Fault Tolerance

 Fault — cause of an error that might lead to
failure; could be transient, intermittent, or
permanent

 Fault tolerance — a system can provide its
services even in the presence of faults

* Requirements
— Availability — most likely working at any instant
— Reliability — time interval between failures
— Safety — no catastrophy in operation
— Maintainability — ease of repair

Failure Models

« Crash/fail-stop: correct operation until
system is unresponsive/halts

* Omission: request or response dropped
« Timing: outside specified real-time
requirements

* Response failure: incorrect data or state
transition

* Byzantine or arbitrary: malicious or
incorrect

Failure Masking by Redundancy

 E.g., triple modular redundancy (TMR)

Agreement in Faulty Systems

* The two-army problem (attaining common
knowledge)

* The Byzantine generals problem




Reliable Multicast Distribution Protocols

* Permanent, server-initiated, or client-
initiated replicas
« What is propagated?

 Scalable reliable multicast
— Return negative acknowledgements as

feedback
— Schedule a feedback message with some — Invalidation
random delay — Update

— active replication (move the computation)
* When is it propagated?

— Pull versus push

—Leases

— Epidemic protocols

* Hierarchical feedback control

Reliable Multicast in the Presence :
Message Ordering

of Failures
* Virtual synchrony * Unordered multicast
— Split up time into epochs with group « FIFO-ordered multicast
membership G - Causally-ordered multicast

— A message m is delivered to every member of )
the group G before there is a view change * Totally-ordered multicast
allowed * Total order + virtual synchrony = atomic

— If the sender crashes, message m can be multicast
delivered to all processes in the group or to
none




Checkpointing, Logging, and
Rollback Recovery

* Approaches to reliability
— Transactions: data-oriented applications

— Group communication: abstraction of ideal
communication system

— Rollback recovery: long-running applications

A system recovers correctly if its internal state is consistent
with the observable behacior of the system before the failure

Background

* Message-passing system with N
processes
— Possible to model shared memory using
message passing
+ Fail-stop failures possible at any time

» GOAL: recover all processes to some
“‘consistent” state after one or more nodes
have failed and then recovered (or been
replaced)

Background and Definitions

+ System model

— Collection of application processes, communicating
thru a network

— Processes have access to a stable storage device,
where recovery info is periodically saved during
failure-free execution

— Recovery info includes:
» Checkpoints
« logs of interactions with I/O devices
» events that occur at each process
* messages exchanged among processes
— Protocols may assume the communication subsystem
is reliable & FIFO, or unreliable (lost, duplicate,
reordered messages)

Checkpointing

* Basic idea: If something goes wrong, we
just pick up the pieces and put everything
back where it was

At regular intervals, dump all memory and
resources associated with a process to
persistent storage

* When a process fails, we reload the stored
file into memory, restore all state, and
restart the process from where it was
when the checkpoint was taken




Concurrent Checkpointing

* |ldea: trap writes to pages you haven't
checkpointed, and copy the original pages
to a buffer before allowing the write

* In filesystems, this is called “snapshotting”

+ Advantage: the process may continue
computing while the checkpointing takes
place

Incremental Checkpointing

* |ldea: save only MODIFIED pages

» Best when used together with concurrent
checkpointing

» Could even use differential storage to
reduce space overhead of multiple
checkpoints for a single process

Checkpointing in a Distributed
Environment

® Consistency Issue: if P1 checkpoints and then
sends a message to P2, you can no longer roll
P1 back to before the message was sent
unless P2 rolls back to before the message's
receipt

®|ssue: Checkpointing can be very expensive;
you don't want to checkpoint more than
necessary, but you also don't want to have to
roll back too far

@ |ssue: Communication with the outside world
doesn't get undone

lllustration of Consistency
Problems

Consistent state Inconsistent state




Uncoordinated Checkpointing

» Every once in a while, a process will checkpoint
its own state

* Forrecovery, each process sends information
on the checkpoints it has to some central point,
which calculates the “recovery line” - the last set
of checkpoints to create a globally consistent
state

1. Uncoordinated checkpointing

-Each process independently decides when to take checkpoints

. - Ly
- ¢,,» X checkpoint of process P, 3 ) ’ o
\ a i o Gy
- I, checkpoint interval L1 1
Maximum number of useful checkpoints . -
that must be kept on stable storage ! ! 1 1 1
o oo c,.
cannot exceed N(N+1) / 2 - I .|
Recovering process Other processes
Broadcasts dependency —— Stop execution
request

Reply with dependency info
Calculates recovery line +——— (saved and current)

.

Broadcasts rollback request If state belongs to recovery line,

containing recovery line ~———— resume execution. Else,
rollback to an earlier checkpoint

1. Uncoordinated checkpointing

Cop Co,t Coz Failure

L e e A

ey e e LT

” Cio cp \ "'

R e e

S R B B L
Checkpoint

(a) Example execution

Rollback dependency graph Recovery

line

Directed edge drawn from ¢;, to ¢;,,
if either

(1) i #j, and a message m is sent
from /,, and received in /; , or

(2)i=jandy=x+1

(b) rollback-dependency graph

1. Uncoordinated checkpointing

Advantage: each process may take checkpoint when most convenient

Disadvantages
- Domino effect Recovery ity

N | ;J v i1 L ::(;'Fa“m

- Useless checkpoints
- Each process must maintain multiple checkpoints
- Garbage collector must be invoked periodically

- Not suitable for apps with frequent output commits




Coordinated Checkpointing

Idea: all message-passing calls block
while checkpointing takes place at the
same time across all processes
Checkpoints are only valid after it is known
that all processes have successfully
completed their own copy

Advantage: only one checkpoint needs to
be kept

Advantage: recovery is just rolling back
everything to THE checkpoint

2. Coordinated checkpointing

Straightforward approach:
Block communications while checkpointing executes

Other processes

Coordinator / - Stop execution

- Takes a checkpoint - Flush all communication channels

- Broadcasts request, asking / - Take a tentative checkpoint
processes to take checkpoints l

- Send ACK to coordinator
- Broadcasts commit message

T - Remove old permanent checkpoint

- Atomically make the tentative
checkpoint permanent

- Resume execution

Problem: messages that could make a checkpoint inconsistent are also blocked

Nonblocking Checkpoint Coordination
[e.g., Chandy&Lamport 1985
Distributed Snapshots]

FIFO channels:

- Precede 1st post-checkpoint message on each channel by a checkpoint request
- Force each process to take a checkpoint upon receiving 1st checkpoint request
Non-FIFO channels:

- Checkpoint request piggybacked on every post-checkpoint message

Initiator Initiator Initiator
% '~.Ag:hed|polnlmqmjl '»,gmlzpowrequm \ c ckpoint request
P, Cox i P Cox \
\ m e '-,_\m

1 e B a
P P,

Cix Cix

(®) (©)

Figure 8. Non-blocking coordinated checkpointing: (a) checkpoint inconsistency; (b) with FIFO channels;

(c) non-FIFO channels (short dashed line repi piggybacked checkpoint request).

Coordinated Checkpointing

» Advantages
— Simplified recovery
— Avoids domino effect

— Less stable storage requirement (1
checkpoint / process)

— No need for garbage collection
» Disadvantages

— Large latency in committing output (may
improve by minimal checkpoint coordination)




Logging as a Complement to
Checkpointin

The Piecewise Deterministic (PWD) Assumption
— Any nondeterministic element of the system may be
captured in such a way as to allow replaying it in a

deterministic fashion at a later time
Determinant — Information necessary to replay a
nondeterministictic event during recovery,
logged during failure-free operation

OWP — A “process” whose incoming messages
represent program output and whose outgoing
messages are program input

“In Transit” - a message sent but not received
“Orphan” - a process whose checkpoint depends
on a state that cannot be recreated

Pessimistic Logging

* Write determinant to stable storage before allowing
further events
— observable pre-failure state always recoverable
— Recovery always starts from the most recent checkpoint
— Effect of failure confined to the processes that fail

— Simple garbage collection: reclaim everything before last
checkpoint

Maxinmum recoverable state

o /' \ s S
i m‘ A /m % ) f‘
p ! : -
N
Py I I / >
! :

Figure 10. Pessimistic logging




