Data Abstraction and Object
Orientation

Data Abstractions

* Scopes and lifetime
— Global variables (introduced by Basic)
« Lifetime and scope spans program execution
— Local variables (introduced by Fortran)
«+ Lifetime and scope limited to execution of subroutine
— Nested scopes (Algol 60)
« Allows subroutines or blocks to themselves be local
— Static variables (Fortran)
« Lifetime spans execution, names visible in a single scope
— Modules (Modula-2)
+ Allow a collection of subroutines to share a set of static variables
— Module types (Euclid)
« Allow instantiation of multiple instances of a given abstraction
— Classes (Smalltalk, C++, Java)
+ Allow definition of families of related abstractions

Why abstractions?

* Reduce conceptual load
— Hide implementation details

« Independence among program components
— Replacement of pieces without rewriting others
— Organizational compartmentalization

¢ Fault containment
— Enforce division of labor
— Prevent access to things you shouldn’t see

Object-Oriented Programming

¢ Fundamental concepts
— Encapsulation
— Inheritance
— Dynamic method binding
¢ Class — module as the abstract type
including data and method definition
¢ Object — instance of a class

Encapsulation

« Allows reasoning at the level of the
interface

* Namespace (C++) or packages (Java)
— Modules that span multiple files
— Collection of objects (subroutines, types,
variables) visible to each other but visible to
the outside only if explicitly exported

— Class definitions visible only within module

Initialization and Finalization

e Constructors and destructors
— Storage allocation and deallocation

— Call base constructor before derived class
constructor

Visibility Rules

« Parts of an object declaration/definition (e.g.,
C++)
— Public
« Accessible to users of the class
— Private
 Accessible to members of this class
— Protected
« Accessible to members of this or derived classes

« Derived classes can restrict visibility of members
of a base class in C++ (but not in Java)

Implementation of Classes

« Dynamic method binding
— Virtual methods to dispatch appropriate implementation at run
time (dynamic)
— Abstract classes — contain virtual methods with no body
— Virtual method table (vtable)

« Array whose ith entry indicates the address of the code for the
object’s ith virtual method

« First field of record of each object contains address of vtable,
shared by all objects of a given class
+ Static method binding — version called based on type of
the variable or reference being used rather than class to
which object referred to belongs

« Reflection — mechanism by which type information can
be obtained at run time

Virtual Method Table (vtable)

class foo | ‘
int a; F foo's viahle

double b k

char ¢

public: = Code for m

=
I

virtval vaid k | ... b

victual int 1 { ...

virtval void m (}; &

virtual double nl ...

Dynamic Method Binding

clase bar | public o0 { B bar s viable
int ¥

public: ;]
voidm (); //override

=
|

—»Codo for var s o
4+ Codo for foo s

virtual dowbla g (... b

=
|

virtual char #t (...

Generics

« Dynamic method binding introduces polymorphism
« Base class methods return references of base class
type
« Type-specific operations?Use generics
template<class V>
class list_node {
list_node<V> *prev;
public:
Vval;

typedef list_node<int> int_list_node;

int_list_node* first_int;

[8 ——¥Codo for bar's 5
by ! 1
Inheritance

< Multiple inheritance - Inherit from more than one
base class

- Eg.,
class student : public person, public gp_list_node { ...

— Replicated vs. shared inheritance when deriving from
the same base

¢ Mix-in inheritance

— Java — base class composed entirely of abstract
methods (an interface)

— Inherit from one real base class and an arbitrary
number of interfaces

— Facilitates code reuse through polymorphism

Multiple Inheritance

student view, —»,

perzon view

person gp_list_nods

student

gp_list_node view — |

student object,

student, viahle
(student/person furl)

parson
melhods
student (only);
— methods
fields
student Viable
(gp_1ist_node parl)
gp_list_node
gp_list_nods methods
fields,
student (only)
fields

Replicated Multiple Inheritance

D view, Bview, B::a view —»

o
o

NS

© view. o: o & View ———

D object D viable (p/B part)
— B A
Beea fields methods
BlOMy)
methods
B(only) oionly)
fields methods
D viable (¢ part)
G
Qi felds methods
< (only) clomy)
- mathods
fields =
D (onky)
Fields

Shared Multiple Inheritance

D ohject D wvitable (D/B part)
D view, B view —m
B methods
A
D methods
S B (only)
5 fieldls
D vtable (@ rt)
D T L
BN @ methods | |
i
¢ (only)
fields
D (only)
fields D viable (& part)
A A methods
A fields

