

Questions not answerable by a CFG

- Is x a scalar, an array, or a function?
- Is x declared before it is used?
- Are any names declared but not used?
- Which declaration of x does this reference?
 Is an expression type-consistent?
- Is an expression type-consistent? Does the dimension of a reference match the
- declaration?
- Where can x be stored? (heap, stack, ...)
- Is x defined before it is used?
- Is an array reference in bounds?
- Does function foo produce a constant value?

Context-Sensitive Analysis

Why is it hard?

Need non-local informationAnswers depend on values, not on syntax

Solutions -

 $\label{eq:attribute} \begin{array}{l} \mbox{Attribute grammars}-\mbox{augment CFG with rules, calculate} \\ \mbox{attributes for grammar symbols} \end{array}$

ad hoc techniques – augment grammar with arbitrary code, execute at corresponding reduction, store information in attributes, symbol tables

Attribute Grammars

- · Generalization of context-free gammars
- Each grammar symbol has an associated set of attributes
- Augment grammar with rules that define values
 - Not allowed to refer to any variables or attributes outside the current production
- High-level specification, independent of evaluation scheme

Attribute Types

- Values are computed from constants and other types
 - Synthesized attribute value computed from children
 - Inherited attribute value computed from siblings, parent, and own attributes

Attribute flow

S-attributed grammar

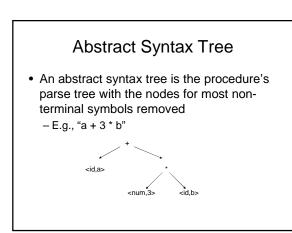
- Uses only synthesized types
- Bottom-up attribute flow
- L-attributed grammar
 - Attributes can be evaluated in a single left-to-right pass over the input
 - Each synthesized attribute of LHS depends only on that symbol's own inherited attributes or on attributes (synthesized or inherited) of the production's RHS symbols
 - Each inherited attribute of a RHS symbol depends only on inherited attributes of the LHS symbol or on attributes (synthesized or inherited) of symbols to its left in the RHS

Problems with Attribute Grammars

- Handling non-local information
- Storage management
- · Syntax tree traversal to extract information
- Tools for automation

Action Routines

- Ad hoc translation scheme (attribute evaluator) that is interleaved with parsing


 Based on the idea behind rule-based evaluators for attribute
 - Attribute flow constrained to a single direction, either synthesized or inherited (e.g., L-attributed)
 - Also called syntax-directed translation
- Allow arbitrary actions
- Provide central repository
- Can place actions amid productions
- Typical uses build abstract syntax tree, symbol table, perform error/type checking

Top-Down Evaluation

- Can associate storage with nodes in the parse tree (also for bottom-up)
- Inherited attributes parameters to parsing routine, synthesized attributes return values
- Automatic management also possible with separate parse and attribute stack
 - Action routines interspersed with RHS
 - Problem: many copies
 - Solution: Ad hoc management by explicitly pushing and popping attributes

Bottom-Up Evaluation

- Attribute stack that mirrors the parse stack
- S-attributed grammar perform action at the time of reduction
- L-attributed grammar possible but not always
 - No obvious place to store inherited attributes (don't know what you're inheriting from)
 - Use marker symbols (semantic hooks) to know depth of symbol from which you are inheriting
 - Can put marker symbol in the TRAILING PART (production uniquely determined) but not in the LEFT CORNER of an RHS

Symbol Tables

- Associates values or attributes (e.g., types) with names
 - Names
 - Variable and procedure names
 - Literal constants and strings
 - Attributes
 - Textual name
 - Data type
 - Declaring procedure
 Lexical level of declaration
 - Lexical level of declaration
 If array, number and size of dimensions
 - If array, number and size of dimensions
 If procedure, number and type of parameters
 - If procedure, number and type of parameters

Symbol Table Implementation

- Usually implemented as hash tables
- Return closest lexical declaration to handle nested lexical scoping
- Solution used in your project
 - Use one symbol table per scope
 - Chain tables to enclosing scope
 - Insert names in tables for current scope
 - Start name lookup in current table, checking enclosing scopes in order if needed