

The Problem with Threads

- Sequential execution is semantically function composition
 deterministic components compose into deterministic results
- · Checking serializability is much harder
 - must be checked for all possible interleavings
 - become exponentially worse with more threads
 - threads are effective if they do not share data directly
 parallel make, web servers
- "Threads are seriously flawed as a computation model"
- "wildly nondeterministic"
- Lee manifesto
 - Pruning nondeterminism is the wrong way to go
 - what remains is still intrinsically intractable
 - "Deterministic ends should be accomplished with deterministic means"
 use nondeterminism only when needed

Current model considered harmful

- Threads and shared memory
 - Dominant model for parallel programming
- Difficult to program:
 - Hard to reason about all possible orderings
 - Subtle interactions of threads through shared memory
 - Easy to forget synchronization, introduce subtle bugs
 - Unintuitive model, implicit thread interactions and orderings

Sound, precise and efficient static race detection for multi-threaded programs - p.4/3

3

version	sequen-	speculation depth				_
	tial	1		3		7
times (sec)	8.46, 8.56,					
	8.50, 8.51					
	8.53, 8.48					
avg time	8.51					
avg speedup	1.00					
Dell PowerEdge	e 6850 with 4 d	Jal-core Intel	I 3.4GH	Iz, Xeon	7140M	
Dell PowerEdge processors, GC	≥ 6850 with 4 di C 4.0.1 with "-0	ual-core Intel 03"	I 3.4GH	Iz, Xeon	7140M	

Gzip compressing an 84MB file

Copy-and-Merge Parallelization

Application = Shared Data and Tasks

Example: Office application

- Save the document
- React to keyboard input by the user
- Perform a spellcheck in the background
- Exchange updates with remote users

Our Proposed Programming Model: Revisions and Isolation Types

Isolation Type

A type which implements automatic copying/merging of versions on write-write conflict

- Deterministic Conflict Resolution, never roll-back
- No restrictions on tasks (can be long-running, do I/O)
- Full concurrent reading and writing of shared data
- Clean semantics (see technical report)
- Fast and space-efficient runtime implementation

Conclusion SpiceC programming model Copy/commit computation model Programming interfaces Features Programmability – easy-to-use compiler directives Performance portability – does not rely on cache coherence Implementation on both multicore and manycore systems 2x – 18x speedup on a 24-core machine

Exp	ress	ion	ar	nd Impleme	entation of I	Par	allelism	
				static dynamic		speculative		
parallel- ism hints	00	p/ ion	mo	less uso re parallelism	ad BOP			
implicit parallel- ism	nore expressiv	p tion	cern	automatic rallelization	inspector- executor		eculative do- all	
			uoo ssəu.		Multilisp, pH, etc	M fu	ulti-lisp, safe ture, ordered transactions	
	aata		'ect	do-across, HPF, Jade		Galois		
explicit parallel- ism	t loop/ l- function /region			OpenMP, Cilk, PI, PGAS, Java future, ×10, StreamIt, Charm++, Go			transactional memory*	