Type Systems

Types

Denotational view
— Set of values (e.g., enumerated type)
Constructive view

— One of a small collection of built-in types or a
composite type (record, array, set, ...)

¢ Abstraction-based view

— An interface consisting of a set of operations with
well-defined and mutually consistent semantics

—>Types usually a mixture of these viewpoints

Type Expressions

. Type expressions
— Used to represent the type of a language construct
— Describes both language and programmer types
* Examples
— Basic types: integer, real, character, ...
— Constructed types: arrays, records, pointers,
functions, ...
» Constructing new types
— Arrays
— Records
— Pointers
— Functions

Type checking

* Type checker
— Enforces rules of type system
— May be strong/weak, static/dynamic
 Static type checking
— Performed at compile time
— Early detection, no run-time overhead
— Not always possible (e.g., A[i])
* Dynamic type checking
— Performed at run time
— More flexible, rapid prototyping
— Overhead to check run-time type tags

Type Checking

» Type equivalence
—When are the types of two values the same?
» Type compatibility
—When can a value of type A be used in a
context that expects type B?

» Type inference

— What is the type of an expression, given the
types of the operands?

Type Equivalence

« Structural equivalence
— Based on content
— Identical type structure/same components in same order
* Name equivalence
— Each definition (lexical occurrence) introduces a new type (e.g.,
Java)
— Strict versus loose (whether or not aliases represent new types)
« Strict — type A->B represents definition (aliases not equivalent)
+ Loose — type A->B represents declaration or binding (aliases
equivalent)
+ Ada allows programmer to specify if an alias is derived
(incompatible with base type) or a subtype (compatible)

Structural Equivalence

* Generally -

— two structs are structurally equivalent if they contain
the same number of fields and the corresponding
fields in order of declaration are equivalent

— Arrays are structurally equivalent if they have the
same size and each element is structurally equivalent

— Scalar types are equivalent only to themselves

— Pointers are structurally equivalent if the types they
point to are structurally equivalent

» C and C++ - structurally equivalent except for
structs, where fields have to have same names
in addition to types (field name is part of type)

Loose Name Equivalence

TYPE celsius_temp = RFAL;
fahrenheit_temp = REAL;
VAR c : celsius_temp;
T : fahrenheit_temp;

1 :i=c (* this should probably be an error *)

Assuming ¢ and f are equivalent (loose name equivalence/aliases) probably
does not reflect what programmer intended

Type Conversion and Casts

» Converting type casts
— No code needed for structural equivalence

— Run-time semantic error for intersecting
values

— Possible conversion of low-level
representations, e.g., float to integer
« Non-converting type casts

— E.g., array of characters reinterpreted and
pointers or integers, bit manipulation of floats

Type Compatibility and Coercion

Definition of compatibility language dependent
— Ada — type S compatible with type T iff

* Sand T are equivalent

« One is a subtype of the other

« Both are arrays with same numbers and types of elements in
each dimension

Coercion - Implicit conversion to expected type
(specifically allowed by a language, e.g., C and
Fortran)

Type inference — determining the type of an
expression

— Complications — subranges, composite objects

Type Compatibility - Subranges

type weekday = {sun, mon, tue, wed, thu, fri, sat};
subtype workday is weekday range mon..fri;

d : weekday; -- a8 above

k : workday; -- a8 above
type calendar_column is new weekday;
¢ @ calendar_column

k

= d; -- run-time check required
d = k; -- no check required; every workday is a weekday
€ = d; -- static semantic error;

-- weekdays and calendar_columms are not compatible

Type Coercion

short int s;

unsigned long int 1;

char c; /* may be signed or unsigned -- implementation-dependent */
float f; /% usually IEEE single-precision */

double d; /* usually IEFE double-precision */

s =1; /x 1’s low-order bits are interpreted as a signed number. */
1 =s; /x s is sign-extended to the longer length, then
ite bits are interpreted as an unsigned number. */
8 =2cC; /¥ ¢ 1s either slgn-extended or zero-extended to s’s length;
the result is then interpreted as a signed number. */
f=1; /x1 is converted to floating-point. Since f has fewer
significant bits, Some precision may be 1ost. #/
f; /+ I is converted to the longer format; no precision lost. */
d; /* d 1s converted to the shorter format; precision may be lost.
If d°s value cannot be represented in single-precision, the

result is undefined, but NOT 2 dynamic Semantic error. */

General-Purpose Container
Objects

« Generic reference, e.g., (void *) in C and C++
« Safety of generic to specific assignments, e.g., Java

Stack my_stack = new Stack();
String s = “Hello, world”;
Foo f = new Foo();

my_stack.push(s);
my_stack.push(f);

S = (String) my_stack.pop();
/I type cast is required, generates exception at run time
/I by checking type tag in self-descriptive object

Type Classification and
Implementation

Built-in types
— Integers, characters, booleans, floats
Enumeration types (first introduced in Pascal)
e.g., enum weekday(sun,mon,tue,wed,thu,frisat);
Subrange types (also first introduced in Pascal)
e.g., type test_score = 0..100;
Composite (constructed) types —
— Records (structures) — introduced by Cobol
— Variant records (unions) — union of fields
— Arrays
— Sets — collection of distinct elements of base type (also introduced by
Pascal)
- tF)’,ointti.‘rs — reference (most often used to implement recursive data
pes,
— Lists — recursive sequence of elements
— Files — represent data on mass storage devices

Records

In Paseal. a simple record might be defined as follows:

type two_chars = packed array [1..2] of char;

(+ a ’packed’ array of char 1s compatible With 2 quoted STring *)
type element = record

name : Two_chars;

atomic_mumber : integer;

atomic_welght : real;

metallic : Boolean
end;

In C. the corresponding declaration would be

struct element {
char name[2];
int atemic_number;
double atomic_weight;
char metallic; /# C has no Boolean type */

Records — Memory Layout

bytes/32 bif

atomic_number
atomic_weight

Compiler may insert holes in the allocation of memory for efficiency of access

Variant Records

type long_string - packed array [1..200] of char;
Type STring ptr = “long_string;
type element - record
name : two_chars;
atomic_number : integer;
atomic_welght : real;
metallic : Boolean;
case naturally_occurring : Boolean of
true : (
source : STTing_ptr;
(* textual description of principal commercial source *)
prevalence : real;
(x percentage, by welght, of Earth’s cTust *)
)
false : (
lifetime : real;
(¥ half-life in seconds of the most stable known isotope *)

end;

Safety can be checked at run time — e.g., Pascal, Algol 68

Variant Records (Unions)

struct element {
char name[2];
int atomic_number;
double atomic_weight;
char metallic;
char naturally_occurring;
union {
struct {
char *source;
double prevalence;
} natural_info;
double lifetime;
} extra_fields;
} copper;

Type safety cannot be checked —e.g.,C

Variant Records — Memory Layout

Arrays

* Memory layout strategies

— Contiguous elements
« Column major (Fortran)
* Row major (most other languages)

— Row pointers — an option in C, used by Java
< Avoids multiplication
« Allows rows to be put anywhere
« Requires extra space for pointers
« Can have rows of different lengths (e.g., array of

strings)

4 bytes/32 bits | | 4 bytes/32 bits
atemic_nurber atenic_nunber
atomic_weight atomic_weight
netallic [netallic]
3ource lifetime
prevalence |

» Dimensions, bounds, and allocation
— Global lifetime, static shape
— Local lifetime, static shape
— Local lifetime, shape bound at elaboration time
— Arbitrary lifetime, shape bound at elaboration time
— Arbitrary lifetime, dynamic shape
» Use dope vector — runtime descriptor containing
bounds and size for each dimension — when
shape is not known statically

Local lifetime, shape bound at
Elaboration Time E.g., Ada

------------ 1 ‘Variable-size

S part of the frame
£oreats foooooooiii]

~

Local
variables

Fixed-size part
of the frame

Bookkeeping
Retum address

Arguments
and returns

Pointers

» Reference to an object
— Variables of built-in Java types employ a
value model
— Variable of user-defined types employ a
reference model
« Pointers and single-dimensional arrays in
C are interchangeable

Dangling References

A live pointer that no longer points to a
valid object
e May be caught using
— Tombstones — extra level of indirection,
modify tombstone when object is reclaimed
— Locks and keys — every pointer has a key that

is compared to the one stored in the object
pointed to

Garbage Collection Input/Output

» Reference counts Built into language — e.g., Pascal
« Mark-and-sweep collection e Provided by library routines —e.g., C

Types - Overview

* Types
— Values that share a set of common properties
— Defined by language and/or programmer
* Type system
— Set of types in a programming language
— Rules that use types to specify program behavior
« Example type rules
— If operands of addition are of type integer, then result is of type integer

— The result of the unary & operator is a pointer to the object referred to
by the operand

« Advantages of typed languages
— Ensure run-time safety
— Expressiveness (overloading, polymorphism)
— Provide information for code generation

