CSC 258/458 Guest Lecture

Safe Parallel Programming

Chen Ding

Professor

February 19, 2015

Innowative Technology for Computing Professionals

CornoUrsr

May 2006

COVER FEATURE
The Problem with Threads
Edward A. Lee

University of Calfornia, Berkeley

For concurrent programming to become mainstream, we must discard
threads as a programming model. Nondeterminism should be judiciously
and carefully introduced where needed, and it should be explicit in
programs.

The Problem with Threads

+ Sequential execution is semantically function composition
« deterministic components compose into deterministic results
+ Checking serializability is much harder
» must be checked for all possible interleavings
» become exponentially worse with more threads
« threads are effective if they do not share data directly
« parallel make, web servers
+ “Threads are seriously flawed as a computation model”
« “wildly nondeterministic”
+ Lee manifesto
« Pruning nondeterminism is the wrong way to go
+ what remains is still intrinsically intractable
« “Deterministic ends should be accomplished with deterministic means”
+ use nondeterminism only when needed

Current model considered harmful

#® Threads and shared memory

» Dominant model for parallel programming
Difficult to program:

» Hard to reason about all possible orderings

» Subtle interactions of threads through shared memory
» Easy to forget synchronization, introduce subtle bugs
o

Unintuitive model, implicit thread interactions and
orderings

Sound, precise and efficient static race detection for multi-threaded programs — p 4/37

Problems with Locks [Scherer, Rochester 2005]

* Fault intolerance

« athread may die while holding a lock
* Preemption intolerance

- athread may be preempted while holding a lock

+ e.g. a page fault

+ Deadlock
* Priority inversion

« a high-priority thread H waits for a low-priority thread L

« scheduling H instead L may lead to deadlock
+ Convoying

« threads tend to follow each other in lock steps after blocking together
* Non-composability

« operations must be carefully composed to prevent deadlock

Step 1: Removing Races

Preliminaries

- Definitions
+ a data race
* a racy program
* Road map today
+ (parallel) sharing -> no sharing -> sharing
- Its effect (the topics on the class schedule)
+ dependence
+ coherence
* memory consistency
+ parallel programming models
+ software DSM
* transactional memory
* locking / nonblocking

Processes Instead of Threads

- Two-step strategy fork {
+ copy-on-write when running parallel x=1
- sequential merge afterwards y=x+1
}
x =3
- Uses join(tl)
+ speculative parallelization z=x+Yy

+ BOP, PLDI'07, OOPSLA11
+ CorD*, MICRO'08, PLDI'10; SMTX, ASPLOS'09.

- race-free and deterministic execution of threaded code
+ Grace, OOPSLA'09; Isolation/revision type, OOPSLA'10; CoreDet,
ASPLOS'10; Determinator, OSDI'10; DoublePlay/uniparallelism,
ASPLOS'11/13, SOSP'11; Spice C, PPOPP'11, PLDI'12.

8

fork {
x =1 BOP, PLDI 2007
y=x+1
}
x =3
join (t1) p1 = fork {
_ X1 = 1
z=x+ty Vel = Xe1 + 1
}
X2 = 3
join(p1)
Xt3 = 0 (X1, Xe2) =3
Z = Xe3 + Ve

PPR Hint [Ding+ PLDI'07]

* Likely rather than definite parallelism

* bop ppr { code }
+ PPR: possibly parallel region/routine

+ an optimistic fork/spawn (w/o join)

* Sequential equivalence

+ same result as sequential execution
+ incorrect hints may hurt parallelism but not correctness
* no non-determinism

+ no deadlock

- no live lock

* no lock (lock and wait free)

* no parallel debugging

- parallelized gzip, Lisp interpreter, Intel MKL, parser [PLDI'07]

10

Correctness Checking and
Error Recovery

Correctness

+ Conflict detection

* task i is checked after task i-1

* no incorrect value prediction and no true dependences
(otherwise recover)

+ correctness proof in PLDI'07 paper [similar to Allen &
Kennedy, 2001]

« Error recovery through understudy
* User feedback

+ feedback on the cause of conflicts
* non-trivial program changes may be needed
+ changing sequential code only

* ho parallel programming or debugging

12

.
BOP: Speculative Parallelization [Ding PLDI'07] Guip compressing an 84MB file
+ Start from sequential code fork
PPl pp\ra‘ fork version sequen- speculation depth
- Divide it into a series of B —_ tial 1 | 3 | 7
possibly parallel tasks l PP times (sec) |8.46)8.56,
8.50,8.51
- Copy-on-write at PPrb % under- pprec 8.53,8.48
speculative tasks study avg time 8.51
: avg speedu 1.00
- Correctness checking at g g P
' . .
fhe end & Sclon fishes frst
* Error recovery by pprec Dell PowerEdge 6850 with 4 dual-core Intel 3.4GHz, Xeon 7140M
understudy B : processors, GCC 4.0.1 with “-O3”
v
13 14

Intel MKL (Solving 8 Linear Systems)

[4 sequentiall # omp-4 4 bop-4 @ omp-8 ¥ bop-8 |

30.0
g 225
5 Copy-and-Merge Parallelization
2 |50
7 -
£ A similar speed
= A
A as sequential both processes
= (44) : and threads scale, but
- o former are faster

500 1000 1500 2000 2500 3000 3500
Equations per system

Reducers Reduction over list concatenation

» Naive Cilk++: x.append (0);

cillk_for (i = 0;i < n; ++i) cilk_spawn x.append (I);
s +=x[i]; x.append (2);

x.append (3);

cilk_sync;

» Correct Cilk: Use “reducer” object

cilk:reducer_opadd<float>r; Parallel execution: Reduction over monoids is deterministic.

cilk_for (i = 0;i < n; ++i)
2 2;3 0;1;2;3

r +=x[i]; [0]
LN (1

s +=r.get_value ();

Friday, January 29, 2010 Friday, January 29, 2010

Additional reducers

» Provided
» Lists (append, prepend)
» min, max, {min, max}_index
» opadd
» ostream
P Dbasic_string

» May build your own

Friday, January 29, 2010

GRACE

It is now safe to turn on your multicores.

MSR talk video: http://research.microsoft.com/apps/video/default.aspx?id=115873

+ Grace: Safe Multi-threaded Programming for C/C++

+ Fork-join parallelism
+ Cilk, TBB, OpenMP, Map-reduce do not prevent errors
+ Solution:
- sequential semantics---execute threads in program order

Efficient System-Enforced
Deterministic Parallelism

Amittai Aviram, Shu-Chun Weng,
Sen Hu, Bryan Ford

Decentralized/Distributed Systems Group,
Yale University
http://dedis.cs.yale.edu/

9" OSDI, Vancouver — October 5, 2010

N —

Concurrent Revisions:
A deterministic concurrency model.

Ejaan Leijen, Alexandro Baldassin,a
and Sebastian Burckhardt —
Microsoft Research -
(OOPSLA 2010) :) 1

Application = Shared Data and Tasks

Example: Office application

« Save the document

* React to keyboard input by the user

» Perform a spelicheck in the background
» Exchange updates with remote users

Shared Data

Our Proposed Programming Model:
Revisions and Isolation Types

Revision Isolation Type
A logical unit of work A type which implements
that is forked and automatic copying/merging of
joined versions on write-write conflict

» Deterministic Conflict Resolution, never roll-back

* No restrictions on tasks (can be long-running, do I/O)
+ Full concurrent reading and writing of shared data

+ Clean semantics (see technical report)

« Fast and space-efficient runtime implementation

“Problem Example 1”7 is solved

Render task reads positio
of all game objects

Physics task updates
position of all game objects

No interference!

\

Coll. Det. 1
D

Render
network

autosave

public void Run()
{

// Fork a revision: conceptually all versioned state is copied and each
revision is fully isolated
var r = CurrentRevision.Fork(() => {
s = "world"; // write to s in the forked revision

h;

Console.WriteLine(s);

s = "Hello"; // and write to s in the main revision
// revision are isolated so it always shows 'hello’

CurrentRevision.Join(r); // writes are merged back on the join
Console.WriteLine(s); // by default writes in the child

}
}

class Program

{

static void Main(string]] args)

{

}
}

new Sample().Run();

* http://www.rise4fun.com/revisions

PPOPP 2011

SpiceC: Scalable parallelism
via implicit copying and
explicit Commit

Min Feng, Rajiv Gupta, and Yi Hu
University of California, Riverside

SpiceC: Computation Model

» Memory Spaces
- Shared & Private
» Copy & Commit

> Support speculative

parallelism

> Uniform program for syste
with and without cache

coherence

Shared

Conclusion

» SpiceC programming model
> Copy/commit computation model
> Programming interfaces
» Features
> Programmability — easy-to-use compiler directives
- Versatility — support multiple forms of parallelism and
speculative parallelism
- Performance portability — does not rely on cache coherence
» Implementation on both multicore and manycore
systems

» 2x — 18x speedup on a 24-core machine

What About True Dependences?

[Ke et al. OOSPLA 2011]

How to Tackle True Dependences?

* Infrequent frue dependences

+ speculation

‘b |
oth data and contro while (has more()) {

+ Circumventable true n = next_item()
dependences
+ value prediction if (search(n) != nil)
+ Otherwise return n
- serialize

+ speculative synchronization

31

True Dependences, Truly Dependent

Listing 3: A possibly partially parallel loop

while (has_more(inputs)) begin
w = get_next(inputs)
try computing w in parallel
+ Are there true bop_ppr {

dependences among t = compute (W)
PPR tasks? # allocate a new node n

+ How to synchronize? n = new-gnode(t)

) # make n the new tail
* How to communicate? append (outputs , n)

end

Channel-based Dependence Hints

* Channel fill/post/wait
+ bop_fill(addr, channel id): add an address range to a channel
* bop_post(channel id): copy/send channel data
+ modified data only, single post per channel
+ bop_wait(channel id): stall until a post, copy incoming data
* bop_cc(channel 1, channel 2): equate two channels
* Properties
+ sender-side addressing
* no sender/receiver disagreement
* can pass dynamic data
* message aggregation
+ channel chaining
* to express conditional dependence

+ partial dependence marking
34

Tasy 1 Tasy > Tasy, 3
Listing 4: Safe parallelization using basic primitives
id = # ch 1 i
. c1d. 0 ¢ ar'me id) d}/nam_ a=new counter(0)
- Sender-side while (has_more(inputs)) begin da Ic bop flll(1
addressing w = get_next(inputs) ta op_flll(1, a) bop_wait(1)
. what fo bop_ppr { bop_post(1) Soh-
) t = compute (W) Tat+
communicate n = new_qnode(t)
+ Sequential access # wait for the last tail o , b it b -
to shared data bop-wait (cid — 1) if cid>0 e de"ed *a=0 op_wal : op_wait(2)
. Safet append (outputs , n) ’\'eCut- bop_flli(1, a) at+ At
4 : lon bop_flll(2
send the new tail bop_post(1) op_flli(2, a)
+ unmatched . . -
. bopfill(cid, n, sizeof(qnode))
post/wait bop_post(cid)
* wrong channel 1
cid ++ % bop_wait(2)
end *3+

for (i = 0; i < parallelism; i++) {

+ Hmmer from SPEC 2006
+ genetic search
+ 36K sLOC
+ most time spent in
calibration and search
. L librati if (P7ViterbiSize(sqlen[idx], hmm->M) <= RAMLIMIT)
most fime in calibration score = P7Viterbi(dsq, sqlen[idx], hmm, mx, NULL);

spent in function else
P7Viterbi called in the score = P7SmallViterbi(dsq, sqlen[idx], hmm, mx, NULL);

loop in the right

bop_ppr { // begin possibly parallel region (PPR)
mx = CreatePlan7Matrix(1, hmm->M, 25, 0);

for (idx=i*temp; idx<(i+1)*temp && idx<nsample; idx++) {
dsq = DigitizeSequence(seqlidx], sqlen[idx]);

hhu [idxY%temp] = score;
free(dsq); free(seqlidx]);

FreePlan7Matrix (mx) ;

bop_ordered {) // implemented by post-wait

2 g o @

Pl ,6».3“ for (idx=i*temp; idx<(i+1)*temp &% idx<nsample; idx++) {

o OpenMP hmmer o length_zc = AddToHistogram_zc(&(post_zc.a), hhulidx/temp]);
24 S - ke if (hhulidx%temp] > post_zc.b) post_zc.b = hhulidx%temp] ;

} // end bop_ordered

} // end bop_ppr
¥

num. processors p

while not converged

- Iterative solvers for i in I...n
- fix-point solutions # try dinner T ckPPRs L
+ data clustering bop_ppr {

after convergence

r = compute
bop-ordered {

+ dataflow analysis
- scientific simulation

+ Convergence check s = s.add_result()
- forcing time steps E
to serialize make the check
- Time skewing non-blocking wait for inner
* overlap time steps loop to finish
- okay until the last # try\, nexf time step in pgrallel
bop-ppr {

step bop_ordergd {

if good_enough?(s
converged = true
end

Listing 8: string scanning and pattern conversion

s

str [0...n], src=°"‘aba’’, target="‘‘bab’’

for ii in 2...n with step b do
try next block in parallel
bop_ppr {

+ String substitution
9 # update block boundary

+ e.g. "aba" -> "bab"

* maybe parallel for i = ii...min(ii+b—1, n)

if matches(str[i—2 ... i], src)
str[i—2 i] = target
3 letters are changed

"

+eg."aa...a" ->"aa..a"

* maybe sequential
+ “abaa ... a" -> "bb ... bab"

end
end

}

end
update the whole string

return str[0 ... n]

Parallel Performance of String Substitution

©o — — ©
-+-- no conflict o+
-%- 1% conflict 4+
0 o, : - e
0 5% conflict ot .-X
10% conflict 7 L X7
<+ o |-*- 50% conflict - x o<
a -
> X
o T oxT Qe
o) + .
& o o o ¢ °
.
[+7, - oo
e
R F ek ek [T
o - = o

num. processors p

foriin1..n
bop_ppr {
bop_wait(<my_ppr-1, s1>)
// serial stage 1
bop_post(<my_ppr, s1>)

bop_wait(<my_ppr-1, s1>)

foriin1..n
begin_pipelined_loop
// serial stage 1

pipeline(p) // parallel stage 2
// parallel stage 2 bop_post(<my_ppr, s2>)
pipeline bop_wait(<my_ppr-1, s3>)

// serial stage 3

// serial stage 3 bop._post(<my_ppr, s3>)

end_pipelined_loop
end for

end for

(b) implementation by

(a) 3-stage TCA pipeline dependence hints

Details [OOPSLA 2011]

* Parallelism hint [Ding+, PLDI 2007]
* process-based desigh, understudy for recovery
- Dependence hint implementation
+ correctness and progress guarantee
- filtered posting, sender/receiver conflict checking, last-
writer checking, silent drop, reordered receive, hint
overrides
* High-level constructs
+ OpenMP ordered, Thies et al.'s pipeline
+ System design
* process reuse and continuous speculation [ICT branch]
* byte-granularity checking
+ Examples and evaluation

42

BOP Demo

Review

* BOP system design

+ what it mean by safe parallelization?
* what programming primitives does it provide?
+ why can't it include concurrency constructs such as atomic?
* how to create parallel tasks?
* how to shared data?
* how to synchronized shared data access?
+ how to recover from error?

* Parallel programming

+ can you parallel while-loops, e.g. string find/substitution?
+ can you implement time skewing?

44

Expression and Implementation of Parallelism

’ static dynamic speculative

parallel- user effort
ism hints elism, higher overhead

BOP

s inspector- peculative do-

= ‘omati executor all
implicit = [putomaric
parallel- lrallelization | Multilisp, pH, Multi-lisp, safe
. A future, ordered

3 etfc .

= transactions

f—

=4| do-across, HPF, Jade Galois
explcit | loop/ OpeniP, Cilk, fransactional
Parallel— function PI, PGAS, Java future, x10, memory*
Ism /region StreamIt, Charm++, Go

