
SEDA
Staged Event-Driven Architecture

� Problem/Motivations:
� Internet applications catering to

� bursty, massively concurrent demands
� Responsive
� Robust
� Fault tolerance

� Concurrent requests translate to even higher I/O
and N/w requests

� Example:
� 1.2 billion page views @ Yahoo daily.
� 10 billion hits @ AOL Web caches daily.

Challenging trends

� Services are becoming complex.
�

� 1. Static content -> Dynamic content
� 2. Deployment issues
� 3. Hosted on general purpose platforms

SEDA – A quick intro.

� Provides a general “framework” for authoring
“highly concurrent” & “well-conditioned
service” instances that “handle load
gracefully”.

�

� Traditional OS designs versus SEDA design.

SEDA – A quick intro (Contd)

� SEDA combines:
� Aspects of thread management (Ease of pgmg)
� Event based programming model (Concurrency)

�

� Using the SEDA framework, applications are
developed as “Network of stages”, each with
an associated incoming queue.

� Java applications based on SEDA have
surprisingly outperformed their C
counterparts.

Outline of the rest of the talk:

� Current development frameworks
� SEDA Archictecture
� Haboob Http server
� Gnutella p2p file sharing n/w
� Comparison with other architectures
� Conclusion

Terminology

� Well conditioned service:
� A service is well conditioned if it behaves like a

simple pipeline, where the depth of the pipeline is
determined by the path through the network, and
the processing stages within the service itself.

� The key property of a well conditioned service is
“graceful degradation”:

� As the load exceeds capacity, the service maintains
high throughput with a linear response-time penalty
that impacts all the clients equally, or atleast according
to some service specific policy.

Thread based frameworks

� A commonly used
framework:
� Create a new thread

for each request.
� Advantage:

� Easy to program
� Disadvantages:

� Overheads for
cache/TLB misses,
scheduling, lock
contentions.

Possible remedies

� Scheduler activations
� Application-specific handlers
� SPIN
� Exokernel
� Etc
� All attempt to give the applications the ability

to specialize the policy decisions made by the
kernel.

� Bounded thread pools - issues.

Event driven concurrency

Event driven mechanisms

� These systems tend to be robust to load, with
little degradation in throughput. (Requests vs
Events).

� Excess tasks are absorbed in the server's
event queue.

� Assumption: Event handling threads do not
block. Non-blocking I/O must be employed.

Performance

SEDA Architecture

� Goals:
� Massive concurrency
� Well-conditioned service
� Adapt to changing load conditions
� Tune resource management

�

� Stage: A fundamental processing unit.
� Has an incoming event queue, a thread pool,

and an event handler. Each stage also has a
controller for scheduling & thread allocation.

SEDA: Stage

Dynamic Resource Controllers

� Goal:
� Shield programmers from performance tuning

�

� Resource controllers:
� Thread pool controller

� Adjust number of threads in the thread pool
� SEDA batching controller

� Adjust number of events processed in each invocation
of the event handler.

Sandstorm

� Sandstorm is a SEDA implementation in Java
using nonblocking socket i/o (Java NIO
library).

� Each application module implements a simple
event handler – handleEvents() which
processes a batch of events from the
incoming queue.

� No worries on thread creation, management.

Sandstorm (Contd)

� Provides Asynchronous network socket layer
based on nonblocking I/O provided by the OS
� AsyncSocket, asyncClientSocket,

asyncServerSocket, asyncConnection etc.
� 3 stages: listen, read, write.

� Provides Asynchronous file I/O layer that uses
blocking OS calls and uses threads to expose
nonblocking behavior.
� AsyncFile (provides non-blocking read, write,

seek, stat etc)

Applications & Evaluation - Haboob

� A high performance HTTP server
� Clients issue http requests & wait for responses
� SPECweb99 benchmark suite used for

performance testing.
� Benefits of using SEDA:

� Constructing Haboob increased the modular
design.

� Each stage provides a robust, reusable
component, individually conditioned to load.

� Test different page cache implementations and
file i/o much easily.

Haboob architecture

Haboob (Contd)

� Adaptive load shedding:
� When overloaded, Haboob adaptively sheds load.
� The queue threshold is reduced of that particular

stage.
� Example: HttpRecv stage - Error message is

returned to the client.

Haboob performance

Gnutella – A Packet router

� A peer to peer file sharing network.
� Search & download files from other peer

Gnutella users.
� A node discovers others using a discovery

protocol; use ad-hoc multihop routing.
� Architecture has 3 stages:

� GnutellaServer stage (Connection handling)
� GnutellaRouter stage (Table, Process, Route)
� GnutellaCatcher stage (Host discovery)

Gnutella

� Load conditioning policies
� Threshold incoming queue.
� Probabilistically drop packets based on queue

length.
� Admit all packets; filter them based on types.

Comparing SEDA with others.

� Recent studies indicate SEDA to perform
poorly compared to threaded/event-based
systems in C.

� Matt Welsh, counters it:
� Sandstorm implementation was on Linux 2.2, JDK

1.3
� Studies have used different environments, JVM's.

� SEDA n/w layer dependent on several
parameters.

� Tuning these parameters can improve the
performance.

� Goal was to show SEDA had “acceptable
performance”, while providing good load

Conclusion

� Measurement & Control is the key, as
opposed to fixed resource allocation.

�

� Challenges:
� Detecting overload conditions
� Strategy to counter overload

�

� Maybe use SEDA as a new direction in OS
design.

