
1

Type Systems

Types

• Denotational view
– Set of values (e.g., enumerated type)

• Constructive view
– One of a small collection of built-in types or a

composite type (record, array, set, …)

• Abstraction-based view
– An interface consisting of a set of operations with

well-defined and mutually consistent semantics

�Types usually a mixture of these viewpoints

Type Expressions

• Type expressions
– Used to represent the type of a language construct
– Describes both language and programmer types

• Examples
– Basic types: integer, real, character, …
– Constructed types: arrays, records, pointers,

functions, …
• Constructing new types

– Arrays
– Records
– Pointers
– Functions

Type checking

• Type checker
– Enforces rules of type system
– May be strong/weak, static/dynamic

• Static type checking
– Performed at compile time
– Early detection, no run-time overhead
– Not always possible (e.g., A[i])

• Dynamic type checking
– Performed at run time
– More flexible, rapid prototyping
– Overhead to check run-time type tags

Type Checking

• Type equivalence
– When are the types of two values the same?

• Type compatibility
– When can a value of type A be used in a

context that expects type B?

• Type inference
– What is the type of an expression, given the

types of the operands?

Type Equivalence

• Structural equivalence
– Based on content
– Identical type structure/same components in same order

• Name equivalence
– Each definition (lexical occurrence) introduces a new type (e.g.,

Java)
– Strict versus loose (whether or not aliases represent new types)

• Strict – type A�B represents definition (aliases not equivalent)
• Loose – type A�B represents declaration or binding (aliases

equivalent)
• Ada allows programmer to specify if an alias is derived

(incompatible with base type) or a subtype (compatible)

2

Structural Equivalence

• Generally -
– two structs are structurally equivalent if they contain

the same number of fields and the corresponding
fields in order of declaration are equivalent

– Arrays are structurally equivalent if they have the
same size and each element is structurally equivalent

– Scalar types are equivalent only to themselves
– Pointers are structurally equivalent if the types they

point to are structurally equivalent
• C and C++ - structurally equivalent except for

structs, where fields have to have same names
in addition to types (field name is part of type)

Loose Name Equivalence

Assuming c and f are equivalent (loose name equivalence/aliases) probably
does not reflect what programmer intended

Type Conversion and Casts

• Converting type casts
– No code needed for structural equivalence
– Run-time semantic error for intersecting

values
– Possible conversion of low-level

representations, e.g., float to integer

• Non-converting type casts
– E.g., array of characters reinterpreted and

pointers or integers, bit manipulation of floats

Type Compatibility and Coercion

• Definition of compatibility language dependent
– Ada – type S compatible with type T iff

• S and T are equivalent
• One is a subtype of the other
• Both are arrays with same numbers and types of elements in

each dimension

• Coercion - Implicit conversion to expected type
(specifically allowed by a language, e.g., C and
Fortran)

• Type inference – determining the type of an
expression
– Complications – subranges, composite objects

Type Compatibility - Subranges

type weekday = {sun, mon, tue, wed, thu, fri, sat};
subtype workday is weekday range mon..fri;

Type Coercion

3

General-Purpose Container
Objects

• Generic reference, e.g., (void *) in C and C++
• Safety of generic to specific assignments, e.g., Java

…
Stack my_stack = new Stack();
String s = “Hello, world”;
Foo f = new Foo();
…
my_stack.push(s);
my_stack.push(f);
…
S = (String) my_stack.pop();
// type cast is required, generates exception at run time
// by checking type tag in self-descriptive object

Type Classification and
Implementation

• Built-in types
– Integers, characters, booleans, floats

• Enumeration types (first introduced in Pascal)
e.g., enum weekday(sun,mon,tue,wed,thu,fri,sat);

• Subrange types (also first introduced in Pascal)
e.g., type test_score = 0..100;

• Composite (constructed) types –
– Records (structures) – introduced by Cobol
– Variant records (unions) – union of fields
– Arrays
– Sets – collection of distinct elements of base type (also introduced by

Pascal)
– Pointers – reference (most often used to implement recursive data

types)
– Lists – recursive sequence of elements
– Files – represent data on mass storage devices

Records Records – Memory Layout

Compiler may insert holes in the allocation of memory for efficiency of access

Variant Records

Safety can be checked at run time – e.g., Pascal, Algol 68

Variant Records (Unions)

Type safety cannot be checked – e.g., C

struct element {
char name[2];
int atomic_number;
double atomic_weight;
char metallic;
char naturally_occurring;
union {

struct {
char *source;
double prevalence;

} natural_info;
double lifetime;

} extra_fields;
} copper;

4

Variant Records – Memory Layout Arrays

• Memory layout strategies
– Contiguous elements

• Column major (Fortran)
• Row major (most other languages)

– Row pointers – an option in C, used by Java
• Avoids multiplication
• Allows rows to be put anywhere
• Requires extra space for pointers
• Can have rows of different lengths (e.g., array of

strings)

Arrays

• Dimensions, bounds, and allocation
– Global lifetime, static shape
– Local lifetime, static shape
– Local lifetime, shape bound at elaboration time
– Arbitrary lifetime, shape bound at elaboration time
– Arbitrary lifetime, dynamic shape

• Use dope vector – runtime descriptor containing
bounds and size for each dimension – when
shape is not known statically

Local lifetime, shape bound at
Elaboration Time E.g., Ada

Pointers

• Reference to an object
– Variables of built-in Java types employ a

value model
– Variable of user-defined types employ a

reference model

• Pointers and single-dimensional arrays in
C are interchangeable

Dangling References

• A live pointer that no longer points to a
valid object

• May be caught using
– Tombstones – extra level of indirection,

modify tombstone when object is reclaimed
– Locks and keys – every pointer has a key that

is compared to the one stored in the object
pointed to

5

Garbage Collection

• Reference counts
• Mark-and-sweep collection

Input/Output

• Built into language – e.g., Pascal
• Provided by library routines – e.g., C

Types - Overview
• Types

– Values that share a set of common properties
– Defined by language and/or programmer

• Type system
– Set of types in a programming language
– Rules that use types to specify program behavior

• Example type rules
– If operands of addition are of type integer, then result is of type integer
– The result of the unary & operator is a pointer to the object referred to

by the operand
• Advantages of typed languages

– Ensure run-time safety
– Expressiveness (overloading, polymorphism)
– Provide information for code generation

