
1

Logic Programming

• Imperative programming models: compute
via iteration and side effects

• Functional programming model: compute
via recursion and substitution of
parameters into functions

• Logic programming model: compute via
resolution of logical statements, driven by
the ability to unify variables and terms

Functional Programming

• E.g., Lisp, Scheme
• Formalism: Church’s lambda calculus
• Key idea: no mutable state/side effects;

everything done by composing functions

Functional Programming Design
Features and Issues

• First-class and higher-order functions
• Polymorphism
• Recursion

• Garbage collection
• Control flow and evaluation order

• Support for list-based data

Logic Programming Model

• E.g., Prolog
• Formalism: Predicate calculus
• Key idea: collection of axioms from which

theorems can be proven

Logic Programming Design Issues

• Horn clauses and terms
• Resolution and unification
• Search and execution order

• List manipulation
• High-order predicates for inspection and

modification of the database

2

Horn Clauses

• Consists of a head consisting of term H and a body
consisting of terms Bi
– H � B11,B2,…,Bn

• H is true if B11,B2,…,Bn are all true
• Terms can be constants (“Rochester is rainy”) or

predicates applied to atoms or to variables (called a
structure)
– Constant is an atom or number or quoted string
– Variable takes on values at run time
– Structures consist of an atom called the functor and a list of

arguments
• Can be thought of as either a logical predicate or a data structure

Running Prolog

• The Prolog interpreter has a collection of facts
and rules (clauses) in its database
– Facts: axioms – assumed true (Horn clause without a

right-hand side)
– Rules: theorems – provably true, allows inference

• Run by asking the interpreter a question
– a hypothesis or goal or query (Horn clause with an

empty left-hand side)
– Done by stating a theorem (asserting a predicate) that

the interpreter tries to prove

How is a predicate satisfied?

• Unification – process by which compatible
statements are merged (instantiating variables
or determining their equivalence)
– Equality - the goal ‘A = B’ or ‘=(A, B)’ succeeds if and

only if A and B can be unified
• Resolution – substitution of one clause inside

another when its head unifies with one of the
terms in the body of the other
– Does not generally distinguish between input and

output arguments (as opposed to imperative or
functional languages that apply functions to
arguments to generate results)

Arithmetic

• Built-in functor “is”
is(X, 1+2).

or

X is 1+2.

X = 3

Unification Rules for Prolog

• A constant unifies with itself
• Two structures unify if and only if they

have the same functor and the same
number of arguments, and the
corresponding arguments unify recursively

• A variable unifies with anything and is
instantiated if the other thing has a value
or associated (considered equivalent) if
not

List manipulation

• [a,b,c]
• Optional vertical bar that separates the tail

of the list
• E.g.

member(X, [X|T]).

member(X, [H|T]) :- member(X, T).

3

Search/Execution Order

• Backward chaining – start with the goal
and work backward (e.g., Prolog)

• Forward chaining – start with existing
clauses and work forward

Imperative Control Flow

• The cut (‘!’) predicate – zero-argument predicate
that prevents a goal or sub-goals to the left from
succeeding more than once

• The not predicate – built using call (satisfy P as
a goal), cut, and fail – not(P) succeeds if the
interpreter is unable to prove P
– Call can be used to execute new pieces of the

program written on the fly (Prolog is homoiconic, as is
Scheme – can represent itself)

Database Manipulation

• assert – built-in predicate to add clauses
• retract – built-in predicate to remove

clauses

Example: Sorting

sort(L1, L2) :- permutation(L1, L2), sorted(L2).
sorted([]).
sorted([X]).
sorted([X|[Y|L]]) :- X=<Y, sorted([Y|L]).
permutation(L, [H|T]) :- append(V, [H|U], L),

append(V, U, W), permutation(W, T).
permutation([], []).
append([], L, L).
append([H|T], L, [H|L2]) :- append(T, L, L2).

Example: Quicksort

quicksort([], []).
quicksort([A|L1], L2) :- partition(A, L1, P1,

S1), quicksort(P1, P2), quicksort(S1, S2),
append(P2, [A|S2], L2).

partition(A, [], [], []).
partition(A, [H|T], [H|P], S) :- A >= H,

partition(A, T, P, S).
partition(A, [H|T], P, [H|S]) :- A =< H,

partition(A, T, P, S).

Example: tic tac toe
ordered_line(1,2,3).
ordered_line(4,5,6).
ordered_line(7,8,9).
ordered_line(1,4,7).
…
line(A,B,C) :- ordered_line(A, B, C).
line(A, B, C) :- ordered_line(A, C, B).
…
empty(A) :- not x(A), not o(A)

…

Followed by rules for next move, ordering of which is important

