
2/3/2015

1

Algorithms for Scalable Synchronization

on Shared-Memory Multiprocessors

John M. Mellor-Crummey and Michael L. Scott

Presented by Charles Lehner and Matt Graichen

Hardware: BBN Butterfly

○ shared-memory multiprocessor supporting up to 256

processor nodes

○ each node contains an 8 MHz MC68000 and supports one

to four MB of memory

○ local memory access is direct

○ remote memory access is done via a log4-depth butterfly

network

○ supports two 16-bit atomic operations
o fetch_and_clear_then_add
o fetch_and_clear_then_xor

Hardware: BBN Butterfly Hardware: Sequent Symmetry

○ shared-bus multiprocessor supporting up to 30

processor nodes

○ each processor node contains a 16 MHz Intel 80386

processor with 64 KB of two-way set-associative cache

○ cache coherence achieved via snooping the shared-bus

○ supports 1, 2, and 4 byte atomic fetch_and_ϕ
operations

o no genuine return value (operations only set

condition codes)

2/3/2015

2

Hardware: Sequent Symmetry Spin Locks: Evaluation Criteria

○ scalability and induced network load

○ single-processor latency

○ space requirements

○ fairness/sensitivity to preemption

○ implementability with given atomic operations

Spin Locks: test_and_set lock

(with exp. backoff)

type lock = (unlocked, locked)

procedure acquire_lock(L : ^lock)
delay : integer := 1
while test_and_set(L) = locked // returns old value

pause (delay) //
backoff

delay := delay * 2

procedure release_lock(L : ^lock)
lock^ := unlocked

Spin Locks: test_and_set lock

(with exp. backoff)

○ Pros

o single processor latency

o space efficiency

o scales very well (only with exp. backoff!)

○ Cons

o no guarantee of fairness

○ Required Atomic Operations
o test_and_set

2/3/2015

3

Spin Locks: ticket lock

type lock = record
next_ticket : unsigned integer := 0
now_serving : unsigned integer := 0

procedure acquire_lock (L : ^lock)
my_ticket : unsigned integer := fetch_and_increment (&L->next_ticket)

// returns old value arithmetic overflow is harmless
loop

pause (my_ticket - L->now_serving)
// consume this many units of time
// on most machines, subtraction works correctly despite overflow

if L->now_serving = my_ticket
return

procedure release_lock (L : ^lock)
L->now_serving := L->now_serving + 1

Spin Locks: ticket lock

○ Pros

o single processor latency

o space efficiency

o scales very well (only with prop. backoff!)

○ Cons

o all processes spin on one shared variable

○ Required Atomic Operations
o fetch_and_increment

Spin Locks: array-based queueing locks

(Anderson’s)

type lock = record

slots : array[0..num_procs - 1] of (has_lock, must_wait)

// each element of slots should lie either in a separate cache

// line on cache coherent systems or different memory modules on

// machines like the Butterfly

// slots is initialized such that slots[0] = has_lock

// and slots[1..num_proces - 1] = must_wait

next_slot : integer := 0

Spin Locks: array-based queueing locks

(Anderson’s)

procedure acquire_lock(L : ^lock, my_place : ^integer)
my_place^ := fetch_and_increment(&L->next_slot)
if my_place^ mod num_procs = 0

// avoid overflow problems
atomic_add(&L->next_slot, -num_procs)

my_place^ := my_place^ mod num_procs
repeat while L->slots[my_place^] = must_wait // spin
L->slots[my_place^] := must_wait // init for next

time

procedure release_lock (L : ^lock, my_place : ^integer)
// give next slot the lock
L->slots[(my_place^ + 1) mod num_procs] := has_lock

2/3/2015

4

Spin Locks: array-based queueing locks

(Anderson’s)
Spin Locks: array-based queueing locks

○ Pros

o each processor spins on a different location

(memory module and/or separate cache line)

o guaranteed FIFO order of lock acquisition

○ Cons

o worse single processor latency with respect to the

other proposed lock algorithms

o requires O(P) space where P is the number of

processors

Spin Locks: MCS Lock

type qnode = record
next : ^qnode
locked : Boolean

type lock = ^qnode

// parameter I, below, points to a qnode record allocated in shared memory
// that should be locally-accessible to the invoking processor
procedure acquire_lock (L : ^lock, I : ^qnode)

I->next := nil
predecessor : ^qnode := fetch_and_store (L, I)
if (predecessor != nil) // queue was non-empty

I->locked := true
predecessor->next := I
repeat while I->locked // spin

Spin Locks: MCS Lock

procedure release_lock (L : ^lock, I : ^qnode)
if I->next = nil // no known successor

// compare_and_swap returns true iff it swapped
// nil for L, which may only happen if L = I
if compare_and_swap (L, I, nil)

return
// if the CAS failed, this means that some other processor is in the process of

// acquiring the lock, but the setting of their node's next field either hasn't

// propagated to this processor or hasn't happened yet. Therefore, we spin in
// order to make sure we don’t miss setting their lock to false in the next

// statement (avoiding deadlock)
repeat while I->next = nil

I->next->locked := false

2/3/2015

5

Spin Locks: MCS Lock Spin Locks: MCS Lock

○ Pros

o processors spins on locally-accessible flag variables only

o only O(1) network transactions per lock acquisition

o requires only a small constant amount of space per lock

o guaranteed FIFO order of lock acquisition

○ Cons

o worse single processor latency with respect to the other

proposed lock algorithms

Spin Locks: Perf. on the Butterfly

(empty critical section)

Spin Locks: Perf. on the Butterfly

(empty critical section)

2/3/2015

6

Spin Locks: Perf. on the Butterfly

(Increase in Network Latency)

Increase in network latency (relative to that of an idle machine)

on the Buttery caused by sixty processors competing for a busy-wait lock

Spin Locks: Perf. on the Symmetry

(empty critical section)

Barriers: Evaluation Criteria

○ length of critical path

○ total number of network transactions

○ space requirements

○ implementability with given atomic

operations

Barriers: centralized barriers

○ each processor:

○ update shared variable on arrival

○ poll the shared variable to check when all

have arrived

○ problem: consecutive barriers could be skipped

○ solution: sense reversal

○ drawback: spinning on shared location may

cause contention

2/3/2015

7

Barriers: software combining tree barrier

○ replace shared variable with tree of

references

○ each processor updates the state in its leaf

○ propagate state up the tree

Barriers: dissemination barrier

type flags = record
myflags : [array 0..1] of array [0..LogP-1] of Boolean
partnerflags : [array 0..1] of array [0..LogP-1] of ^Boolean

processor private parity : integer := 0
processor private sense : Boolean := true
processor private localflags : ^flags
shared allnodes : array [0..P-1] of flags

// allnodes[i] is allocated in shared memory
// locally accessible to processor i

// on processor i, localflags points to allnodes[i]
// initially allnodes[i].myflags[r][k] is false for all i, r, k
// if j = (i+2^k) mod P, then for r = 0, 1:
// allnodes[i].partnerflags[r][k] points to allnodes[j].myflags[r][k]

procedure dissemination_barrier
for instance : integer := 0 to LogP-1

localflags^.partnerflags[parity][instance]^ := sense
repeat until localflags^.myflags[parity][instance] = sense

if parity = 1
sense := not sense

parity := 1 - parity

Barriers: “new tree-based barrier”

type treenode = record
parentsense : Boolean
parentpointer : ^Boolean
childpointers : array [0..1] of ^Boolean
havechild : array [0..3] of Boolean
childnotready : array [0..3] of Boolean
dummy : Boolean // pseudo-data

// nodes[vpid] allocated in shared memory (locally accessible to processor vpid)
shared nodes : array [0..P-1] of treenode
processor private vpid : integer // unique virtual processor index
processor private sense : Boolean
// initial state for processor i
// for node[i]:
// havechild[j] = true if 4*i+j < P; otherwise false
// parentpointer = &nodes[floor((i-1)/4].childnotready[(i-1) mod 4]
// or &dummy if i = 0
// childpointers[0] = &nodes[2*i+1].parentsense, or &dummy if 2*i+1 >= P
// childpointers[1] = &nodes[2*i+2].parentsense, or &dummy if 2*i+2 >= P
// initially childnotready = havechild and parentsense = false

Barriers: “new tree-based barrier”

procedure tree_barrier
with nodes[vpid] do
repeat until childnotready = {false, false, false, false}
childnotready := havechild // prepare for the next barrier

parentpointer^ := false // let parent know I'm ready
// if not the root node, wait until my parent signals wakeup
if vpid != 0

repeat until parentsense = sense
// signal children in wakeup tree
childpointers[0]^ := sense
childpointers[1]^ := sense
sense := not sense

2/3/2015

8

Barriers: “new tree-based barrier” Barriers: “new tree-based barrier”

Barriers: “new tree-based barrier” Barriers: “new tree-based barrier”

○ Pros

o spins on locally-accessible flags only

o requires only O(P) space for P processors

o performs minimum number of network transactions on

machines without broadcast (2P - 2)

o performs O(log P) network transactions on critical path

○ Cons

o useless optimizations for cache coherent, UMA

machines like the Symmetry

2/3/2015

9

Barriers: Perf. on the Butterfly

● shared counter leads to

contention, linear performance.

● backoff decreases contention

Barriers: Perf. on the Butterfly

Barriers: Perf. on the Symmetry

coherent cache allows the

counter to be effective

Barriers: Importance of Local

Memory Access on the Butterfly

forcing memory accesses to

traverse the interconnect led

to linear performance

2/3/2015

10

Questions? Image Sources

Scott, Michael L; Mellor-Crummey, John M. Algorithms for Scalable Synchronization on Shared-

Memory Multiprocessors. ACM Trans. on Computer Systems. 1991

"CSC/ECE 506 Spring 2010/ch 12 PP." - PG_Wiki. N.p., n.d. Web. 01 Feb. 2015.

