
1

Naming, Scoping, and Binding

LR Parsers

• SLR(1) – LR(0) items (construct DFA for 
recognizing viable prefix with no 
lookahead), use FOLLOW information to 
guide reductions

• LALR(1) – merge states of LR(1) with 
same core (LR(0) items)

• LR(1) – store lookahead information in 
DFA

• LR(k)

More
general

Types of Conflicts

• Ambiguous grammar constructs resulting 
in multiple actions in action table
– Shift/reduce (S�Ay, A�x|xy)– can opt in 

favor of longest match, i.e., shift,  or modify 
grammar to eliminate it – classic example is 
dangling else

– Reduce/reduce – (S�Ax|Bxy, A�x, B�x) -
often no simple solution

Parsing Review

Larger table 
size

Right recursion 
can be 
inefficient

Fast 

Automatable

LR(1)

No left 
recursion

LL(1) ⊂ LR(1)

Fast

Simple
Automatable

Recursive 
descent or 
predictive LL(1)

Advantages Disadvantages

• Name – a character string or identifier used to 
represent something
– Provide a level of abstraction – control (e.g., 

subroutine) or data (classes)

• Binding – an  association between a name and 
the thing it names

• Scope – textual region in the program in which a 
binding is active 
– The set of active bindings is called the current 

referencing environment

Binding Time

• The time at which a binding is created (time at which 
implementation decision is made) 
– Language design time 
– Language implementation time
– Program writing time
– Compile time
– Link time
– Load time
– Run time

Static binding – before run time
Dynamic binding – at run time



2

Object Lifetime and Storage 
Management

• Events
– Creation of objects
– Creation of bindings
– References to variables, subroutines, types, etc., all of which use 

bindings
– Deactivation and reactivation of bindings
– Destruction of bindings 
– Destruction of objects

Binding’s lifetime –
Period of time between creating and destruction of 
name-to-object binding

Storage Allocation Mechanisms

• Static objects – given an absolute address 
since they are retained throughout the 
program

• Stack objects – allocated in LIFO order, 
usually in conjunction with subroutine calls 
and returns

• Heap objects – allocated and deallocated
at arbitrary times – more general and 
expensive storage management

Scope Rules

• Scope
– a program region of maximal size in which no bindings change
– name space that maps a set of names to a set of variables

• Scope of a binding 
– Static – can be determined based purely on textual rules at 

compile time
– Dynamic – depends on the flow of execution at run time

• Lifetime of a variable – single execution of the scope or 
multiple executions of the scope (decides where data 
can be allocated)

Static Scope
• Only a single global scope, variables declared by virtue of being used  -

Basic 
• Global and local scope – e.g., C, Fortran (variable declaration optional 

(assumed to be local), “common blocks” used to “import” global variables 
into subroutines)

• Closest lexically nested scope rule (nested subroutines) – e.g., Pascal 
(Algol family)

• Modules (collection of objects  - subroutines, variables, types, etc.) with 
internals/externals invisible unless explicitly exported/imported – inactive 
bindings outside (not destroyed) – e.g., separate compilation facilities of C, 
namespaces in C++

– Closed scope – requiring explicit import (Modula)
– Open scope – one not requiring explicit import (Ada, nested subroutines)

• All scopes surrounding the current scope

• Module types and classes – multiple instances, requiring 
creation/initialization and destruction, specification of instance – Simula, 
Euclid

– Class – object-oriented programming construct, includes inheritance, e.g., 
Smalltalk, Eiffel, C++, Java 

Dynamic Scope
• Depends on the order in which subroutines are 

called – current binding is the most recent 
encountered during execution – e.g., Perl, APL, 
Snobol

Shallow vs. Deep Binding

• References to subroutines (e.g., passed 
as parameter) can have scope rules 
applied 
– When reference is first created (deep)

– When routine is finally called (shallow)



3

Overloading
• Name that can refer to more than one object in a given scope is said 

to be overloaded, e.g., addition operator (+) used for integer and 
floating point addition

• Lookup routine of symbol table must return list of possible meanings 
for the requested name

• Semantic analyzer makes choice based on context (number and 
types of arguments, for example)

• Distinguish between overloading, coercion, polymorphism, generics 
– Coercion – automatic conversion by compiler from one type to another
– Polymorphic parameters – represent unconverted arguments of several 

types with common characteristics (e.g., counting elements in a linked 
list) – single object capable of accepting multiple types

– Generic subroutines – template that can be used to create multiple 
concrete subroutines that differ in minor ways – multiple objects that 
accept arguments of different types

Aliasing

• More than one name for the same thing –
save space
– Fortran – use common blocks in different 

ways (equivalence statement) – improve code 
efficiency

– C unions – multiple representations

Modules

• Collection of subroutines, variables, types, etc. that are 
visible to each other but invisible outside unless explicitly 
exported
– Clu, Modula, Turing, Ada
– Separate compilation in C 

• Import data/functions using “extern”
• “static” outside a function means it is usable only inside the current 

source file

• Closed (Modula) versus open (Ada) scopes
• Modules as types to allow multiple instances – Simula, 

Euclid
• Classes – module types augmented with inheritance –

Smalltalk, Eiffel, C++, Java

Procedures
• Control abstraction 

– Well-defined entry/exits
– Mechanism to pass parameters, return values

• Name space/scope
– New name space within procedure
– Local names are protected from outside

• External interface
– Accessed by procedure name, parameters
– Protection for both caller and callee
– Enables software libraries, systems

• Separate compilation 
– Compile procedures independently
– Keeps compile times reasonable
– Allows us to build large programs

Run-Time Storage Organization

Typical memory layout

�Allows both stack and heap maximal 
freedom

Free memory
C
O
D
E

S
T
A
T
I
C

H
E
A
P

S
T
A
C
K

Scoping Rules of Languages

• LISP
– Dynamic scoping
– Most recently invoked procedure

• Algol, Pascal, Modula
– Nested lexical scoping
– Procedures nested within procedures

• Fortran 77
– Global scope – common blocks
– Local scope – variables, parameters in procedures



4

Scoping Rules of Languages

• C
– Global scope – procedures, external variables
– File scope – variables declared in files
– Procedure scope – local variables
– Nested block scope – within {}

• Java
– Global scope – public classes
– Package scope – fields, methods within package
– Procedure scope – local variables 
– Nested block scope – within {}

Symbol Table (for static scoping)

• Maps names to the information the compiler knows 
about them

• Basic operations – insert, lookup
• Each scope assigned a serial number 

– Predefined identifiers assigned 0 
– Global scope assigned 1
– Additional scopes given successive numbers as they are 

encountered
• All names regardless of scope entered in a single large 

hash table, keyed by name
– Entry contains symbol name, category, scope number, type, etc.

• Scope stack to maintain current referencing environment
– Used by semantic analyzer

Association Lists and Central 
Reference Tables (Dynamic 

Scope)
• Association list – list of name/value pairs 

(e.g., Lisp)
– Functions as a stack
– Search from front of list until appropriate 

binding is found (inefficient)

• Central reference table – list (stack) of 
entries for each distinct name in the 
program, most recent occurrence at top
– Lookup operations faster

Scanning Complexities of Real 
Programming Languages

• Fortran 66 and 77 – blanks not significant

• PL/I – no reserved keywords
• C++ - template definition 

– PriorityQueue<MyType<int>>
• >> is a C++ operator – distinction requires coordination 

between scanner and parser

� Sound theoretical basis for scanning probably 
influenced language design in a positive way!

Parsing Complexities in Real 
Languages

• Using one word to represent two different 
meanings – ambiguous grammar
– E.g., function and array reference in Fortran

• Left versus right recursion
– Top-down parsers need right recursive grammars
– Bottom-up parsers can accommodate both, however, 

right recursive grammar requires more stack space

• Associativity –
– Left recursion naturally produces left associativity
– Right recursion naturally produces right associativity

Naming Complexities in Language 
Design

• Recursive subroutine cannot declare a 
local object with the same name as the 
subroutine itself – problem in Pascal that 
returns values by assigning to function 
name

• External declarations in C


