
1

Data Abstraction and Object
Orientation

Data Abstractions

• Scopes and lifetime
– Global variables (introduced by Basic)

• Lifetime and scope spans program execution
– Local variables (introduced by Fortran)

• Lifetime and scope limited to execution of subroutine
– Nested scopes (Algol 60)

• Allows subroutines or blocks to themselves be local
– Static variables (Fortran)

• Lifetime spans execution, names visible in a single scope
– Modules (Modula-2)

• Allow a collection of subroutines to share a set of static variables
– Module types (Euclid)

• Allow instantiation of multiple instances of a given abstraction
– Classes (Smalltalk, C++, Java)

• Allow definition of families of related abstractions

Why abstractions?

• Reduce conceptual load
– Hide implementation details

• Independence among program components
– Replacement of pieces without rewriting others
– Organizational compartmentalization

• Fault containment
– Enforce division of labor
– Prevent access to things you shouldn’t see

Object-Oriented Programming

• Fundamental concepts
– Encapsulation

– Inheritance

– Dynamic method binding

• Class – module as the abstract type
including data and method definition

• Object – instance of a class

Encapsulation

• Allows reasoning at the level of the
interface

• Namespace (C++) or packages (Java)
– Modules that span multiple files

– Collection of objects (subroutines, types,
variables) visible to each other but visible to
the outside only if explicitly exported

– Class definitions visible only within module

Initialization and Finalization

• Constructors and destructors
– Storage allocation and deallocation

– Call base constructor before derived class
constructor

2

Visibility Rules

• Parts of an object declaration/definition (e.g.,
C++)
– Public

• Accessible to users of the class

– Private
• Accessible to members of this class

– Protected
• Accessible to members of this or derived classes

• Derived classes can restrict visibility of members
of a base class in C++ (but not in Java)

Implementation of Classes

• Dynamic method binding
– Virtual methods to dispatch appropriate implementation at run

time (dynamic)
– Abstract classes – contain virtual methods with no body
– Virtual method table (vtable)

• Array whose ith entry indicates the address of the code for the
object’s ith virtual method

• First field of record of each object contains address of vtable,
shared by all objects of a given class

• Static method binding – version called based on type of
the variable or reference being used rather than class to
which object referred to belongs

• Reflection – mechanism by which type information can
be obtained at run time

Virtual Method Table (vtable) Dynamic Method Binding

Generics

• Dynamic method binding introduces polymorphism
• Base class methods return references of base class

type
• Type-specific operations?Use generics

template<class V>
class list_node {

list_node<V> *prev;
public:

V val;
…

typedef list_node<int> int_list_node;
…
int_list_node* first_int;

Inheritance

• Multiple inheritance - Inherit from more than one
base class
– E.g.,
class student : public person, public gp_list_node { …
– Replicated vs. shared inheritance when deriving from

the same base
• Mix-in inheritance

– Java – base class composed entirely of abstract
methods (an interface)

– Inherit from one real base class and an arbitrary
number of interfaces

– Facilitates code reuse through polymorphism

3

Multiple Inheritance Replicated Multiple Inheritance

Shared Multiple Inheritance

