
1

Shared Memory Consistency 
Models

Authors: Sarita V. Adve and Kourosh Gharachorloo

- Nitin Bhardwaj

Outline

• What is Memory Consistency 

• Sequential Consistency

• Optimizations to SC

• Relaxed Memory Consistency 

• Processor Consistency

• Week Consistency

• Release Consistency

• Program Centric approach for relaxed models

• Comparison between different memory models 

• Summary

Memory Consistency

Def: A memory consistency model for a shared address space 
specifies constraints on the order in which memory operations 
must appear to be performed (i.e. to become visible to the 
processors) with respect to one another.

P1 P2 (A, flag are zero initial)

A=1 while(flag == 0);

flag=1 print A;

Sequential Consistency

Sequential Consistency(Lamport) “A multiprocessor is 
sequentially consistent if the result of any execution is the 
same as if the operations of all the processors were 
executed in some sequential order, and the operations of 
each individual processor occur in this sequence in the 
order specified by its program.”

Two Aspects: 

Program Order 

Write Atomicity 

Understanding Program Order
• Initially X = 2
• P1 P2 

• ….. …..

• reg0=Read(X) reg1=Read(X)

• reg0=reg0+4 reg1=reg1+1

• Write(reg0,X) Write(reg1,X)

Possible execution sequences:

• P1:reg0=Read(X) P2:reg1=Read(X)
• P2:reg1=Read(X) P2:reg1=reg1+1
• P1:reg0=reg0+4 P2:Write(reg1,X) ……
• P2:reg1=reg1+1 P1:reg0=Read(X)
• P1:Write(reg0,X) P1:reg0=reg0+4
• P2:Write(reg1,X) P1:Write(reg0,X)

X=3 X=6

Sequential Consistency Example



2

SC with common hardware optimizations

• Architectures without caches
• Architectures  with caches 

Write Buffers [Bypassing Capability]

• Reads bypass writes, reads are blocking

Overlapping Write Operations 

• Writes may bypass other writes in write buffer

Non-blocking Reads

• Reads are allowed to bypass reads and writes 

SC with common hardware optimizations

• Architectures without caches 

• Architectures  with caches

Cache Coherence Vs SC 

• Cache coherence ensures
– Write is eventually visible to all processors.

– Serialization of writes to the same location.

• Sequential consistency requires
– Writes to all locations be seen in the same order by all 

processors.

– Operations of a single processor to execute in program 
order.

Cache coherence can be viewed as a means to propagate newly 
written values to any given processor



3

Violation of SC 

• Result : register1=1 and register2=2 is possible.  Violation of 
SC model due to general network

• Solution: 

– All updates or invalidations originate from a single point 
(e.g. Directory) maintaining order of these messages.

– Wait for acknowledgment of previous write, before issuing 
another update or invalidation message to the same address.

Drawbacks of SC 

• SC imposes heavy performance penalty.
• SC restricts any compiler optimization that can result in 

reordering memory operations
– Code motion, register allocation, common sub-expression 

elimination, loop blocking, software pipelining
• SC restricts hardware generated memory re-orderings because 

of program-order and write-atomicity requirements. 
– Write Buffers, OOO instruction issue, pipelining of memory 

operations, lock-up free caches, non-atomic memory 
operations.

Above restrictions motivates for Relaxed Memory Models

Classification of RMM
• Optimizations

– Write          Read
– Write          Write
– Read           Read, Write
– Read other’s write early 
– Read own write early 

• All Models provide Safety net
• All models maintain uni-processor data and control 

dependencies
• Write serialization is maintained by all the models  except PC, 

RCpc, PowerPC[ for most practical purposes where all processors 
observe all write operations in the same order (write serialization), is 
indistinguishable from a system where all writes are executed atomically]

Categorization of Relaxed Models

Relaxing Writes to Reads 

• IBM370, TSO, PC allows reads to be re-ordered w.r.t previous 
writes.

The three models differ in: 

• IBM 370 stalls on read before write made visible to system. 
– Provides Serialization Instructions e.g. CAS, T&S

• TSO permits early read of writes from own processor before 
serialization
– Provides RMW instructions. Replace Read and Write with RMW 

(dummy write/read). 

• PC permits read of all write without serialization. 
– PC requires all accesses to memory location to be replaced with a 

RMW instruction since other processor may write to same location.

Processor Consistency 

• Processor consistency (PC)
– Writes done by a single processor are received by all 

other processors in the order in which they were issued, 
but writes from different processors may be seen in a 
different order by different processors

• The basic idea 
– To better reflect the reality of networks in which the 

latency between different nodes can be different. 



4

Processor Consistency (Cont’d)

• Two memory access conditions
– Before a read is allowed to perform with respect to any 

other processor, all previous read accesses must be 
performed.

– Before a write is allowed to perform with respect to any 
other processor, all previous read or write accesses must 
be performed.

Initially x=y=0;

P1:  W(y)2 W(x)1

P2:                         R(x)1 R(y)0

NO

PC Example

A = 1;

While (A==0);
B = 1;

While (B==0);
Print A;

SC

PC

P1 P2 P3

A = 1; While (A==0);
B = 1;

While (B==0);
Print A;

SC: print 1
PC: print 0 or 1

IBM 370 0 (No)
TSO 0 (No)

Relaxing W to R and W to W 

(Sparc V8  PSO)

• Write to different locations can be pipelined and are 
allowed to reach memory and other cached copies out of 
order

• PSO is similar to TSO w.r.t write atomicity requirements

• Provides STBAR instruction for imposing program order 
between two writes. 

Relaxing All Program Orders 

• Read or a Write operation may be reordered w.r.t 
following read or write to a different location

– Weak Ordering Model

• Release Consistency Model (RCsc / RCpc)

• Digital Alpha, Sparc V9 RMO, IBM Power PC

• Except Alpha, the above models allow reordering of two 
reads to the same location. 

• RCpc and PowerPC allow a read to return the value of 
another processors write early. 

Weak Ordering  

• Classifies instructions into “Data” and “Sync”

• Reordering memory operations between sync operations. 

• Hardware Implementation using WO counters, to issue 
sync operation counter must be zero

• No operations are issued until previous sync                    
operation completes

• Synchronization accesses are sequentially                       
consistent with respect to one another.

Read/Write….
Read/Write….
Read/Write….

Sync

Read/Write….
Read/Write….
Read/Write….

Sync

Weak Ordering (Cont’d)

• Open up opportunities for buffering of reordered 
write operations between two synchronization 
points.

P1:  W(x)1 W(x)2             S

P2:                R(x)0 R(x)2 S R(x)2

P3:                          R(x)1 S R(x)2

OK

TOP: while (flag2 == 0)
A = 1;
u = B;
v = C;
D = B*C;
flag2 = 0;
flag1 = 1;
goto TOP;



5

Release Consistency   

• Extends WO and makes distinction among sync and non-sync 
operations

• RCsc maintains sequential consistency among special operations

• RCpc maintains processor consistency among special operations 

Read/Write….
Read/Write….
Read/Write….

Acquire

Read/Write….
Read/Write….
Read/Write….

Release

shared

ordinary special

sync nsync

acquire release

Read/Write….
Read/Write….
Read/Write….

RC Example

acquire
A = 1;
release

While (A==0);
acquire
B = 1;
release

While (B==0);
Print A;

RC

Before an ordinary access to a shared variable is performed, all
previous acquires done by the process must have completed 
successfully. 

Before a release is allowed to be performed, all previous reads and 
writes done by the process must have completed. 

Alpha, RMO and PowerPC  

• Alpha employ RCsc model with Memory Barrier and 
Write Memory Barrier (WMB) fence instructions. 

• Sparc V9 (RMO) employ RCsc model with MemBar 
instruction to specify any combination of RtoR, RtoW, 
WtoR, WtoW ordering. 
– No need for RMW to preserve WtoR ordering
– Write atomicity is maintained 

• PowerPC employ RCpc 
– SYNC instruction similar to MB instruction except for 

RtoR order. 
– RMW required to make writes atomic and preserve 

RtoR order. 

Programmer Centric View

• System Centric view is accompanied by higher level of 
complexity for programmers. 

• Varied semantics for different models complicates the task 
of porting programs across systems. 

Motivates for higher level of abstraction for programmers

• Provide informal rules for correct results defined by SC

i.e. Consistency Model is defined in terms of program level 
information provided by the programmer. 
– DRF0 is one such approach which explores the information that is

required to allow optimization similar to Weak Ordering. 

– PL (Properly Labeled) approach for defining RCsc optimizations. 

The Data-race-free-0 Model

• Weak Ordering classifies instruction into “Data” and “Sync”

Key Goal is to formally distinguish operations as dataor

Synchronization on the bases of races. 

• An operation forms a race with another operation if, 
– They access the same location && atleast one operation is a write 

&& there are no intervening operations between the two operations.

P1 P2

A = 23; while (Flag != 1) {;}

B = 37; … = B;

Flag = 1; … = A;

Flag = Synchronization, Data = A, B

Can optimize operations that never race. 

Programming With DRF-0

• Write operation assuming SC.

• For every memory operation specified in the program do: 

•Language Support: 

Synchronization with special constructs 

Support to distinguish individual accesses



6

Comparison of Sync/Swym and Niagara

• Sync/Swym are Sparc V9 architecture based systems which 
defines three different memory models: TSO, PSO, RMO 
(Relaxed Memory Ordering) model.

• Programs written for RMO will work in PSO and TSO as 
well. Programs written for PSO will work in TSO. 
MEMBAR inst. induce ordering in the inst. stream of a 
single processor.
– Portability issues: Programs which use single-writer/multiple reader 

locks for all shared accesses are portable across all models. 
– Programs that use write locks to protect write accesses but read

without locking will be portable across all memory models, only if 
writes to shared data are separated by MEMBAR #StoreStore 
instructions, and if reading the lock is followed by a MEMBAR 
#Load-Load instruction.

• Niagara has 2 flavors of Stores: TSO and RMO (Read 
memory Order)

Consistency Model of Power4

• For certain instructions which require completion 
serialization. Groups so marked will not be issued until that 
group is the next to complete, i.e., all prior groups have 
successfully completed. 

• Additionally, instructions that read a non-renamed register 
cannot be executed until we are sure all writes to that 
register have completed. 

• Load Hit Store: Read Owns Write Early.  
• Store Hit Load: Write -> Read Program Order is Relaxed. 
• Load Hit Load: Read -> Read Program Order is Relaxed. 

To guard against Read Others Write Early, if a younger load 
obtains old data then the older store must obtain new data. 
This requirement is called sequential load consistency. 

Consistency Model of Intel P4
Named as a Processor Ordering with Following rules built in: 
• Reads can be carried out speculatively and in any order.
• Reads can pass buffered writes, but the processor is self-consistent.
• Writes to memory are always carried out in program order, with 

the exception of writes executed with [CLFLUSH instruction and 
streaming stores (writes) 

• Writes can be buffered.
• Writes are not performed speculatively; they are only performed 

for instructions that have actually been retired.
• Data from buffered writes can be forwarded to waiting reads 

within the processor.
• Reads or writes cannot pass (be carried out ahead of) I/O 

instructions, locked instructions, or serializing instructions.
• Reads cannot pass LFENCE and MFENCE instructions.
• Writes cannot pass SFENCE and MFENCE instructions.

Summary  

• Defined Sequential Consistency 

• Optimizations to SC 

• Relaxed Memory Models

– IBM 370, TSO, PC

– PSO and SPARC V9

– WO

– RC (RCsc and RCpc) 

• Provided a Programmer Centric view for identifying different 
operations in a program. 

• Discussed consistency models of Sparc-V9, Power4 and Intel 
P4.


