
1

Semantics: Context-Sensitive 
Analysis

Questions not answerable by a 
CFG

• Is x a scalar, an array, or a function?
• Is x declared before it is used?
• Are any names declared but not used?
• Which declaration of x does this reference?
• Is an expression type-consistent?
• Does the dimension of a reference match the 

declaration?
• Where can x be stored? (heap, stack, …)
• Is x defined before it is used?
• Is an array reference in bounds?
• Does function foo produce a constant value?

Context-Sensitive Analysis

• Why is it hard?
– Need non-local information
– Answers depend on values, not on syntax

Solutions –

Attribute grammars – augment CFG with rules, calculate 
attributes for grammar symbols

ad hoc techniques – augment grammar with arbitrary 
code, execute at corresponding reduction, store 
information in attributes, symbol tables

Attribute Grammars

• Generalization of context-free gammars
• Each grammar symbol has an associated 

set of attributes
• Augment grammar with rules that define 

values 
– Not allowed to refer to any variables or 

attributes outside the current production

• High-level specification, independent of 
evaluation scheme

Attribute Types

• Values are computed from constants and 
other types
– Synthesized attribute – value computed from 

children

– Inherited attribute – value computed from 
siblings, parent, and own attributes

Attribute flow

• S-attributed grammar 
– Uses only synthesized types
– Bottom-up attribute flow 

• L-attributed grammar
– Attributes can be evaluated in a single left-to-right 

pass over the input
• Each synthesized attribute of LHS depends only on that 

symbol’s own inherited attributes or on attributes 
(synthesized or inherited) of the production’s RHS symbols

• Each inherited attribute of a RHS symbol depends only on 
inherited attributes of the LHS symbol or on attributes 
(synthesized or inherited) of symbols to its left in the RHS



2

Problems with Attribute Grammars

• Handling non-local information
• Storage management
• Syntax tree traversal to extract information

• Tools for automation

Action Routines

• Ad hoc translation scheme (attribute evaluator) that is 
interleaved with parsing
– Based on the idea behind rule-based evaluators for attribute 

grammars
– Attribute flow constrained to a single direction, either synthesized 

or inherited (e.g., L-attributed)
– Also called syntax-directed translation

• Allow arbitrary actions
• Provide central repository
• Can place actions amid productions

Typical uses – build abstract syntax tree, symbol table, 
perform error/type checking

Top-Down Evaluation

• Can associate storage with nodes in the parse 
tree (also for bottom-up)

• Inherited attributes parameters to parsing 
routine, synthesized attributes return values

• Automatic management also possible with 
separate parse and attribute stack 
– Action routines interspersed with RHS
– Problem: many copies
– Solution: Ad hoc management by explicitly pushing 

and popping attributes

Bottom-Up Evaluation

• Attribute stack that mirrors the parse stack
• S-attributed grammar – perform action at the 

time of reduction
• L-attributed grammar – possible but not always

– No obvious place to store inherited attributes (don’t 
know what you’re inheriting from)

– Use marker symbols (semantic hooks) to know depth 
of symbol from which you are inheriting

– Can put marker symbol in the TRAILING PART 
(production uniquely determined) but not in the LEFT 
CORNER of an RHS

Abstract Syntax Tree

• An abstract syntax tree is the procedure’s 
parse tree with the nodes for most non-
terminal symbols removed
– E.g., “a + 3 * b”

+

<id,a>

<num,3>

*

<id,b>

Symbol Tables 

• Associates values or attributes (e.g., types) with 
names
– Names

• Variable and procedure names
• Literal constants and strings

– Attributes
• Textual name
• Data type 
• Declaring procedure
• Lexical level of declaration
• If array, number and size of dimensions
• If procedure, number and type of parameters



3

Symbol Table Implementation

• Usually implemented as hash tables
• Return closest lexical declaration to 

handle nested lexical scoping
• Solution used in your project 

– Use one symbol table per scope
– Chain tables to enclosing scope
– Insert names in tables for current scope
– Start name lookup in current table, checking 

enclosing scopes in order if needed


