of any execution is the same as if the operations
of all the processors were executed in some
sequential order, and the operations of each
individual processor appear in this sequence in
the order specified by its program.'' [Lamport 79]
– In practice, this means that every write must be seen

on all processors before any succeeding read or write
can be issued

Consistency Model
Classification

• Models vary along the following
dimensions
– Local order - order of a processor's accesses

as seen locally
– Global order - order of a single processor's

accesses as seen by each of the other
processors

– Interleaved order - order of interleaving of
different processor's accesses on other
processors

Code Improvement

• Peep-hole optimization
– Short sequences of instructions

• Local optimization
– Basic blocks

• Intra-procedural optimization
– Across basic blocks but within a

procedure/subroutine

• Inter-procedural optimization
– Across procedures/subroutines

Elements of a Compiler
• Scanner (lexical analysis) (input – character stream, ouput – token stream)
• Parser (syntax analysis) (output – parse tree)
• Semantic analysis (output – AST with annotations)

• Machine-independent
– Intermediate code generation (output – CFG with basic block pseudo-code)
– Local redundancy elimination (output - modified CFG)
– Global redundancy elimination (output - modified CFG)
– Loop improvement (output - modified CFG)

• Machine-specific
– Target code generation (output – assembly language)
– Preliminary instruction scheduling (output – modified assembly)
– Register allocation (output – modified assembly)
– Final instruction scheduling (output – modified assembly)
– Peephole optimization (output – modified assembly)

7

Peephole Optimization

• Constant folding – e.g., 3X2 � 6
• Constant propagation
• Elimination of redundant loads and stores
• Common subexpression elimination
• Copy propagation
• Strength reduction
• Load and branch delays
• Elimination of useless instructions
• Exploitation of instruction set

Redundancy Elimination

• Can be done at the basic block and
intraprocedural level as well

• Requires data flow analysis
– Static single assignment (SSA) form

– Global value numbering
• Assign the same name (number) to any two or

more symbolically equivalent computations

Loop optimizations

• Loop invariants – move out of body
• Loop unrolling and software pipelining

– Helps improve instruction scheduling

• Loop reordering
– Requires dependence analysis
– Can improve locality and parallelism

