
1

Scanners and Parsers

Summary

• What is a programming language
• What makes a language successful
• Why study programming languages

• Programming language views
• Types of languages

• Phases of compilation

Types of languages

• Imperative
– Von Neumann (Fortran, Pascal, BASIC, C, …)

– Object-oriented (C++/Java, Smalltalk, …)

• Declarative
– Functional (Scheme, Lisp, ML, …)

– Logic, constraint-based (Prolog, VisiCalc, …)

Phases of Compilation

• Scanning (lexical analysis)
• Parsing (syntax analysis)
• Semantic analysis

• Intermediate code generation
• Machine-independent code improvement

• Machine-specific code improvement
• Target code generation

Overview

• Front end
– Scanner

– Parser

Front
End

Back
End

Intermediate
languageSource code Machine code

scanner parser
tokens

Source
code

Intermediate
language

Errors

A scanner must recognize various parts of
the language’s syntax

Some parts are easy –
e.g., white space, keywords, operators,
comments

Other parts require more notation –
e.g., identifiers, numbers

Need a powerful notation to specify
these patterns

Specifying Patterns

2

Regular Expressions

• Defines a set of strings over the
characters contained in some alphabet,
defining a language

• Three basic operations
– Union – e.g., a|b
– Concatenation – e.g., ab
– Closure – (Kleene closure) – e.g., a* - where

a can be a set concatenated with itself zero or
more times

Finite Automata

• A finite collection of states

• A set of transitions between those states
• An alphabet

• A start state, S0

• One or more final states

Deterministic vs. Non-deterministic – single-valued
vs. multi-valued transitions, no epsilon
transitions

RE <-> DFA

RE

NFA

DFA

Identifier

letter � (a|b|c| … |z|A|B|C| … |Z)
digit � (0|1|2|3|4|5|6|7|8|9)

id � letter (letter|digit)*

Recognizers

S3

S0 S2S1

letter
digit

otherletter

digit
other accept

error

• Build NFA for each term, connect them
with � moves
– Concatenate - ab

– Union – a|b

– Kleene Closure – a*

Automated RE->NFA

a
s0 s1

b
s2 s3

a
s0 s1

b
s2 s3s4 s5

�� �

s3s2

��

�

a
s0 s1

a
s0 s1

b
s2 s3

s4 s5

�

� �

�

Thompson’s Construction

• Each NFA has a single start state and a
single final state

• An � -move always connects two states
that were start or final states

• A state has at most 2 entering and 2
exiting � -moves, and at most 1 entering
and 1 exiting move on a symbol in the
alphabet

3

Automated DFA->RE

for i = 1 to N
for j = 1 to N

Rij
0 = {a|� (si,a) = sj}

if (i == j)
Rij

0 = Rij
0 U �

for k = 1 to N
for i = 1 to N

for j = 1 to N
Rij

k = Rik
k-1 Rkk

k-1 Rkj
k-1 URij

k-1

L = U R1j
N

s
j � SF

NFA->DFA

• Subset construction algorithm
– Each state in DFA corresponds to a set of states in NFA

q0 � ε-closure(n0)
initialize Q with {q0}
while (Q is still changing)

for each qi � Q
for each character �����

t� ε-closure(move(qi, �))
T[qi, �] � t
if t � Q then

add t to Q

DFA Minimization

P � P {SF, {S - SF}
while (P is still changing)

T � 0
for each set p 	 P

for each
�	
�
partition p by

into p1, p2, p3, … pk
T� T U p1, p2, p3, … pk

if T � P then
P � T

Implementing Scanners

• Ad-hoc
• Semi-mechanical pure DFA
• Table-driven DFA

Code for Recognizer/Scanner
char = next_char();
state = S0; /* code for S0 */
token_value = “” /* empty string */
while (not done) {

class = char_class[char];
state = next_state[class,state];
switch(state) {

case S1: /* building an id */
token_value = token_value + char;
char = next_char; break;

case S2: /* accept state */
token_type = identifier;
done = true; break;

case S3: /* error */
token_type = error;
done = true; break;

}
}
return(token_type);

Tables Driving the Recognizer

otherdigitletterlettervalue

other0-9A-Za-z
char_class

----S2S3other

----S1S3digit

----S1S1letter

S3S2S1S0class

next_state

To change language, we can just change tables

4

Error Recovery

• E.g., illegal character
• What should the scanner do?

– Report the error
– Try to correct it?

• Error correction techniques
– Minimum distance corrections

– Hard token recovery

– Skip until match

Scanner Summary

• Break up input into tokens
• Catch lexical errors
• Difficulty affected by language design
• Issues

– Input buffering
– Lookahead
– Error recovery

• Scanner generators
– Tokens specified by regular expressions
– Regular expression -> DFA
– Highly efficient in practice

Overview

• Front end
– Scanner

– Parser

Front
End

Back
End

Intermediate
languageSource code Machine code

scanner parser
tokens

Source
code

Intermediate
language

Errors

Parsers
• Check input for grammatical correctness
• Determine syntax of token stream
• Constructs intermediate representation

• Produces meaningful error messages

Needs mathematical model of syntax�grammar
Needs algorithm for testing syntax � parsing

Context Free Grammars

• Adds recursion/allows non-terminals to be
expressed in terms of themselves

• Can be used to count/impart structure – e.g.,
nested parentheses

• Notation – grammar G(S,N,T,P)
– S is the start symbol
– N is a set of non-terminal symbols (LHS)
– T is a set of terminal symbols (tokens)
– P is a ser of productions or rewrite rules

(P : N � N U T)

Advantages of CFGs

• Precise syntactic specification of a programming
language

• Easy to understand, avoids ad hoc definition

• Easier to maintain, add new language features
• Can automatically construct efficient parser

• Parser construction reveals ambiguity, other
difficulties

• Imparts structure to language
• Supports syntax-directed translation

5

Derivations

• A sequence of application of the rewrite
rules is a derivation or a parse (e.g.,
deriving the string x + 2 – y)

• The process of discovering a derivation is
called parsing

Types of derivations

• Leftmost derivation
– The leftmost non-terminal is replaced at each

step

• Rightmost derivation
– The rightmost non-terminal is replaced at

each step

• Ambiguous grammar – one with multiple
leftmost (or multiple rightmost) derivations
for a single sentential form

Types of parsers

• Top-down (LL) parsers
– Left to right, leftmost derivation
– Starts at the root of the derivation tree and fills in
– Predicts next state with n lookahead

• Bottom-up (LR) parsers
– Left to right, rightmost derivation
– Starts at the leaves and fills in
– Start with input string, end with start symbol
– Starts in a state valid for legal first tokens
– Change state to encode possibilities as input is

consumed
– Use a stack to store both state and sentential form

Top-Down Parsing

• At a node labeled A, select a production
with A on its LHS and for each symbol on
its RHS, construct the appropriate child

• When a terminal is added that does not
match the input, backtrack

• Find the next node to be expanded (must
have a label in NT)

Calculator Example

• All variables are integers
• There are no declarations
• The only statements are assignments,

input, and output
• Expressions use one of four arithmetic

operators and parentheses
• Operators are left associative, with the

usual precedence
• There are no unary operators

Regular Expressions

id � letter (letter | digit)*
literal � digit digit*
read, write, “:=“, “+”, “-”, “*”, “/”, “(“, “)”

$$ /* end of input */

6

Grammar for Calculator

<pgm> � <stmtlist> $$

<stmtlist> � <stmtlist> <stmt> | �
<stmt> � id := <expr> | read <id> | write <expr>

<expr> � <term> | <expr> <add op> <term>

<term> � <factor> | <term> <multop> <factor>
<factor> � (<expr>) | id | literal

<addop> � + | -

<multop> � *| /

Eliminating Left Recursion

• A grammar is left recursive if there exists A in
NT such that A�A

�
for some string

�
• Transform the grammar to remove left recursion

<foo> � <foo> �
| µ

�

<foo> � µ <bar>
<bar> � � <bar> | �
where <bar> is a new non-terminal

Eliminating Common Prefixes

foo � bar �
� bar (µ)

�

foo � bar footail
footail � � | (µ)

LL Grammar for Calculator

<pgm> � <stmtlist> $$
<stmtlist> � <stmt> <stmtlist> | �
<stmt> � id := <expr> | read <id> | write <expr>
<expr> � <term> <termtail>
<termtail> � <addop> <term> <termtail> | �
<term> � <factor> <factortail>
<factortail> � <multop> <factor> <factortail> | 	
<factor> � (<expr>) | id | literal
<addop> � + | -
<multop> � *| /

Example non-LL Grammar
Construct

stmt � if condition then_clause else_clause
| other_stmt

then_clause � then stmt

else_clause � else stmt |

�Ambiguous – allows dangling else to be

paired with either then in

if A then if B then C else D

Fix – Bottom-up parsing (LR)

stmt � balanced_stmt | unbalanced_stmt
balanced_stmt � if condition then balanced_stmt

else balanced_stmt
| other_stmt

unbalanced_stmt � if condition then stmt
| if condition then balanced_stmt

else unbalanced_stmt
--

OR
Use special disambiguating rules� use production

that occurs first in case of conflict

7

Parser Construction

• Recursive descent parsing
– Top-down parsing algorithm

– Built on procedure calls (may be recursive)

– Write procedure for each non-terminal, turning
each production into clause

– Insert call to procedure A() for non-terminal A
and to match(x) for terminal x

– Start by invoking procedure for start symbol S

Predictive (Table-Driven) Parsing

• Actions –
– Match a terminal
– Predict a production
– Announce a syntax error

• Push as yet unseen portions of
productions onto a stack

• Use –
– FIRST (A)
– FOLLOW(A)

The FIRST Set

• FIRST(α) is the set of terminal symbols that
begin strings derived from α

• To build FIRST(X):
– If X is a terminal, FIRST(X) is {X}
– If X�ε, then ε � FIRST(X)
– If X�Y1 Y2 … Yk then put FIRST(Y1) in FIRST(X)
– If X is a non-terminal and X�Y1 Y2 … Yk, then a �

FIRST(X) if a � FIRST(Yi) and ε � FIRST(Yj), for all
1≤j<i

The Follow Set
• For a non-terminal A, FOLLOW(A) is the set

of terminals that can appear immediately to
the right of A in some sentential form

• To build FOLLOW(B) for all B -
– Starting with goal, place eof in FOLLOW(<goal>)
– If A�αBβ, then put {FIRST(β)-ε} in FOLLOW(B)
– If A�αB, then put FOLLOW(A) in FOLLOW(B)
– If A�αBβ and ε � FIRST(β), then put

FOLLOW(A) in FOLLOW(B)

Using FIRST and FOLLOW

• For each production A�α and lookahead
token
– Expand A using the production if token �

FIRST(α)
– If ε � FIRST(�), expand A using the production

if token � FOLLOW(A)
– All other tokens return error

• If there are multiple choices, the grammar
is not LL(1) (predictive)

LL(1) Grammars

A Grammar G is LL(1) if and only if, for all
non-terminals A, each distinct pair of
productions A � α and A�β satisfy the
condition FIRST(α) ∩ FIRST(β) = Φ, i.e.,

For each set of productions A� α1|α2|…|αn
� FIRST(α1), FIRST(α2), …, FIRST(αn)

are all pairwise disjoint
�If αi �ε for any i, then FIRST(αj) ∩

FOLLOW(A) = Φ, for all j�i

8

Bottom-Up Parsers
• End with start symbol
• Apply productions in reverse to input, replacing RHS of production

with LHS non-terminal
• Final result is a rightmost derivation, in reverse
• Bottom-up parsers can use stack and lookahead to choose

production
• LR(k) parsers see the entire RHS before choosing a production �

more powerful than LL(k)

Definitions –
The handle is defined as the combination of

1) RHS to be replaced
2) Its position

Replacement step is called a reduction

Shift-Reduce Parsers

• Actions
– Shift – next input symbol shifted onto stack

– Reduce – right end of handle is on top of
stack; locate left end of handle within stack;
pop handle off stack and push appropriate
non-terminal LHS

– Accept – terminate parsing and signal
success

– Error – initiate/call an error recovery routine

Skeleton Parser
push s0
token = next_token()
while (1)

s = top of stack
if action[s,token] = “shift si” then

push token
push si
token = next_token()

else if action[s,token] = “reduce A�” then
pop 2 * |β| symbols
s = top of stack
push A
push goto[s,A]

else if action[s,token] = “accept” then
return

else error()

Results in k shifts, l reduces, and 1 accept for a valid string, where k is the length of the input
string and l is the length of the reverse rightmost derivation

LR(1) Items

• An LR(k) item is a pair [α,β], where α is a
production from G with a • at some position in
the rhs and β is a lookahead string containing k
symbols (terminals or eof)
– The • indicates how much of an item we have seen at

a given state in the parse
– [A � XY • Z,a] indicates that the parser has seen a

string derived from XY and is looking for one
derivable from Z, and that a is in FOLLOW(A)

– A � XYZ generates 4 LR(0) items

LR(1) Machine

• Definitions
– Closure of [A� α•Bβ,a] contains itself and any items

of form [B � •γ, FIRST(βa)], repeating for new items
– goto(X) of [A� α•Xβ,a] contains the closure of [A�

αX•β,a]

• LR(1) DFA construction
– Begin with closure of start symbol [S � •α,eof]
– For each state, calculate goto(X) for all grammar

symbols X, generating states
• Each state is a set of LR(1) items

– Repeat above step for newly generated states

LR(1) Table Construction

• If S appears on RHS, create augmented grammar G’ by
adding S’�S

• Construct the collection of sets of LR(1) items for G’
• For each state Si and each item in state Si

– If [A� α•aβ,b] in Si and goto[Si] = Sj, then set action[i,a] to “shift
j” (a must be a terminal)

– If [A� α•,a] in Si, then set action[i,a] to “reduce A� α”
– If [S’�S•,eof] in Si, then set action[i, eof] to “accept

• For all non-terminals
– if goto(Si,A)=Sj, then set goto[i, A] to j

• All other entries in action and goto are set to “error”
• The initial state of the parser is the state constructed

from the set containing the item [S’� •S,eof]

9

Error Recovery

• Phrase-level
– Delete tokens until something likely to follow

expression (in FIRST or FOLLOW for expression or
eof)

– Context-specific FOLLOW sets
– Avoid deleting statically defined “starter” symbols

• Exception-based
– Small set of contexts to which to back out in case of

error
– Re-raise exception to pop to next handler on seeing

starter symbol that it shouldn’t delete
– Delete input tokens until parsing can recommence

Error Recovery Example
stmt_list � stmt

| stmt_list; stmt

can be augmented with error

stmt_list � stmt
| error
| stmt_list; stmt

- Throw out the erroneous statement, synchronize at “;” or eof, invoke
yyerror(“syntax error”)

- Other natural places for errors – lists, missing parentheses or
brackets, extra operator or missing operator

