Naming, Scoping, and Binding

LR Parsers

e SLR(1) — LR(0) items (construct DFA for
recognizing viable prefix with no
lookahead), use FOLLOW information to
guide reductions Mop

« LALR(1) — merge states of LR(1) with *
same core (LR(0) items)

¢ LR(1) — store lookahead information in
DFA

Types of Conflicts

* Ambiguous grammar constructs resulting

in multiple actions in action table

— Shift/reduce (S€ Ay, A< Xx|xy)— can opt in
favor of longest match, i.e., shift, or modify
grammar to eliminate it — classic example is
dangling else

— Reduce/reduce — (S<AX|Bxy, A<X, B€X) -
often no simple solution

¢ LR(K)
Parsing Review
Advantages Disadvantages
Recursive Fast No left
descent or Simple recursion

predictive LL(1) Automatable LL(1) OLR(1)

LR(2) Fast Larger table
Automatable size

Right recursion
can be
inefficient

« Name — a character string or identifier used to
represent something
— Provide a level of abstraction — control (e.g.,
subroutine) or data (classes)
« Binding — an association between a name and
the thing it names
« Scope — textual region in the program in which a
binding is active
— The set of active bindings is called the current
referencing environment

Binding Time

* The time at which a binding is created (time at which
implementation decision is made)
— Language design time
— Language implementation time
— Program writing time
— Compile time
— Link time
— Load time
— Run time

Static binding — before run time
Dynamic binding — at run time




Object Lifetime and Storage
Management

Events

— Creation of objects

— Creation of bindings

— References to variables, subroutines, types, etc., all of which use
bindings

— Deactivation and reactivation of bindings

— Destruction of bindings

— Destruction of objects

Binding's lifetime —
Period of time between creating and destruction of
name-to-object binding

Storage Allocation Mechanisms

Static objects — given an absolute address
since they are retained throughout the
program

« Stack objects — allocated in LIFO order,

usually in conjunction with subroutine calls
and returns

« Heap objects — allocated and deallocated

at arbitrary times — more general and
expensive storage management

Scope Rules

Scope

— a program region of maximal size in which no bindings change

— name space that maps a set of names to a set of variables

Scope of a binding

— Static — can be determined based purely on textual rules at
compile time

— Dynamic — depends on the flow of execution at run time

Lifetime of a variable — single execution of the scope or

multiple executions of the scope (decides where data

can be allocated)

Static Scope

Only a single global scope, variables declared by virtue of being used -
Basic

Global and local scoFe —e.g., C, Fortran (variable declaration optional
(assumed to be local), “common blocks” used to “import” global variables
into subroutines)
Closest lexically nested scope rule (nested subroutines) — e.g., Pascal
(Algol family)
Modules (collection of objects - subroutines, variables, types, etc.) with
internals/externals invisible unless explicitly exported/imported — inactive
bindings outside (not destroyed) — e.g., separate compilation facilities of C,
namespaces in C++

— Closed scope — requiring explicit import (Modula)

— Open scope — one not requiring explicit import (Ada, nested subroutines)

« Al scopes surrounding the current scope

Module types and classes — multiple instances, requiring
creallgonllnitialization and destruction, specification of instance — Simula,
Eucli

— Class - object-oriented programming construct, includes inheritance, e.g.,

Smalltalk, Eiffel, C++, Java

.

Dynamic Scope

Depends on the order in which subroutines are
called — current binding is the most recent
encountered during execution — e.g., Perl, APL,
Snobol

Shallow vs. Deep Binding

< References to subroutines (e.g., passed
as parameter) can have scope rules
applied
— When reference is first created (deep)
— When routine is finally called (shallow)




Overloading

» Name that can refer to more than one object in a %ive_n scope is said
to be overloaded, e.g., addition operator (+) used for integer and
floating point addition

« Lookup routine of symbol table must return list of possible meanings
for the requested name

« Semantic analyzer makes choice based on context (number and
types of arguments, for example)

« Distinguish between overloading, coercion, polymorphism, generics

— Coercion — automatic conversion by compiler from one type to another

— Polymorphic parameters — represent unconverted arguments of several
types with common characteristics (e.g., counting elements in a linked
list) — single object capable of accepting multiple types

— Generic subroutines — template that can be used to create multiple
concrete subroutines that differ in minor ways — multiple objects that
accept arguments of different types

Aliasing

* More than one name for the same thing —
save space
— Fortran — use common blocks in different
ways (equivalence statement) — improve code
efficiency
— C unions — multiple representations

Modules

« Collection of subroutines, variables, types, etc. that are
visible to each other but invisible outside unless explicitly
exported

— Clu, Modula, Turing, Ada
— Separate compilation in C
« Import data/functions using “extern”
« “static” outside a function means it is usable only inside the current
source file
« Closed (Modula) versus open (Ada) scopes

* Modules as types to allow multiple instances — Simula,
Euclid

¢ Classes — module types augmented with inheritance —
Smalltalk, Eiffel, C++, Java

Procedures

« Control abstraction
— Well-defined entry/exits
— Mechanism to pass parameters, return values
* Name space/scope
— New name space within procedure
— Local names are protected from outside
» External interface
— Accessed by procedure name, parameters
— Protection for both caller and callee
— Enables software libraries, systems
« Separate compilation
— Compile procedures independently
— Keeps compile times reasonable
— Allows us to build large programs

Run-Time Storage Organization

Typical memory layout

— Free memory «—

0> -0

mooon
0O~——=4>-4w0n
oTrmzI

—>Allows both stack and heap maximal
freedom

Scoping Rules of Languages

e LISP
— Dynamic scoping
— Most recently invoked procedure
* Algol, Pascal, Modula
— Nested lexical scoping
— Procedures nested within procedures
» Fortran 77
— Global scope — common blocks
— Local scope — variables, parameters in procedures




Scoping Rules of Languages

« C
— Global scope — procedures, external variables
— File scope — variables declared in files
— Procedure scope — local variables
— Nested block scope — within {}
* Java
— Global scope — public classes
— Package scope — fields, methods within package
— Procedure scope — local variables
— Nested block scope — within {}

Symbol Table (for static scoping)

Maps names to the information the compiler knows
about them

Basic operations — insert, lookup

Each scope assigned a serial number

— Predefined identifiers assigned 0

— Global scope assigned 1

— Additional scopes given successive numbers as they are
encountered

All names regardless of scope entered in a single large
hash table, keyed by name
— Entry contains symbol name, category, scope number, type, etc.

Scope stack to maintain current referencing environment
— Used by semantic analyzer

Association Lists and Central
Reference Tables (Dynamic

. Scope) _
 Association list — list of name/value pairs
(e.g., Lisp)
— Functions as a stack
— Search from front of list until appropriate
binding is found (inefficient)

» Central reference table — list (stack) of
entries for each distinct name in the
program, most recent occurrence at top
— Lookup operations faster

Scanning Complexities of Real
Programming Languages

Fortran 66 and 77 — blanks not significant
* PL/I — no reserved keywords
e C++ - template definition

— PriorityQueue<MyType<int>>

* >> s a C++ operator — distinction requires coordination
between scanner and parser

- Sound theoretical basis for scanning probably
influenced language design in a positive way!

Parsing Complexities in Real
Languages

« Using one word to represent two different
meanings — ambiguous grammar
— E.g., function and array reference in Fortran

« Left versus right recursion
— Top-down parsers need right recursive grammars

— Bottom-up parsers can accommodate both, however,
right recursive grammar requires more stack space

¢ Associativity —
— Left recursion naturally produces left associativity
— Right recursion naturally produces right associativity

Naming Complexities in Language
Design
¢ Recursive subroutine cannot declare a
local object with the same name as the
subroutine itself — problem in Pascal that

returns values by assigning to function
name

» External declarations in C




