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Concurrency

• A process or thread is a potentially active 
execution context

• Classic von Neumann model – single 
thread of control, single active execution 
context

• Concurrency – two or more execution 
contexts may be active at the same time

Why concurrency?

• Capture the logical structure of certain 
apps (e.g., netscape, video 
games/interactive I/O)

• Cope with independent physical devices 
(e.g., via device interrupts to the OS)

• Performance through use of multiple 
processors

Concurrency in the form of

• Explicitly concurrent languages 
– e.g., Algol 68, Java

• Compiler-supported extensions 
– e.g., HPF, Power C/Fortran

• Library packages outside the language 
proper 
– e.g., pthreads

• Multiple threads of control can come from
– Multiple CPUs
– Kernel-level multiplexing of single physical machine
– Language or library-level multiplexing of kernel-level 

abstraction

• They can run
– In parallel
– Unpredictably interleaved
– Run-until block

Thread Creation Syntax

• Co-begin (e.g., Algol 68)
• Parallel loops (e.g., Occam, Fortran90)
• Launch at elaboration (e.g., Ada, SR)

• Fork-join (e.g., Ada, Modula-3, Java)
• Implicit-receipt

• Early reply
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Thread Implementation

• Schedulers give us the ability to switch 
execution contexts
– Start with coroutines (e.g., Simula, Modula-2)

– Make uniprocessor run-until-block threads
– Add preemption

– Add multiple processors

Types of Parallelism

• Data
• Functional (task)

Task Parallelism

• Each process performs a different task.
• Two principal flavors:

– pipelines
– task queues

• Program Examples: PIPE (pipeline), TSP 
(task queue).

Coordination and Communication

• Two fundamental models
– Shared memory 

– Message passing

Synchronization

• Two basic types 
– Mutual exclusion

• Ensure that only 1 thread is executing a region of 
code or accessing a data element at any given 
time

– Condition synchronization
• Blocks thread until a specific condition holds

Components of a Synchronization 
Event

• Acquire method 
– Process tries to get the right to a sync operation 

(enter critical section, proceed past event)

• Waiting algorithm
– Method used to wait for resource to become available 

• Busy-waiting/spinning
• Blocking

• Release method
– Enable other processes to proceed past a 

synchronization event
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Shared Memory

proc1 proc2 proc3 procN

Shared memory space

Distributed Memory - Message Passing

proc1 proc2 proc3 procN

mem1 mem2 mem3 memN

network

Programming vs. Hardware

• One can implement
– a shared memory programming model

– on shared or distributed memory hardware

– (also in software or in hardware)

• One can implement
– a message passing programming model
– on shared or distributed memory hardware

Parallel Processing Issues

• Data sharing
• Process coordination
• Distributed (NUMA) vs. centralized (UMA) 

memory

• Connectivity
• Fault tolerance

Correctness and performance issues: deadlock, livelock, starvation

Example Program - Jacobi

for (k = 0; k < 100; k++) {

for (j = 1; j < M-1; j++)
for (i = 1; i < M-1; i++)

a[j][i] = (b[j][i-1] + b[j][i+1] +
b[j-1][i] + b[j+1][i])/4;

for (j = 1; j < M-1; j++)
for (i = 1; i < M-1; i++)

b[j][i] = a[j][i];
}

Example Jacobi Parallelization

Computation

a(i,j) = F(b(i-1,j),b(i+1,j),b(I,j-1),b(I,j+1))

P0

P1

P2

P3

begin-1

end+1

begin

end

Parallelization
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Shared Memory Version of Jacobi

for (k = 0; k < 100; k++) {

for (j = begin; j < end; j++)
for (i = 1; i < M-1; i++)

a[j][i] = (b[j][i-1] + b[j][i+1] +
b[j-1][i] + b[j+1][i])/4;

barrier();

for (j = begin; j < end; j++)
for (i = 1; i < M-1; i++)

b[j][i] = a[j][i];
barrier();

}

Message Passing Version of Jacobi
for (k = 0; k < 100; k++) {

for (j = begin; j < end; j++)
for (i = 1; i < M-1; i++)

a[j][i] = (b[j][i-1] + b[j][i+1] + b[j-1][i] + b[j+1][i])/4;

for (j = begin; j < end; j++)
for (i = 1; i < M-1; i++)

b[j][i] = a[j][i];

if (p != (nprocs - 1)) {
send(p+1, b[end-1]);
recv(p+1, b[end]);

}
if (p != 0) {

send(p-1, b[begin]);
recv(p-1, b[begin-1]);

}
}

Data Parallel Version of Jacobi
(Power C)

for (k = 0; k < 100; k++) {

#pragma parallel shared(a, b) local(i,j)
{

#pragma pfor
for (j = 1; j < M-1; j++)

for (i = 1; i < M-1; i++)
a[j][i] = (b[j][i-1] + b[j][i+1] +

b[j-1][i] + b[j+1][i])/4;
}

#pragma parallel shared(a, b) local(i, j)
{

#pragma pfor
for (j = 1; j < M-1; j++)

for (i = 1; i < M-1; i++)
b[j][i] = a[j][i];

}
}

Distributed Memory Hardware

Software Distributed Shared 
Memory (S-DSM)

Why is Parallel Computing Hard?

• Amdahl's law - insufficient available 
parallelism
– Speedup limited by part that is not parallelized

• Overhead of communication and 
coordination

• Portability - knowledge of underlying 
architecture often required



5

Shared Memory: A Look 
Underneath

proc1 proc2 proc3 procN

Shared memory space

Shared Memory Hardware 
(Snoopy-Based Coherence)

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

bus

Shared Memory Hardware 
(Directory-Based NUMA)

proc1 proc2 proc3 procN

cache1 cache2 cache3 cacheN

Network

Memory
Memory Memory Memory

CA CA CA CA

Shared Memory Implementation

• Coherence - defines the behavior of reads and 
writes to the same memory location
– ensuring that modifications made by a processor 

propagate to all copies of the data
– Program order preserved
– Writes to the same location by different processors 

serialized

• Synchronization - coordination mechanism
• Consistency - defines the behavior of reads and 

writes with respect to access to other memory 
locations 
– defines when and in what order modifications are 

propagated to other processors

Basic Hardware Mechanisms for 
Synchronization

• Test-and-set – atomic exchange
• Fetch-and-increment – returns value and 

atomically increments it
• Load-locked/store conditional – pair of 

instructions – deduce atomicity if second 
instruction returns correct value

Implementing Locks Using 
Test&Set

• On the SPARC ldstub moves an unsigned byte 
into the destination register and rewrites the 
same byte in memory to all 1s
_Lock_acquire:

ldstub [%o0], %o1
addcc %g0, %o1, %g0
bne _Lock_acquire
nop

fin: 
jmpl %r15+8, %g0
nop

_Lock_release:
st %g0, [%o0]
jmpl %r15+8, %g0
nop
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Using ll/sc for Atomic Exchange

• Swap the content of R4 with the memory 
location specified by R1

try:    mov R3, R4       ; mov exchange value
ll R2, 0(R1)    ; load linked

sc    R3, 0(R1)    ; store conditional

beqz R3, try      ; branch if store fails
mov R4, R2       ; put load value in R4

Software Synchronization 
Algorithms

• Locks - test&test&set, ticket, array-based 
queue, MCS (linked list)

• Barriers – centralized/sense-reversing, 
software combining trees, tournament, 
dissemination

• Some desirable properties - Lock-free, 
non-blocking, wait-free

Sequential Consistency

• ``A system is sequentially consistent if the result 
of any execution is the same as if the operations 
of all the processors were executed in some 
sequential order, and the operations of each 
individual processor appear in this sequence in 
the order specified by its program.'' [Lamport 79]
– In practice, this means that every write must be seen 

on all processors before any succeeding read or write 
can be issued

Consistency Model 
Classification

• Models vary along the following 
dimensions
– Local order - order of a processor's accesses 

as seen locally
– Global order - order of a single processor's 

accesses as seen by each of the other 
processors

– Interleaved order - order of interleaving of 
different processor's accesses on other 
processors

Code Improvement

• Peep-hole optimization
– Short sequences of instructions

• Local optimization
– Basic blocks

• Intra-procedural optimization
– Across basic blocks but within a 

procedure/subroutine

• Inter-procedural optimization
– Across procedures/subroutines

Elements of a Compiler
• Scanner (lexical analysis) (input – character stream, ouput – token stream)
• Parser (syntax analysis) (output – parse tree)
• Semantic analysis (output – AST with annotations)

• Machine-independent
– Intermediate code generation (output – CFG with basic block pseudo-code)
– Local redundancy elimination (output - modified CFG)
– Global redundancy elimination (output - modified CFG)
– Loop improvement (output - modified CFG)

• Machine-specific
– Target code generation (output – assembly language)
– Preliminary instruction scheduling (output – modified assembly)
– Register allocation (output – modified assembly)
– Final instruction scheduling (output – modified assembly)
– Peephole optimization (output – modified assembly)
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Peephole Optimization

• Constant folding – e.g., 3X2 � 6
• Constant propagation
• Elimination of redundant loads and stores
• Common subexpression elimination
• Copy propagation
• Strength reduction
• Load and branch delays
• Elimination of useless instructions
• Exploitation of instruction set

Redundancy Elimination

• Can be done at the basic block and 
intraprocedural level as well

• Requires data flow analysis
– Static single assignment (SSA) form

– Global value numbering
• Assign the same name (number) to any two or 

more symbolically equivalent computations

Loop optimizations

• Loop invariants – move out of body
• Loop unrolling and software pipelining

– Helps improve instruction scheduling

• Loop reordering
– Requires dependence analysis
– Can improve locality and parallelism


