
CSC 258/458 Guest Lecture

Safe Parallel Programming

Chen Ding

Professor

February 19, 2015

The Problem with Threads http://www.computer.org/portal/site/computer/menuitem.5d61c1d59...

1 of 19 10/27/07 11:35 AM

M ay 2006

COVER FEATU R E

The Problem with Threads
Edward A. Lee
University of California, Berkeley

For concurrent programming to become mainstream, we must discard
threads as a programming model. Nondeterminism should be judiciously
and carefully introduced where needed, and it should be explicit in
programs.

Concurrent programming is difficult, 1yet many technologists predict the end of

Moore's law will be answered with increasingly parallel computer

architectures—multicore or chip multiprocessors (CMPs). 2If we hope to achieve

continued performance gains, programs must be able to exploit this parallelism.

Automatic exploitation of parallelism in sequential programs, through either

computer architecture techniques such as dynamic dispatch or automatic

parallelization of sequential programs, 3offers one possible technical solution.

However, many researchers agree that these automatic techniques have been

pushed to their limits and can exploit only modest parallelism. Thus, programs

themselves must become more concurrent.

Understanding why concurrent programming is so difficult can help us solve the

problem. The physical world is highly concurrent, and our very survival depends on

our ability to reason about concurrent physical dynamics. This reasoning doesn't

extend to concurrent programs because we have chosen abstractions that do not

even vaguely resemble the physical world's concurrency. We have become so used

to these computational abstractions that we have forgotten they are not immutable.

The difficulty of concurrent programming is a consequence of these abstractions,

and if we can let go of them, the problem will be fixable.

THREADS

In general-purpose software engineering practice, we have reached a point where

one approach to concurrent programming dominates all others—namely, threads,

sequential processes that share memory. They represent a key concurrency model

supported by modern computers, programming languages, and operating systems.

The Problem with Threads

• Sequential execution is semantically function composition
• deterministic components compose into deterministic results

• Checking serializability is much harder
• must be checked for all possible interleavings
• become exponentially worse with more threads
• threads are effective if they do not share data directly

• parallel make, web servers
• “Threads are seriously flawed as a computation model”

• “wildly nondeterministic”
• Lee manifesto

• Pruning nondeterminism is the wrong way to go
• what remains is still intrinsically intractable

• “Deterministic ends should be accomplished with deterministic means”
• use nondeterminism only when needed

3

Current model considered harmful
Threads and shared memory

Dominant model for parallel programming
Difficult to program:

Hard to reason about all possible orderings
Subtle interactions of threads through shared memory
Easy to forget synchronization, introduce subtle bugs
Unintuitive model, implicit thread interactions and
orderings

Sound, precise and efficient static race detection for multi-threaded programs – p.4/37

Problems with Locks [Scherer, Rochester 2005]

• Fault intolerance
• a thread may die while holding a lock

• Preemption intolerance
• a thread may be preempted while holding a lock

• e.g. a page fault
• Deadlock
• Priority inversion

• a high-priority thread H waits for a low-priority thread L
• scheduling H instead L may lead to deadlock

• Convoying
• threads tend to follow each other in lock steps after blocking together

• Non-composability
• operations must be carefully composed to prevent deadlock

5

Step 1: Removing Races

Preliminaries

• Definitions
• a data race
• a racy program

• Road map today
• (parallel) sharing -> no sharing -> sharing

• Its effect (the topics on the class schedule)
• dependence
• coherence
• memory consistency
• parallel programming models
• software DSM
• transactional memory
• locking / nonblocking

7

Processes Instead of Threads

• Two-step strategy
• copy-on-write when running parallel
• sequential merge afterwards

• Uses
• speculative parallelization

• BOP, PLDI’07, OOPSLA’11
• CorD*, MICRO’08, PLDI’10; SMTX, ASPLOS’09.

• race-free and deterministic execution of threaded code
• Grace, OOPSLA’09; Isolation/revision type, OOPSLA’10; CoreDet,

ASPLOS’10; Determinator, OSDI’10; DoublePlay/uniparallelism,
ASPLOS’11/13, SOSP’11; Spice C, PPOPP’11, PLDI’12.

8

fork {
 x = 1
 y = x + 1
}
x = 3
join(t1)
z = x + y

p1 = fork {
 xt1 = 1
 yt1 = xt1 + 1
}
xt2 = 3
join(p1)
xt3 = ω(xt1, xt2)=3
z = xt3 + yt1

fork {
 x = 1
 y = x + 1
}
x = 3
join(t1)
z = x + y

x = 1
y = x + 1 x = 3

z = x + y

BOP, PLDI 2007 PPR Hint [Ding+ PLDI’07]

• Likely rather than definite parallelism
• bop ppr { code }

• PPR: possibly parallel region/routine
• an optimistic fork/spawn (w/o join)

• Sequential equivalence
• same result as sequential execution
• incorrect hints may hurt parallelism but not correctness

• no non-determinism
• no deadlock
• no live lock
• no lock (lock and wait free)
• no parallel debugging
• parallelized gzip, Lisp interpreter, Intel MKL, parser [PLDI’07]

10

Correctness Checking and
Error Recovery

Correctness

• Conflict detection
• task i is checked after task i-1
• no incorrect value prediction and no true dependences

(otherwise recover)
• correctness proof in PLDI’07 paper [similar to Allen &

Kennedy, 2001]
• Error recovery through understudy

• User feedback
• feedback on the cause of conflicts
• non-trivial program changes may be needed

• changing sequential code only
• no parallel programming or debugging

12

BOP: Speculative Parallelization [Ding PLDI’07]

13

speculation finishes first,
aborts understudy

• Correctness checking at
the end

under-
study

(
• Error recovery by

understudy

(
(

(

ppra

pprb

pprc

• Divide it into a series of
possibly parallel tasks

• Start from sequential code

• Copy-on-write at
speculative tasks

fork

(

ppra

(

pprb

(

pprc

fork

14

Gzip compressing an 84MB file

Dell PowerEdge 6850 with 4 dual-core Intel 3.4GHz, Xeon 7140M
processors, GCC 4.0.1 with “-O3”

0

7.5

15.0

22.5

30.0

500 1000 1500 2000 2500 3000 3500 4000 4500

15

Intel MKL (Solving 8 Linear Systems)

sequential omp-4 bop-4 omp-8 bop-8

bi
lli

on
 in

st
. p

er
 s

ec
.

Equations per system

similar speed
as sequential both processes

and threads scale, but
former are faster

Copy-and-Merge Parallelization

Reducers

Naïve Cilk++:

Correct Cilk: Use “reducer” object

cilk_for (i = 0; i < n; ++i)
 s += x[i];

cilk::reducer_opadd<float> r;
cilk_for (i = 0; i < n; ++i)
 r += x[i];
s += r.get_value ();

12

Friday, January 29, 2010

Reduction over list concatenation

26

Source: M. Frigo, CScADS 2009 talk

Parallel execution: Reduction over monoids is deterministic.

[0]

x.append (0);
cilk_spawn x.append (1);
x.append (2);
x.append (3);
cilk_sync;

[2] [2;3] [0;1;2;3]

[0;1]

Friday, January 29, 2010

Additional reducers

Provided

Lists (append, prepend)

min, max, {min, max}_index

opadd

ostream

basic_string

May build your own

27

Friday, January 29, 2010

MSR talk video: http://research.microsoft.com/apps/video/default.aspx?id=115873

• Grace: Safe Multi-threaded Programming for C/C++

• Fork-join parallelism
• Cilk, TBB, OpenMP, Map-reduce do not prevent errors

• Solution:
• sequential semantics---execute threads in program order

OOPSLA 2009

� �

����������	
����
���������
�������������������������

����������������	��
����������
	����������������	

���������	
����	
��	��������
���
�������
�������	���
	��

����� �����!��!
���!���

"���#	�$��%���������&�#���'���(��)*+*

Concurrent Revisions:
A deterministic concurrency model.

Daan Leijen, Alexandro Baldassin,
and Sebastian Burckhardt

Microsoft Research
(OOPSLA 2010)

Application = Shared Data and Tasks

Shared Data

ReaderMutatorReader

Example: Office application
• Save the document
• React to keyboard input by the user
• Perform a spellcheck in the background
• Exchange updates with remote users

Mutator Reader

Our Proposed Programming Model:
Revisions and Isolation Types

• Deterministic Conflict Resolution, never roll-back
• No restrictions on tasks (can be long-running, do I/O)
• Full concurrent reading and writing of shared data
• Clean semantics (see technical report)
• Fast and space-efficient runtime implementation

Revision
A logical unit of work

that is forked and
joined

Isolation Type
A type which implements

automatic copying/merging of
versions on write-write conflict

“Problem Example 1” is solved

! Render task reads position
of all game objects

! Physics task updates
position of all game objects

! No interference!
C

ol
l.

D
et

. 1

C
ol

l.
D

et
. 2

C
ol

l.
D

et
. 3

C
ol

l.
D

et
. 4

R
en

de
r

P
hy

si
cs

ne
tw

or
k

au
to

sa
ve

(lo

ng
 r

un
ni

ng
)

 public void Run()
 {
 // Fork a revision: conceptually all versioned state is copied and each
revision is fully isolated
 var r = CurrentRevision.Fork(() => {
 s = "world"; // write to s in the forked revision
 });
 s = "Hello"; // and write to s in the main revision
 Console.WriteLine(s); // revision are isolated so it always shows 'hello'
 CurrentRevision.Join(r); // writes are merged back on the join
 Console.WriteLine(s); // by default writes in the child
 }
}

class Program
{
 static void Main(string[] args)
 {
 new Sample().Run();
 }
}

• http://www.rise4fun.com/revisions

SpiceC: Scalable parallelism
via implicit copying and

explicit Commit
Min Feng, Rajiv Gupta, and Yi Hu
University of California, Riverside

PPOPP 2011

! Memory Spaces
◦ Shared & Private

! Copy & Commit
◦ Support speculative

parallelism
◦Uniform program for systems

with and without cache
coherence

SpiceC: Computation Model

Copy

Commit

! SpiceC programming model
◦Copy/commit computation model
◦ Programming interfaces

! Features
◦ Programmability – easy-to-use compiler directives
◦ Versatility – support multiple forms of parallelism and

speculative parallelism
◦ Performance portability – does not rely on cache coherence

! Implementation on both multicore and manycore
systems

! 2x – 18x speedup on a 24-core machine

Conclusion

What About True Dependences?

[Ke et al. OOSPLA 2011]

How to Tackle True Dependences?

• Infrequent true dependences
• speculation

• both data and control
• Circumventable true

dependences
• value prediction

• Otherwise
• serialize
• speculative synchronization

31

while (has_more()) {
 n = next_item()

 if (search(n) != nil)
 return n
}

True Dependences, Truly Dependent

Listing 3: A possibly partially parallel loop

whi le (has more (i n p u t s)) begin
w = g e t n e x t (i n p u t s)
t r y comput ing w i n p a r a l l e l
bop ppr {

t = compute (w)
a l l o c a t e a new node n
n = new qnode (t)
make n t h e new t a i l
append (o u t p u t s , n)

}
end

Listing 4: Safe parallelization using basic primitives

c i d = 0 # c h a n n e l i d
whi le (has more (i n p u t s)) begin

w = g e t n e x t (i n p u t s)
bop ppr {

t = compute (w)
n = new qnode (t)
w a i t f o r t h e l a s t t a i l
bop wait (c i d � 1) i f c id >0
append (o u t p u t s , n)
send t h e new t a i l
bop fill (c id , n , s i z e o f (qnode))
bop post (c i d)

}
c i d ++

end

Listing 5: An equivalent solution using a high-level hint

whi le (has more (i n p u t s)) begin
w = g e t n e x t (i n p u t s)
bop ppr {

t = compute (w)
bop ordered {

n = new qnode (t)
append (o u t p u t s , n)

}
}

end

ation. Communicating dynamic data is as simple to code as
communicating static data.

Third, the run-time system can dynamically change the
content of communication. This feature is critical in the safe
implementation which we will describe in Section 3.2.

Selective dependence marking Enumerating all depen-
dences is impracticable because there may be n2 depen-
dences in an n-statement program. The dependence hint is

for selective marking, i.e. for only dependences from a PPR
task to its continuation. We call these PPR dependences.
Other dependences do not require hints, including depen-
dences within a PPR task, dependences within inter-PPR
code and from inter-PPR to PPR code.

PPR dependences do not need hints if they are too infre-
quent to affect performance. The rest, more regularly occur-
ring dependences can be divided into two types: short range
and long range. Short-range dependences happen between
nearby PPR tasks, which are likely to require hints for coor-
dination. Long-range dependences happen between distant
PPR tasks, which are most likely already serial and do not
need hints. For example when parallelizing a loop, hints are
needed for short-range dependences between consecutive it-
erations but not for long-range dependences, e.g. between
the loop and the subsequent code.

Furthermore, multiple dependences can share a single
channel and be marked by a single hint. For example, in
pipelining, each stage needs just one post and one wait. An-
other example of enforcement en masse is to suggest a join
point to serialize two PPR tasks and satisfy all dependences
between them. For these reasons, the number of hints can be
few even though the dependences may be many.

A careful reader may note that long-range dependences,
although they do not need synchronization, still need com-
munication. Such communication is done at the commit time
when a PPR task finishes and its modified data copied into
later tasks. Data commits and dependence hints are the two
ways by which PPR tasks share data. Data commits move
data asynchronously and do not block an active task. Depen-
dence hints are synchronous and may stall the receiver task.
Dependence hints require an explicit hint, while data com-
mits do not.

Now we can explain a subtlety in the solutions in List-
ing 4 and Listing 5. The last PPR task, the one to create the
last node, is supposed to have the full queue, but it does not.
From the dependence hint, it has only the node it creates
and the one before it—just the two nodes, not the full queue.
How and when is the entire queue assembled? The rest of
the queue is pieced together by data commits. As tasks fin-
ish, their data is copied out and merged. The construction
happens asynchronously as the loop progresses.

Selective dependence marking benefits both programma-
bility and performance. In the example, parallelization is
simple since only the tail node requires a hint. It is also effi-
cient and more scalable since the communication is constant
size rather than linear size. Each node is copied just once.

Safety and determinism Unlike in non-speculative sys-
tems where communication primitives must be perfectly
paired, dependence-hint primitives are suggestions and may
mismatch.

To ensure determinism, a channel accepts at most one
post. If we were to allow multiple posts, we would be un-
certain how many of the posts had happened at the time of

• Are there true
dependences among
PPR tasks?

• How to synchronize?
• How to communicate?

Channel-based Dependence Hints

• Channel fill/post/wait
• bop_fill(addr, channel id): add an address range to a channel
• bop_post(channel id): copy/send channel data

• modified data only, single post per channel
• bop_wait(channel id): stall until a post, copy incoming data
• bop_cc(channel 1, channel 2): equate two channels

• Properties
• sender-side addressing

• no sender/receiver disagreement
• can pass dynamic data

• message aggregation
• channel chaining

• to express conditional dependence
• partial dependence marking

34

Listing 3: A possibly partially parallel loop

whi le (has more (i n p u t s)) begin
w = g e t n e x t (i n p u t s)
t r y comput ing w i n p a r a l l e l
bop ppr {

t = compute (w)
a l l o c a t e a new node n
n = new qnode (t)
make n t h e new t a i l
append (o u t p u t s , n)

}
end

Listing 4: Safe parallelization using basic primitives

c i d = 0 # c h a n n e l i d
whi le (has more (i n p u t s)) begin

w = g e t n e x t (i n p u t s)
bop ppr {

t = compute (w)
n = new qnode (t)
w a i t f o r t h e l a s t t a i l
bop wait (c i d � 1) i f c id >0
append (o u t p u t s , n)
send t h e new t a i l
bop fill (c id , n , s i z e o f (qnode))
bop post (c i d)

}
c i d ++

end

Listing 5: An equivalent solution using a high-level hint

whi le (has more (i n p u t s)) begin
w = g e t n e x t (i n p u t s)
bop ppr {

t = compute (w)
bop ordered {

n = new qnode (t)
append (o u t p u t s , n)

}
}

end

ation. Communicating dynamic data is as simple to code as
communicating static data.

Third, the run-time system can dynamically change the
content of communication. This feature is critical in the safe
implementation which we will describe in Section 3.2.

Selective dependence marking Enumerating all depen-
dences is impracticable because there may be n2 depen-
dences in an n-statement program. The dependence hint is

for selective marking, i.e. for only dependences from a PPR
task to its continuation. We call these PPR dependences.
Other dependences do not require hints, including depen-
dences within a PPR task, dependences within inter-PPR
code and from inter-PPR to PPR code.

PPR dependences do not need hints if they are too infre-
quent to affect performance. The rest, more regularly occur-
ring dependences can be divided into two types: short range
and long range. Short-range dependences happen between
nearby PPR tasks, which are likely to require hints for coor-
dination. Long-range dependences happen between distant
PPR tasks, which are most likely already serial and do not
need hints. For example when parallelizing a loop, hints are
needed for short-range dependences between consecutive it-
erations but not for long-range dependences, e.g. between
the loop and the subsequent code.

Furthermore, multiple dependences can share a single
channel and be marked by a single hint. For example, in
pipelining, each stage needs just one post and one wait. An-
other example of enforcement en masse is to suggest a join
point to serialize two PPR tasks and satisfy all dependences
between them. For these reasons, the number of hints can be
few even though the dependences may be many.

A careful reader may note that long-range dependences,
although they do not need synchronization, still need com-
munication. Such communication is done at the commit time
when a PPR task finishes and its modified data copied into
later tasks. Data commits and dependence hints are the two
ways by which PPR tasks share data. Data commits move
data asynchronously and do not block an active task. Depen-
dence hints are synchronous and may stall the receiver task.
Dependence hints require an explicit hint, while data com-
mits do not.

Now we can explain a subtlety in the solutions in List-
ing 4 and Listing 5. The last PPR task, the one to create the
last node, is supposed to have the full queue, but it does not.
From the dependence hint, it has only the node it creates
and the one before it—just the two nodes, not the full queue.
How and when is the entire queue assembled? The rest of
the queue is pieced together by data commits. As tasks fin-
ish, their data is copied out and merged. The construction
happens asynchronously as the loop progresses.

Selective dependence marking benefits both programma-
bility and performance. In the example, parallelization is
simple since only the tail node requires a hint. It is also effi-
cient and more scalable since the communication is constant
size rather than linear size. Each node is copied just once.

Safety and determinism Unlike in non-speculative sys-
tems where communication primitives must be perfectly
paired, dependence-hint primitives are suggestions and may
mismatch.

To ensure determinism, a channel accepts at most one
post. If we were to allow multiple posts, we would be un-
certain how many of the posts had happened at the time of

• Sender-side
addressing
• what to

communicate
• Sequential access

to shared data
• Safety

• unmatched
post/wait

• wrong channel

a=new counter(0)
bop_fIll(1, a)
bop_post(1) bop_wait(1)

*a++

Task 2
 Task 1

*a = 0
bop_fIll(1, a)
bop_post(1)

bop_wait(1)
*a++
bop_fIll(2, a)
bop_post(2)

bop_wait(2)
*a++

Task 3

*a++
bop_fIll(1, x)
bop_post(1)

if no match
 bop_cc(1,2)
else ...

bop_wait(2)
*a++

dynamic data

ordered execution

conditional dependence

system called SMTX added the speculation support [23].
The body of a pipeline loop is divided into stages. Each stage
is separated from the preceding stage by a pipeline label. By
default, a stage is sequential and its label takes no parameter.
A parallel stage has a parameter p to indicate the number of
parallel processors to use for the stage.

Figure 4 (a) shows an example TCA pipeline with 3
stages: stages 1 and 3 are sequential, and stage 2 is parallel.
The implementation uses one process running each sequen-
tial stage and p processes running the parallel stage. Thies
et al. developed profiling support to identify and transfer
shared data and to divide the stages evenly so that all pro-
cesses are fully utilized in the steady state.

for i in 1 ... n
 bop_ppr {
 bop_wait(<my_ppr-1, s1>)
 // serial stage 1
 bop_post(<my_ppr, s1>)

 bop_wait(<my_ppr-1, s1>)
 // parallel stage 2
 bop_post(<my_ppr, s2>)

 bop_wait(<my_ppr-1, s3>)
 // serial stage 3
 bop_post(<my_ppr, s3>)
 }
end for

for i in 1 ... n
 begin_pipelined_loop
 // serial stage 1

 pipeline(p)
 // parallel stage 2

 pipeline
 // serial stage 3
 end_pipelined_loop
end for

(a) 3-stage TCA pipeline (b) implementation by
dependence hints

Figure 4: Using post-wait to safely implement the pipeline
loop construct of Thies et al. [29]

The pipeline parallelism can be implemented by post-
wait, as shown in Figure 4 (b). Each stage starts with a
wait and ends with a post. The channel identifiers are set
up to wait for the same stage in the previous task, if the
stage is sequential. A parallel stage has two cases. If it is
the first stage, it should not wait for anyone; otherwise, it
waits for the previous stage in the previous task. Note that
the implementation can be encapsulated so the programmer
is provided with the same interface as the TCA pipeline, e.g.
through a bop pipeline hint.

The BOP pipeline exploits the same parallelism as TCA
pipeline and its safe version SMTX [23], but the implemen-
tation is different. In BOP, the same task uses the same pro-
cess, which simplifies error recovery. In TCA and SMTX,
the same stage uses the same process(es), which reuses pro-
cesses. The TCA and SMTX pipelines are likely more effi-
cient when computations are regular and regularly chunked
into stages. On the other hand, the fixed stage partition has
trouble handling variable length iterations or dependence be-
tween non-consecutive tasks. In implementation, TCA and
SMTX have the advantage of process reuse over the original
BOP [12]. The current BOP also reuses processes, which we
will discuss in Section 5.1.

4.4 Hmmer from SPEC 2006
Hmmer is a genetic search program developed at Washing-
ton University with nearly 36,000 lines of C code. Most of
the execution happens in two steps: calibration and search.
The calibration loop is shown below. Most of the time is
spent in the function P7Viterbi. The loop traverses through
a series of genetic sequences. It is parallel as far as we know
except in the call to AddToHistogram zc, which adds the
result computed in each iteration to a histogram. It can be
parallelized by a bop ppr and a bop ordered hint as shown
below. The entire histogram data (2 memory pages in the
test) is marked for posting in every task.

for (i = 0; i < parallelism; i++) {

bop_ppr { // begin possibly parallel region (PPR)

mx = CreatePlan7Matrix(1, hmm->M, 25, 0);
for (idx=i*temp; idx<(i+1)*temp && idx<nsample; idx++) {

dsq = DigitizeSequence(seq[idx], sqlen[idx]);

if (P7ViterbiSize(sqlen[idx], hmm->M) <= RAMLIMIT)
score = P7Viterbi(dsq, sqlen[idx], hmm, mx, NULL);

else
score = P7SmallViterbi(dsq, sqlen[idx], hmm, mx, NULL);

hhu[idx%temp] = score;
free(dsq); free(seq[idx]);

}
FreePlan7Matrix(mx);

bop_ordered { // implemented by post-wait

for (idx=i*temp; idx<(i+1)*temp && idx<nsample; idx++) {
length_zc = AddToHistogram_zc(&(post_zc.a), hhu[idx%temp]);
if (hhu[idx%temp] > post_zc.b) post_zc.b = hhu[idx%temp];

}
} // end bop_ordered

} // end bop_ppr
}

The search loop has more dependent operations at the
end of each iteration to perform a significance test and add
significant matches to a result list. The serial block is several
times longer in code and transfers 40 times more data (about
79 pages in the test run) than in the calibration loop. The
matched genes are inserted into the result list in the same
order as they were read from the input file.

5. Evaluation
5.1 Experimental Setup
BOP implementation BOP hints are implemented as run-
time library calls. We have completely re-designed and
re-implemented the system three times to improve its ef-
ficiency. The current design has three important features:

• Process reuse. Instead of forking a process for each PPR,
we fork a set of processes at the first PPR. Each one is
assigned the next unexecuted PPR and returns for a new
assignment after finishing. We designate a main process
to serve as the understudy and always maintain a correct
state. In case of a speculation error, the offending pro-

• Hmmer from SPEC 2006
• genetic search
• 36K SLOC
• most time spent in

calibration and search
• most time in calibration

spent in function
P7Viterbi called in the
loop in the right

of over 7. The execution time is reduced from 1,211 seconds
to 164 seconds by BOP and 172 seconds by OpenMP.

2 4 6 8 10 12 14

0
5

10
15

Hmmer and Art

num. processors p

sp
ee

du
p

+
+

+
+

+
+

+
+

+
+

+
+

+
+ +

x
x

x
x

x
x

x
x

x
x

x x
x

x x

o
o

o
o

o
o

o
o

o
o

o
o o

o
o

−

−
−

− − − −
− − − − − − − −

#
#

#
#

#

0
5

10
15+

x
o
−
#

BOP hmmer min
BOP hmmer max
OpenMP hmmer
BOP art
OpenMP art

Figure 10: BOP reduces hmmer time from 93 seconds to 6.7
seconds and art time from 1,211 seconds to 164 seconds.
Both improvements are similar to OpenMP.

The figure shows three versions of hmmer: coarse-grained
BOP with dependence hints, fine-grained BOP without de-
pendence hints, and fine-grained OpenMP without the criti-
cal section (moved out of the compute loop). All three ver-
sions show almost identical linear speedups. The running
time is reduced from 93 seconds to 6.7 seconds by both BOP
versions and 6.3 seconds by OpenMP.

QT-clustering The OpenMP version parallelizes within
each time step, using a critical section to combine results
and an implicit barrier to separate time steps. When there
is sufficient parallelism, 400 PPRs, in each time step, both
BOP and OpenMP obtain a highly scalable performance. The
speedup by BOP is 2.0, 3.8, 7.0, and 14 times for 2, 4, 8, and
15 parallel tasks. The speedup by OpenMP is 2.0, 4.0, 7.9,
and 15.6. When there is an insufficient number of PPR tasks
in time steps, time skewing can help. We set the inner loop to
have 15 iterations and run it on a machine with 8 processors.
In OpenMP, the 15 iterations are divided into 3 groups when
p = 5, 6, 7. As a result, OpenMP has less than 5% improve-
ment from p = 5 to p = 7. With time skewing, however,
different time steps may overlap, so time skewing is 7% and
18% faster when using 6 and 7 parallel tasks than OpenMP.

6. Related Work
Dependence in speculative parallelization Software spec-
ulative loop parallelization was pioneered by Rawchwerger
and Padua in the LRPD test [24]. Java safe future and BOP
PPR provided an interface for expressing possible paral-
lelism but not dependence [12, 33]. In hardware thread-

level speculation (TLS), a dependence can be specified us-
ing signal-wait [35]. Like Cytron’s post-wait [10], signal and
wait are paired by an identifier, which is usually a data ad-
dress. Another construct is flow in an ordered transaction. It
specifies that a variable read should wait until a new value is
produced by the previous transaction [32]. In these systems,
memory is shared, so a construct can implicitly synchronize
dependences on other data as well. The correctness in guar-
anteed by the user or special hardware support.

The flow construct is a data trigger and useful when a
read needs to wait for an unidentified write in the predeces-
sor task [32]. A problem may arise if the previous task does
not write or writes multiple times. As shown in Section 3.4,
BOP provides a more programmable solution. SMTX is an
interface for software multi-threaded transactions. It pro-
vides primitives to accessed versioned data [23]. The read
and write accesses specify a variable name and are matched
by the name and version number. The channel identifier in
BOP can serve the purpose of a version number. BOP chan-
nels use one-sided addressing (to allow dynamic changes to
the channel content) and can communicate aggregate and
dynamically-allocated data, which would require additional
annotations if using flow or versioned access.

The Galois system lets a user express parallelism at an ab-
stract level of optimistic iterators instead of the level of reads
and writes [22]. Dependence hints also address the problem
in complex code where access tracking is difficult to specify,
but with a different solution which is to mark larger units of
data and to combine with speculation. Optimistic iterators
in Galois can specify semantic commutativity and inverse
methods, which permits speculative parallelism beyond the
limit of dependence hints. However, these extensions are not
hints and must be used correctly.

An increasing number of software systems use copy-on-
write data replication to implement speculation [12, 13, 23,
30] or race-free threaded execution [7, 8, 31]. Tasks do not
physically share written memory and must exchange depen-
dent data explicitly. A solution, transactional communicator,
addresses the problem in transactional memory [19]. BOP
hints provide a solution for parallelization and use channels
supported by sender-side addressing, selective dependence
marking, and channel chaining to reduce the programming
effort and implementation cost.

Dependence in dynamic parallelization Instead of enu-
merating dependences, the Jade language uses data speci-
fication to derive dependence automatically [25]. Jade iden-
tifies all dependences without having to specify any of them.
The dependence hint provide a different solution through
partial dependence specification. Being speculative, depen-
dence hints enforce all dependences without having to spec-
ify all of them. In comparison, Jade specifications are not
hints and may lead to program error if used incorrectly.
The two approaches are fundamentally different. Jade is
aimed for automatically optimized parallelization. Depen-

while not done
 bop_ppr {

 // parallel work
 ...
 call foo
 ...
 }
end while

func foo
 bop_ordered {
 // serial work
 }
end func

(a) an example
parallel loop and

ordered block

while not done
 bop_ppr {

 if (no foo call)
 bop_cc(ppr_id ,
 ppr_id+1)
 ...
 call foo
 ...
 }
end while

func foo

 bop_wait(ppr_id)
 // serial work
 if (last foo call)
 bop_post(ppr_id+1,
 ALL)
end func

(b) implementation by
post-wait if the number

of foo calls is known

while not done

 bop_ppr {

 ...
 call foo
 ...

 bop_post(ppr_id+1,

 ALL)
 }
end while

func foo
 bop_wait(ppr_id)
 // serial work

end func

(c) implementation if
the number of foo
calls is not known.

Figure 3: Using post-wait to implement the bop ordered region hint.

Listing 8: string scanning and pattern conversion

s t r [0 . . . n] , s r c = ‘ ‘ aba ’ ’ , t a r g e t = ‘ ‘ bab ’ ’
num = 0 # number o f s u b s t i t u t i o n s

f o r i i in 2 . . . n wi th s t e p b do
t r y a s t r i n g b l o c k i n p a r a l l e l
bop ppr {

f o r i = i i . . . min (i i +b�1, n)
c n t = 0
i f matches (s t r [i�2 . . . i] , s r c)

s t r [i�2 . . . i] = t a r g e t
c n t ++

end
end
u p d a t e num s e q u e n t i a l l y
bop ordered {

num += c n t
}

}
end

time steps to overlap. The convergence check must wait for
the computations to finish. This is done by two ordering
hints: the results of the domain computation is combined in
the first ordered region, and the convergence check is then
made in the second ordered region. In the last iteration, the
write to the converged variable triggers a (true-dependence)
conflict with the speculative execution of the next time step.
The speculation is then rolled back, and the loop finishes
normally as if by a sequential execution.

Listing 9: Time skewing to overlap consecutive time-step
executions

conve rged = f a l s e
whi l e not conve rged

f o r i in 1 . . . n
t r y i n n e r loop i n p a r a l l e l
bop ppr {

r = compute (d a t a [i])
bop ordered {

s = s . a d d r e s u l t (r)
}

}
end

t r y n e x t t ime s t e p i n p a r a l l e l
bop ppr {

bop ordered {
i f good enough ? (s)

conve rged = t rue
end

}
}

end

4.3 TCA Pipelining
Thies, Chandrasekhar, and Amarasinghe defined an interface
for expressing pipeline parallelism in a loop [29]. We refer
to the interface as TCA pipeline after the initials of the
authors. The original version is not speculative, and a recent

wait for inner
loop to finish

make the check
non-blocking

rollback PPRs
after convergence

• Iterative solvers
• fix-point solutions

• data clustering
• dataflow analysis

• scientific simulation
• Convergence check

• forcing time steps
to serialize

• Time skewing
• overlap time steps
• okay until the last

step

• String substitution
• e.g. “aba” -> “bab”
• maybe parallel

• e.g. “aa a” -> “aa ... a”
• maybe sequential

• “abaa ... a” -> “bb ... bab”

7

property that as new annotations are added for later tests,
they preserve the correctness of earlier tests. New annotations
do not break the correctness of previously passed tests. This
property helps to bring down the cost of concurrency error
testing to a level closer to sequential error testing.

Composability of annotated code: Multiple BOP tasks can
be grouped to form a single task the same way sequential tasks
are stringed together. In addition, BOP tasks may run with
auto-parallelized code, since both have sequential semantics.
However, when new parallelism is introduced, e.g. by adding
a task or removing a barrier, old access annotations need to
be checked for completeness.

Automation: Automatic techniques may be used to iden-
tify shared data accesses and annotate them using the an-
notation interface. Such analysis includes type inference as
in Jade [28], compiler analysis as in CorD [31], and virtual
memory support as in BOP [13]. A user may use automatic
analysis in most of the program and then manually annotate
critical loops or functions. The hybrid solution lets a program-
mer lower the monitoring cost while letting a tool perform
most of the annotation work.

Shared vs. private by default: Most costs of speculation
come from monitoring, checking, and copying shared data.
BOP chooses to provide interface to specify shared data access
because a user can minimize the monitoring cost by specifying
only the data that has to be shared. Furthermore, the user can
annotate data by regions rather than by elements, reducing
both the number of annotation calls and the size of meta-data
that the speculation system has to track and process.

Data access vs. data identity: Data identity takes just
one annotation per variable. Data access takes up to two
annotations per datum per PPR (one per link task). A benefit,
however, is the uniform treatment of global and heap data.
A declaration-based method would have difficulties regarding
dynamic data: heap data often has no static names, the access
is often conditional, and the data location is often dynamically
computed. Access annotation is also dynamic in that the role
of data, whether shared or private, is allowed to change in
different program phases. Finally, it is also more precise
since the annotation can be inside arbitrary control flow to
capture the condition of data access and avoid redundant
annotation calls. Access annotation, however is harder to
ensure completeness.

A comparison: Table III compares BOP with other anno-
tation schemes: annotation of private data (the rest is shared)
as in OpenMP [25], annotation of shared data as in Tread-
marks [3], annotation of shared data access as in DSTM [16],
and annotation (registration) of files in distributed revision
control as in Mercurial.

Like DSTM, BOP annotation is based on data access rather
than data identity. Unlike DSTM, BOP uses copy-n-merge
(Section II-B), which requires annotation per PPR not per
access. For the same reason, BOP does not synchronize at each
annotation call. Like check-in and check-out in distributed
version control, there is one copy-in and one copy-out per
datum per parallel execution. Unlike check-in/check-out, not
all data sharing, i.e. link-link and link-ppr in Table I, requires

data shar-
ing

annotation unit frequency semantics

BOP copy-
n-merge

access, this
work

⇥ 2 per da-
tum per task

sequential

private by
default

declaration,
e.g. OpenMP

1 per vari-
able

parallel

shared by
default

allocation, e.g.
Treadmarks

1 per vari-
able

parallel

access, e.g.
DSTM

1 per access serializable

version
control

file, e.g. Mer-
curial

1 per file parallel

TABLE III: Comparison of five annotation schemes.

Listing 8: string scanning and pattern conversion

s t r [0 . . . n] , s r c = ‘ ‘ aba ’ ’ , t a r g e t = ‘ ‘ bab ’ ’

f o r i i in 2 . . . n wi th s t e p b do
t r y n e x t b l o c k i n p a r a l l e l
bop ppr {

u p d a t e b l o c k boundary
bop use (s t r [i i �2 . . . i i �1])
f o r i = i i . . . min (i i +b�1, n)

i f matches (s t r [i�2 . . . i] , s r c)
s t r [i�2 . . . i] = t a r g e t
3 l e t t e r s a r e changed
ppr write (s t r [i�2 . . . i])

end
end

}
end
u p d a t e t h e whole s t r i n g
bop use (s t r [0 . . . n])
re turn s t r [0 . . . n]

annotation (or explicit copying). BOP is most distinct in its
goal of safe parallelization.

VI. DEMONSTRATIONS

We use access annotation on three examples: one has un-
certain do-all parallelism, and two have do-across parallelism.
Then we evaluate performance using two programs.

A. Safe Parallelization
String scanning and pattern conversion: Consider the

problem of sub-string substitution, which scans an array of
bytes and rewrites all sub-strings that match a given pat-
tern. The program in Listing 8 processes the input in m-
letter blocks. The code uses the range syntax. For example,
str[lo...hi] refers to the series of letters starting from
str[lo] and ending at (and including) str[hi].

The program has uncertain parallelism. For example, we
use it to scan and replace all occurrences of the 3-letter pattern
“aba” with “bab”. The process may be data parallel, e.g. when

Parallel Performance of String Substitution

10

1 2 3 4 5 6 7 8

0
1

2
3

4
5

6

String substitution

num. processors p

sp
ee

du
p

+

+

+
+

+

+
+

+

x

x

x

x
x

x
x

x

o

o
o o o o o o

−
−

− − − − − −

* * * * * * * *

0
1

2
3

4
5

6

+
x
o
−
*

no conflict
1% conflict
5% conflict
10% conflict
50% conflict

2 4 6 8 10 12 14

0
1

2
3

4
5

6

K−means clustering

num. processors p

sp
ee

du
p

+
+

+

+
+ +

+ +
+

+ + +
+ + +

x

x

x

x

x x x x x

x x
x

x
x

x

o

o
o

o

o
o

o
o

o

o o
o o o o

0
1

2
3

4
5

6

+
x
o

BOP
OpenMP
A−BOP

Fig. 4: Demonstration of BOP performance. The test of string substitution shows that BOP exploits speculative parallelism in
the presence of unknown conflicts. The test of k-means clustering shows that BOP, which monitors select data, reduces the
overhead of BOP, which monitors all data, and performs similar to OpenMP, which has no safety protection. OpenMP cannot
safely parallelize the string substitution.

data writes are detected [4]. CoreDet ensured determinism
in threaded execution using versioned memory and a de-
terministic commit protocol [6]. The access annotation of
BOP may help to make program monitoring more precise
and generally applicable in these systems. The concept of
executable declaration is applicable, so is the use of error
recovery and speculative synchronization.

Scott and Lu gave five definitions of determinism and
showed their containment relationships [29]. A language-level
definition is ExternalEvents, which requires that the observ-
able events in two executions be the same. An implementation
level definition is Dataflow, which requires that two execu-
tions follow the same “reads-see-writes” relationship. BOP lets
a programmer define external events and relies on speculation
to preserve data flow. The combination enables user control
over both the semantics and the cost of its enforcement.

Data annotations: HPF provides array templates for a
user to specify data partition and alignment [1], [2], [33].
The Jade language lets a user specify shared data, and the
Jade system derives the dependence for automatic run-time
parallelization [28]. The Jade annotation is declarative using
the shared keyword. It may be operational, for example, by
traversing a shared linked list. In HPF and Jade, data sharing
must be specified statically or at least before the task starts.
In programs with uncertain control flow and data indirection,
such specification must be conservative and therefore not
always perfectly precise. It cannot specify data to be allocated
and shared by parallel tasks. BOP annotations can precisely
specify dynamic data sharing but require testing and race
checking to ensure their completeness.

Race detection in fork-join parallelism: On-the-fly race
detection can be done efficiently for perfectly nested fork-
join parallelism [5], [23]. Callahan and others showed that

at the program level, the problem of post-wait race checking
is co-NP hard and gave an approximate solution based on
dataflow analysis [9], [10]. They used the term canonical
execution to mean the sequential execution of fork-join parallel
constructs. The post-wait race checking can be done at run
time in O(np) time, where n is the number of synchronization
operations and p is the number of tasks [24]. These and other
results are summarized in [15]. The execution model of BOP
is similar except that the primitives of forks, posts, and waits
are hints and do not affect program semantics. Instead of race-
free execution for synchronization operations, BOP guarantees
sequential semantics for all memory accesses, annotated or
not.

Comparison with OpenMP: OpenMP is based on loop
parallelism [25]. The number of iterations is known before
a parallel loop starts, which allows efficient parallelization.
There is an implicit barrier at the end of a parallel loop. Data
is shared unless declared as private. OpenMP loops may have
non-deterministic results and intermittent errors. The implicit
barrier prevents parallelism between a loop and the subsequent
code. BOP is based on task parallelism and guarantees safe,
sequential semantics. OpenMP allows out-of-order access to
shared data, but BOP can allow only in-order access in order
to for it to safeguard sequential semantics [12].

VIII. SUMMARY

We have presented a new interface for access annotation,
which gives a programmer direct control over the cost and
precision of access monitoring. As access monitoring becomes
programmable, it becomes part of program semantics. Differ-
ent BOP annotations effectively create different programs. This
paper gives well-defined semantics of the annotation interface

system called SMTX added the speculation support [23].
The body of a pipeline loop is divided into stages. Each stage
is separated from the preceding stage by a pipeline label. By
default, a stage is sequential and its label takes no parameter.
A parallel stage has a parameter p to indicate the number of
parallel processors to use for the stage.

Figure 4 (a) shows an example TCA pipeline with 3
stages: stages 1 and 3 are sequential, and stage 2 is parallel.
The implementation uses one process running each sequen-
tial stage and p processes running the parallel stage. Thies
et al. developed profiling support to identify and transfer
shared data and to divide the stages evenly so that all pro-
cesses are fully utilized in the steady state.

for i in 1 ... n
 bop_ppr {
 bop_wait(<my_ppr-1, s1>)
 // serial stage 1
 bop_post(<my_ppr, s1>)

 bop_wait(<my_ppr-1, s1>)
 // parallel stage 2
 bop_post(<my_ppr, s2>)

 bop_wait(<my_ppr-1, s3>)
 // serial stage 3
 bop_post(<my_ppr, s3>)
 }
end for

for i in 1 ... n
 begin_pipelined_loop
 // serial stage 1

 pipeline(p)
 // parallel stage 2

 pipeline
 // serial stage 3
 end_pipelined_loop
end for

(a) 3-stage TCA pipeline (b) implementation by
dependence hints

Figure 4: Using post-wait to safely implement the pipeline
loop construct of Thies et al. [29]

The pipeline parallelism can be implemented by post-
wait, as shown in Figure 4 (b). Each stage starts with a
wait and ends with a post. The channel identifiers are set
up to wait for the same stage in the previous task, if the
stage is sequential. A parallel stage has two cases. If it is
the first stage, it should not wait for anyone; otherwise, it
waits for the previous stage in the previous task. Note that
the implementation can be encapsulated so the programmer
is provided with the same interface as the TCA pipeline, e.g.
through a bop pipeline hint.

The BOP pipeline exploits the same parallelism as TCA
pipeline and its safe version SMTX [23], but the implemen-
tation is different. In BOP, the same task uses the same pro-
cess, which simplifies error recovery. In TCA and SMTX,
the same stage uses the same process(es), which reuses pro-
cesses. The TCA and SMTX pipelines are likely more effi-
cient when computations are regular and regularly chunked
into stages. On the other hand, the fixed stage partition has
trouble handling variable length iterations or dependence be-
tween non-consecutive tasks. In implementation, TCA and
SMTX have the advantage of process reuse over the original
BOP [12]. The current BOP also reuses processes, which we
will discuss in Section 5.1.

4.4 Hmmer from SPEC 2006
Hmmer is a genetic search program developed at Washing-
ton University with nearly 36,000 lines of C code. Most of
the execution happens in two steps: calibration and search.
The calibration loop is shown below. Most of the time is
spent in the function P7Viterbi. The loop traverses through
a series of genetic sequences. It is parallel as far as we know
except in the call to AddToHistogram zc, which adds the
result computed in each iteration to a histogram. It can be
parallelized by a bop ppr and a bop ordered hint as shown
below. The entire histogram data (2 memory pages in the
test) is marked for posting in every task.

for (i = 0; i < parallelism; i++) {

bop_ppr { // begin possibly parallel region (PPR)

mx = CreatePlan7Matrix(1, hmm->M, 25, 0);
for (idx=i*temp; idx<(i+1)*temp && idx<nsample; idx++) {

dsq = DigitizeSequence(seq[idx], sqlen[idx]);

if (P7ViterbiSize(sqlen[idx], hmm->M) <= RAMLIMIT)
score = P7Viterbi(dsq, sqlen[idx], hmm, mx, NULL);

else
score = P7SmallViterbi(dsq, sqlen[idx], hmm, mx, NULL);

hhu[idx%temp] = score;
free(dsq); free(seq[idx]);

}
FreePlan7Matrix(mx);

bop_ordered { // implemented by post-wait

for (idx=i*temp; idx<(i+1)*temp && idx<nsample; idx++) {
length_zc = AddToHistogram_zc(&(post_zc.a), hhu[idx%temp]);
if (hhu[idx%temp] > post_zc.b) post_zc.b = hhu[idx%temp];

}
} // end bop_ordered

} // end bop_ppr
}

The search loop has more dependent operations at the
end of each iteration to perform a significance test and add
significant matches to a result list. The serial block is several
times longer in code and transfers 40 times more data (about
79 pages in the test run) than in the calibration loop. The
matched genes are inserted into the result list in the same
order as they were read from the input file.

5. Evaluation
5.1 Experimental Setup
BOP implementation BOP hints are implemented as run-
time library calls. We have completely re-designed and
re-implemented the system three times to improve its ef-
ficiency. The current design has three important features:

• Process reuse. Instead of forking a process for each PPR,
we fork a set of processes at the first PPR. Each one is
assigned the next unexecuted PPR and returns for a new
assignment after finishing. We designate a main process
to serve as the understudy and always maintain a correct
state. In case of a speculation error, the offending pro-

Details [OOPSLA 2011]

• Parallelism hint [Ding+, PLDI 2007]
• process-based design, understudy for recovery

• Dependence hint implementation
• correctness and progress guarantee
• filtered posting, sender/receiver conflict checking, last-

writer checking, silent drop, reordered receive, hint
overrides

• High-level constructs
• OpenMP ordered, Thies et al.‘s pipeline

• System design
• process reuse and continuous speculation [ICT branch]
• byte-granularity checking

• Examples and evaluation

42

BOP Demo

Review

• BOP system design
• what it mean by safe parallelization?
• what programming primitives does it provide?

• why can’t it include concurrency constructs such as atomic?
• how to create parallel tasks?
• how to shared data?
• how to synchronized shared data access?
• how to recover from error?

• Parallel programming
• can you parallel while-loops, e.g. string find/substitution?
• can you implement time skewing?

44

static dynamic speculative

parallel-
ism hints

implicit implicit
parallel-
ism

explicit
parallel-
ism

loop/
region BOP

loop
automatic

inspector-
executor

speculative do-
all

function
/region

automatic
parallelization Multilisp, pH,

etc

Multi-lisp, safe
future, ordered

transactions
data do-across, HPF, Jadedo-across, HPF, Jade Galois

loop/
function
/region

OpenMP, Cilk,
MPI, PGAS, Java future, x10,

StreamIt, Charm++, Go

OpenMP, Cilk,
MPI, PGAS, Java future, x10,

StreamIt, Charm++, Go

transactional
memory*

Expression and Implementation of Parallelism

less user effort
more parallelism, higher overhead

m
or

e e
xp

re
ss

iv
e

les
s c

or
re

ct
ne

ss
 co

nc
er

n

45

