
1

Transactional Memory

Instructor: Sandhya Dwarkadas

University of Rochester

Transactional Memory

• Borrowed from Databases

• Definition : A transaction is a finite sequence of

machine instructions executed by a single process, that

satisfies the following properties

– Atomicity

– Serializability

– Essentially, ACI properties

Herlihy and Moss. “Transactional Memory: Architectural Support for Lock-free Data

Structures, ISCA’93

Transactional memory

⚫ Want multiple processes to access and

possibly (try to) write to the same memory

location concurrently

⚫ Lock free

⚫ Illusion of atomicity on multiple memory

locations

⚫ Guarantee that memory as seen by each

processor always in a consistent state

Why use transactional memory

⚫ Implement parallel programs without using

locks

⚫ Let underlying implementation take care

of:

− Priority inversion

− Deadlock

26 27

28 29

2

Programming Language

Extensions?
• Atomic: delimits a transaction (region or

block of code)

– Can be nested/composed

• Requirements

– Isolation

– Conflict detection

– Abort/rollback

– Commit

Example of use: doubly linked

list

A B C D

next
E

P1 wants to insert E

between B and C:

B.next=E

C.prev = E

E.prev = B

E.next=C

P2 want to delete A

B.prev = null

P3 want to delete C

B.next=D

D.prev=B

prev

Definition of transaction (again)

⚫ Finite sequence of machine instructions

executed by a single processor that

include read and write to memory where

− Transactions appear to execute serially:

⚫ Steps of one transaction never appear to be

interleaved with the steps of another

⚫ Committed transactions never appear for different

processors to execute in different order

− Transactions execute atomically: at the end

all the changes are written in memory

(COMMIT), or they are all discarded (ABORT)

In practice

⚫ Programmer marks where transactions

start and end

⚫ Transactions are short in time and involve

relatively few memory locations

30 31

32 33

3

Operations in TM

⚫ Validation (not always necessary)

⚫ Conflict detection

⚫ Contention management

Conflict detection

⚫ Recognize when committing two

transactions would break the

assumptions, which is when

− Two transactions want to write to the same

memory locations

− One transaction wants to write to a memory

location that has been read by another

⚫ When a conflict occurs, one of the

transaction may need to be aborted

Contention management

⚫ How to decide which thread is aborted

when a conflict occurs

⚫ Usually not implemented as a separate

process. More of a policy that everyone

must follows

⚫ Badly designed contention management

can lead to bad performance, starvation,

livelocks

Some contention management

algorithms

⚫ Among the many contention management

policies (from Scherer et al, 2004)
− Aggressive

− Polite

− Randomized

− Karma

− Eruption

− Killblocked

− Kindergarten

34 35

36 37

4

Validation

⚫ Aim to prevent a transaction that would be

aborted to execute with inconsistent data

⚫ For instance:

− Transactions T1 and T2 are in conflict

− T1 commits, T2 does not abort until it tries to

commit

− T2 may be using some data read before T1

commits, some read after

⚫ May not be necessary as a separate step

with aggressive contention management

Transactional memory

Implementations

⚫ Can be implemented at the hardware or

software level

⚫ At the software level can be implemented

at various granularity: word level, object

level, etc.

Example hardware

implementation (from Herlihy

and Moss ISCA’93)
⚫ Implemented by extension to multi-

processor cache coherence

⚫ Can change status of multiple cache lines

in one bus cycle

⚫ Separate caches for transactional and

non-transactional operations

⚫ Use “aggressive” snooping: a line is not

written back to memory unless a cache is

full

Memory Instructions

⚫ Three types of memory instructions

− Load Transactional (LT): read into private

register

− Load Transactional exclusive (LTX): read into

private register with option to modify

− Store Transactional (ST): tentatively write to

memory

38 39

40 41

5

Sets

⚫ Read set: set of locations read by LT

⚫ Write set: set of locations accessed by

LTX or ST

⚫ Data set: Union of read set and write set

Cache line states and tags

⚫ Cache line states

are used by both

caches

⚫ Transactional tags

used by the

transactional

cache

Operations on transactional

cache

⚫ During a transaction the cache keeps two

copies for each entry involved:

− XCOMMIT tag: contains last valid value

− XABORT tag: can be modified during

transaction

⚫ On COMMIT:
− XABORT → NORMAL

− XCOMMIT → EMPTY

⚫ On ABORT:
− XABORT → EMPTY

− XCOMMIT → NORMAL

About XCOMMIT tag

⚫ Not required for correct operation – a

performance optimization

⚫ Avoids the writeback of a modified copy prior

to the start of a transaction

42 43

44 45

6

Bus cycles

⚫ BUSY sent by process

holding a line that is

requested by another

process

⚫ Will cause process

requesting the line to

abort.

Processor actions

⚫ A transaction aborts itself when it receives

a BUSY signal

⚫ If a transaction has not been aborted after

its last instruction, then it can be

committed

⚫ COMMIT/ABORT operations performed

by modifying the tags of the relevant

cache entries atomically and in parallel

46 47

