
1

Ordering – Control Flow

Intermediate Representations

• Structural (graphically oriented)
– E.g. abstract syntax tree, directed acyclic 

graph

• Linear
– E.g., stack machine/one-address code, 3-

address code

• Hybrids
– E.g., control flow graph

Basic Paradigms for Control Flow

• Sequencing
• Selection
• Iteration

• Procedural abstraction
• Recursion

• Non-determinacy
• concurrency

Expression Evaluation

• Precedence
– Among arithmetic, relational (comparison), and logical 

operators
– APL and Smalltalk give all operators equal 

precedence – parentheses required
• Associativity

– Rules more uniform across languages – left 
associative 

– E.g., exception – exponentiation in Fortran associates 
right to left

– Solution: ALWAYS USE PARENTHESES WHEN 
UNSURE!

Ordering Within Expressions

• Many languages do not specify an evaluation 
order for components within an expression (Java 
provides left to right evaluation)
– Easier to optimize

• Problem: side effects, in particular, permanent 
state change caused by execution of a function

• Solutions: 
– Don’t allow functions to have side effects
– Allow them (e.g., Fortran), but don’t allow modification 

of variables in the expression – hard to check

Short-Circuit Evaluation

• Short-circuit evaluation of boolean
expressions
– Avoids extra computation overhead

– Semantics
• Presence or absence of dynamic semantic errors

– If a sub-expression can cause side effects, 
may not be desirable to short-circuit



2

Assignments

• Value model versus reference model
• Initialization – what guarantees does the language 

provide 
– C++ and Java – constructors
– C – statically allocated uninitialized variables initialized with zero
– Java – must be “definitely assigned” (assigned on every possible 

control flow path) prior to use based on control flow

• Initialization versus assignment
– Assignment requires both allocation and deallocation when 

performing storage management

• Combination assignment operators – e.g., +=, ++, --

Structured Vs. Unstructured Flow

• The goto controversy
– Follows underlying assembly/machine code closely
– Primary uses 

• Mid-loop exit and continue 
– Continue statement in C

• Early returns from subroutines
– Explicit return statement (Fortran, Algol descendants)

• Errors and other exceptions
– Structured exception handling as in Java

– Continuations – code address along with referencing 
environment (e.g., Scheme)

Selection

• If-then-else
• Case statements – introduced in Algol-W

– Syntactic elegance
– Generation of efficient target code

• Jump tables – dense range
• Search table (hashing, binary search, search tree)
• Sequential testing (small number of choices, non-

dense range)

Iteration

• Enumeration-controlled
– Can loop index and control variables be modified in 

the loop and if so, what is the effect on control
– Is the loop always executed at least once
– What is the value of the loop index variable on exiting 

the loop
– Can control jump into the loop from outside

• Logically controlled loops
– Pre-test
– Post-test
– Mid-test

Recursion

• No special construct required – allow 
subroutines to call themselves or to call 
other subroutines that call them back in 
turn

• Iteration based on repeated modification of 
variables, recursion requires no side-
effects

• Naive implementation of iteration more 
efficient than recursion

Nondeterminacy

• Guarded commands
– Non-deterministic choice made among guards 

that evaluate to true (only one set of 
statements evaluated)

– Allows formal reasoning about correctness of 
code

– Useful when dealing with concurrency



3

Subroutines – Calling Sequence

• Prologue 
– Parameter passing
– Saving return address
– Changing program coutner
– Changing stack pointer to allocate frame
– Saving registers (including frame pointer)
– Changing frame pointer to refer to new frame
– Executing initialization code for any objects on new frame

• Epilogue
– Passing return parameters or function values
– Executing finalization code
– Deallocating the stack frame
– Restoring other saved registers (including frame pointer)
– Restoring program counter

Parameter Passing

• Formal versus actual parameters
• Parameter passing modes

– Call by value
– Call by reference
– Call by result
– Call by name

• Closure – reference to a subroutine along with 
its referencing environment

• Variable numbers of arguments
– C, C++, Common Lisp


