1. Functional vs. Imperative vs. Logic Languages:
 What do you think are the main distinguishing characteristics between functional, imperative, and logic languages (one per language class is sufficient)?

2. Rules in Prolog:
 Restate the following Prolog rule using (universal and existential) quantifiers.

 \[
sibling(X, Y) :- \text{mother}(M, X), \text{mother}(M, Y), \text{father}(F, X), \text{father}(F, Y).
 \]

3. List manipulation:
 Scheme uses \texttt{car} and \texttt{cdr} for extraction of the head and tail of a list. What is the equivalent in Prolog?

4. A simple database in Prolog:
 Consider the following set of facts and rules in the Prolog database:

 \[
 \begin{align*}
 \text{takes}(\text{jane_doe, his201}). \\
 \text{takes}(\text{jane_doe, cs254}). \\
 \text{takes}(\text{ajit_chandra, art302}). \\
 \text{takes}(\text{ajit_chandra, cs254}). \\
 \text{classmates}(X, Y) :- \text{takes}(X, Z), \text{takes}(Y, Z).
 \end{align*}
 \]

 The query

 \[
 ?- \text{classmates}(\text{jane_doe, X})
 \]

 will succeed three times: twice with \(X = \text{jane_doe}\) and once with \(X = \text{ajit_chandra}\). Show how to modify the \text{classmates}(X, Y) rule so that a student is not considered a classmate of him or herself.