
1

Fault Tolerance

• Fault – cause of an error that might lead to 

failure; could be transient, intermittent, or 

permanent

• Fault tolerance – a system can provide its 

services even in the presence of faults

• Requirements

– Availability – most likely working at any instant

– Reliability – time interval between failures

– Safety – no catastrophy in operation

– Maintainability – ease of repair

Failure Models

• Crash/fail-stop: correct operation until 

system is unresponsive/halts

• Omission: request or response dropped

• Timing: outside specified real-time 

requirements

• Response failure: incorrect data or state 

transition

• Byzantine or arbitrary: malicious or 

incorrect

Failure Masking by Redundancy

• E.g., triple modular redundancy (TMR)

Agreement in Faulty Systems

• The two-army problem (attaining common 

knowledge)

• The Byzantine generals problem



2

Reliable Multicast

• Scalable reliable multicast

– Return negative acknowledgements as 

feedback 

– Schedule a feedback message with some 

random delay

• Hierarchical feedback control

Distribution Protocols

• Permanent, server-initiated, or client-

initiated replicas

• What is propagated? 

– Invalidation

– Update

– active replication (move the computation)

• When is it propagated? 

– Pull versus push

– Leases

– Epidemic protocols

Reliable Multicast in the Presence 

of Failures

• Virtual synchrony

– Split up time into epochs with group 

membership G

– A message m is delivered to every member of 

the group G before there is a view change 

allowed

– If the sender crashes, message m can be 

delivered to all processes in the group or to 

none

Message Ordering

• Unordered multicast

• FIFO-ordered multicast

• Causally-ordered multicast

• Totally-ordered multicast

• Total order + virtual synchrony = atomic 

multicast



3

Checkpointing, Logging, and 

Rollback Recovery
• Approaches to reliability

– Transactions: data-oriented applications

– Group communication: abstraction of ideal 

communication system

– Rollback recovery: long-running applications

A system recovers correctly if its internal state is consistent 

with the observable behacior of the system before the failure

Background

• Message-passing system with N 

processes

– Possible to model shared memory using 

message passing

• Fail-stop failures possible at any time

• GOAL: recover all processes to some 

“consistent” state after one or more nodes 

have failed and then recovered (or been 

replaced)

Background and Definitions
• System model

– Collection of application processes, communicating 

thru a network

– Processes have access to a stable storage device, 

where recovery info is periodically saved during 

failure-free execution

– Recovery info includes:

• Checkpoints

• logs of interactions with I/O devices

• events that occur at each process

• messages exchanged among processes

– Protocols may assume the communication subsystem 

is reliable & FIFO, or unreliable (lost, duplicate, 

reordered messages)

Checkpointing

• Basic idea: If something goes wrong, we 

just pick up the pieces and put everything 

back where it was

• At regular intervals, dump all memory and 

resources associated with a process to 

persistent storage

• When a process fails, we reload the stored 

file into memory, restore all state, and 

restart the process from where it was 

when the checkpoint was taken



4

Concurrent Checkpointing

• Idea: trap writes to pages you haven't 

checkpointed, and copy the original pages 

to a buffer before allowing the write

• In filesystems, this is called “snapshotting”

• Advantage: the process may continue 

computing while the checkpointing takes 

place

Incremental Checkpointing

• Idea: save only MODIFIED pages

• Best when used together with concurrent 

checkpointing

• Could even use differential storage to 

reduce space overhead of multiple 

checkpoints for a single process

Consistency Issue: if P1 checkpoints and then 

sends a message to P2, you can no longer roll 

P1 back to before the message was sent 

unless P2 rolls back to before the message's 

receipt

Issue: Checkpointing can be very expensive; 

you don't want to checkpoint more than 

necessary, but you also don't want to have to 

roll back too far

Issue: Communication with the outside world 

doesn't get undone

Checkpointing in a Distributed 

Environment

Illustration of Consistency 

Problems



5

Uncoordinated Checkpointing

• Every once in a while, a process will checkpoint 

its own state

• For recovery, each process sends information 

on the checkpoints it has to some central point, 

which calculates the “recovery line” - the last set 

of checkpoints to create a globally consistent 

state



6

Coordinated Checkpointing

• Idea: all message-passing calls block 

while checkpointing takes place at the 

same time across all processes

• Checkpoints are only valid after it is known 

that all processes have successfully 

completed their own copy

• Advantage: only one checkpoint needs to 

be kept

• Advantage: recovery is just rolling back 

everything to THE checkpoint

• Disadvantage: high overhead

Nonblocking Checkpoint Coordination 

[e.g., Chandy&Lamport 1985 

Distributed Snapshots]
• FIFO channels:

- Precede 1st post-checkpoint message on each channel by a checkpoint request

- Force each process to take a checkpoint upon receiving 1st checkpoint request

• Non-FIFO channels:

- Checkpoint request piggybacked on every post-checkpoint message

Coordinated Checkpointing

• Advantages

– Simplified recovery

– Avoids domino effect

– Less stable storage requirement (1 

checkpoint / process)

– No need for garbage collection

• Disadvantages

– Large latency in committing output (may 

improve by minimal checkpoint coordination)



7

Logging as a Complement to 

Checkpointing
• The Piecewise Deterministic (PWD) Assumption

– Any nondeterministic element of the system may be 

captured in such a way as to allow replaying it in a 

deterministic fashion at a later time

• Determinant – Information necessary to replay a 

nondeterministictic event during recovery, 

logged during failure-free operation

• OWP – A “process” whose incoming messages 

represent program output and whose outgoing 

messages are program input

• “In Transit” - a message sent but not received

• “Orphan” - a process whose checkpoint depends 

on a state that cannot be recreated

Pessimistic Logging

• Write determinant to stable storage before allowing 

further events

– observable pre-failure state always recoverable

– Recovery always starts from the most recent checkpoint

– Effect of failure confined to the processes that fail

– Simple garbage collection: reclaim everything before last 

checkpoint


