
1

Basics of Parallelization

• Dependence analysis

• Synchronization

– Events

– Mutual exclusion

• Parallelism patterns

When can 2 statements execute in parallel?

S1 and S2 can execute in parallel

iff

there are no dependences between S1 and S2

– true dependences

– anti-dependences

– output dependences

Some dependences can be removed.

Types of Dependences

• True (flow) dependence – RAW

• Anti-dependence – WAR

• Output dependence – WAW

Loop-Carried Dependence

• A loop-carried dependence is a dependence

that is present between statements in two

different iterations of a loop

• A loop-independent dependence is a

dependence between two statements in the

same loop

• Loop-carried dependences limit loop

iteration parallelization

1 2

3 4

2

Synchronization

• Used to enforce dependences

• Control the ordering of events on different

processors

– Events – signal(x) and wait(x)

– Fork-Join or barrier synchronization (global)

– Mutual exclusion/critical sections

Eliminating Dependences

• Privatization or scalar expansion

• Reduction (common pattern)

Example: Scalar Expansion or

Privatization

for (I = 0; I < 100; I++)

T = A[I];

A[I] = B[I];

B[I] = T;

Loop-carried anti-dependence on T

Eliminate by converting T into an array or by

making T private to each loop iteration

Example: Scalar Expansion

for (I = 0; I < 100; I++)

T [I]= A[I];

A[I] = B[I];

B[I] = T[I];

Loop-carried anti-dependence eliminated

5 6

7 8

3

Removing Dependences:

Reduction

sum = 0.0;

for(i=0; i<100; i++) sum += a[i];

• Loop-carried dependence on sum.

• Cannot be parallelized, but ...

Reduction (continued)

for(i=0; i<...; i++) sum[i] = 0.0;

fork();

for(j=…; j<…; j++) sum[i] += a[j];

join();

sum = 0.0;

for(i=0; i<...; i++) sum += sum[i];

Common pattern often with explicit support

e.g., sum = reduce (+, a, 0, 100)

CAVEAT: Operator must be commutative and associative

Steps in the Parallelization

• Decomposition into tasks
– Expose concurrency

• Assignment to processes
– Balancing load and maximizing locality

• Orchestration
– Name and access data

– Communicate (exchange) data

– synchronization among processes

• Mapping
– Assignment of processes to processors

Decomposition into Tasks

• Tasks may be

– Identical computation

– Different computation

– Indeterminate size

• Tasks may be

– Independent

– Have non-trivial order

9 10

11 13

4

Decomposition into Tasks

• Conceptualize tasks and ordering as a task dependency
DAG (for control dependency), along with a task
interaction DAG (for data dependency)

– Edges represent task serialization

– Critical path – longest weighted path through graph (lower bound
on parallel execution time)

• Measures of parallel performance: speedup, efficiency

• Tradeoff between
– Degree of concurrency (number of tasks that can be processed in

parallel)

– Task granularity

– Associated overheads

Patterns of Parallelism

• Decomposition views
– Data (static) vs. recursive (dynamic) decomposition

– Exploratory decomposition vs. speculative decomposition
• Exploratory - Parallel formulation may perform different amounts of work

resulting in super or sub-linear speedup

• Speculative - Schedule tasks even when they may have dependencies

• Data parallelism: all processors do the same thing on different data.
– Regular

– Irregular

• Task parallelism: processors do different tasks or dynamically pick up
data to compute on

– Task queue

– Pipelines

Recursive Decomposition
Suitable for problems solvable using divide-and-conquer

Example: Quicksort 1. Select a pivot

2. Partition set based on pivot

3. Recursively partition each subset in parallel

(Static) Data Parallelism

• Essential idea: each processor works on a different

part of the data (usually in one or more arrays)

– work partitioned based on “owner” computes rule,

applied to either input, output, or intermediate data

• Regular or irregular data parallelism: using linear

or non-linear indexing.

• Examples: MM (regular), SOR (regular), MD

(irregular).

14 17

18 19

5

Matrix Multiplication

• Multiplication of two n by n matrices A and

B into a third n by n matrix C

Matrix Multiply

for(i=0; i<n; i++)

for(j=0; j<n; j++)

c[i][j] = 0.0;

for(i=0; i<n; i++)

for(j=0; j<n; j++)

for(k=0; k<n; k++)

c[i][j] += a[i][k]*b[k][j];

Parallel Matrix Multiply

• No loop-carried dependences in i- or j-loop.

• Loop-carried dependence on k-loop.

• All i- and j-iterations can be run in parallel.

Parallel Matrix Multiply (contd.)

• If we have P processors, we can give n/P

rows or columns to each processor.

• Or, we can divide the matrix in P squares,

and give each processor one square.

20 21

22 23

6

SOR

• SOR implements a mathematical model for

many natural phenomena, e.g., heat

dissipation in a metal sheet

• Model is a partial differential equation

• Focus is on algorithm, not on derivation

• Discretized problem

Relaxation Algorithm

• For some number of iterations

for each internal grid point

compute average of its four neighbors

• Termination condition:

values at grid points change very little

(we will ignore this part in our example)

Discretized Problem Statement

/* Initialization */

for(i=0; i<n+1; i++) grid[i][0] = 0.0;

for(i=0; i<n+1; i++) grid[i][n+1] = 0.0;

for(j=0; j<n+1; j++) grid[0][j] = 1.0;

for(j=0; j<n+1; j++) grid[n+1][j] = 0.0;

for(i=1; i<n; i++)

for(j=1; j<n; j++)

grid[i][j] = 0.0;

Discretized Problem Statement

for some number of timesteps/iterations {

for (i=1; i<n; i++)

for(j=1, j<n, j++)

temp[i][j] = 0.25 *

(grid[i-1][j] + grid[i+1][j]

grid[i][j-1] + grid[i][j+1]);

for(i=1; i<n; i++)

for(j=1; j<n; j++)

grid[i][j] = temp[i][j];

}

24 25

26 27

7

Parallel SOR

• No dependences between iterations of first
(i,j) loop nest.

• No dependences between iterations of
second (i,j) loop nest.

• Anti-dependence between first and second
loop nest in the same timestep.

• True dependence between second loop nest
and first loop nest of next timestep.

Parallel SOR Dependences

• First (i,j) loop nest can be parallelized.

• Second (i,j) loop nest can be parallelized.

• We must make processors wait at the end of

each (i,j) loop nest.

• Natural synchronization: fork-join.

Parallel SOR Decomposition

• If we have P processors, we can give n/P

rows or columns to each processor.

• Or, we can divide the array in P squares,

and give each processor a square to

compute.

Molecular Dynamics (MD)

• Simulation of a set of bodies under the

influence of physical laws.

• Atoms, molecules, celestial bodies, ...

• Have same basic structure.

28 29

30 31

8

Molecular Dynamics (Skeleton)

for some number of timesteps {

for all molecules i

for all other molecules j

force[i] += f(loc[i], loc[j]);

for all molecules i

loc[i] = g(loc[i], force[i]);

}

Molecular Dynamics (continued)

• To reduce amount of computation, account

for interaction only with nearby molecules.

Molecular Dynamics (continued)

for some number of timesteps {

for all molecules i

for all nearby molecules j

force[i] += f(loc[i], loc[j]);

for all molecules i

loc[i] = g(loc[i], force[i]);

}

Molecular Dynamics (continued)

for each molecule i

number of nearby molecules count[i]

array of indices of nearby molecules index[j]

(0 <= j < count[i])

32 33

34 35

9

Molecular Dynamics (continued)

for some number of timesteps {

for(i=0; i<num_mol; i++)

for(j=0; j<count[i]; j++)

force[i] += f(loc[i],loc[index[j]]);

for(i=0; i<num_mol; i++)

loc[i] = g(loc[i], force[i]);

}

Molecular Dynamics (continued)

• No loop-carried dependence in first i-loop.

• Loop-carried dependence (reduction) in j-

loop.

• No loop-carried dependence in second i-

loop.

• True dependence between first and second

i-loop.

Molecular Dynamics (continued)

• First i-loop can be parallelized.

• Second i-loop can be parallelized.

• Must make processors wait between loops.

• Natural synchronization: fork-join.

Molecular Dynamics (continued)

for some number of timesteps {

for(i=0; i<num_mol; i++)

for(j=0; j<count[i]; j++)

force[i] += f(loc[i],loc[index[j]]);

for(i=0; i<num_mol; i++)

loc[i] = g(loc[i], force[i]);

}

36 37

38 39

10

Irregular vs. regular data parallel

• In SOR, all arrays are accessed through

linear expressions of the loop indices,

known at compile time [regular].

• In MD, some arrays are accessed through

non-linear expressions of the loop indices,

some known only at runtime [irregular].

Irregular vs. regular data parallel

• No real differences in terms of

parallelization (based on dependences)

• Will lead to fundamental differences in

expressions of parallelism:

– irregular difficult for parallelism based on data

distribution

– not difficult for parallelism based on iteration

distribution.

Molecular Dynamics

Decomposition

• Parallelization of first loop:

– has a load balancing issue

– some molecules have few/many neighbors

– more sophisticated loop partitioning necessary

40 41

42 43

11

Patterns of Parallelism

• Decomposition views
– Data (static) vs. recursive (dynamic) decomposition

– Exploratory decomposition vs. speculative decomposition
• Exploratory - Parallel formulation may perform different amounts of work

resulting in super or sub-linear speedup

• Speculative - Schedule tasks even when they may have dependencies

• Data parallelism: all processors do the same thing on different data.
– Regular

– Irregular

• Task parallelism: processors do different tasks or dynamically pick up
data to compute on

– Task queue

– Pipelines

Task Parallelism

• Each process performs a different task.

• Two principal flavors:

– pipelines

– task queues

• Program Examples: PIPE (pipeline), TSP

(task queue).

Pipeline

• Often occurs with image processing

applications, where a number of images

undergo a sequence of transformations.

• E.g., rendering, clipping, compression, etc.

Sequential Program

for(i=0; i<num_pic, read(in_pic[i]); i++) {

int_pic_1[i] = trans1(in_pic[i]);

int_pic_2[i] = trans2(int_pic_1[i]);

int_pic_3[i] = trans3(int_pic_2[i]);

out_pic[i] = trans4(int_pic_3[i]);

}

44 45

46 47

12

Parallelizing a Pipeline

• For simplicity, assume we have 4

processors (i.e., equal to the number of

transformations).

• Furthermore, assume we have a very large

number of pictures (>> 4).

Sequential vs. Parallel Execution

• Sequential

• Parallel

(Color -- picture; horizontal line -- processor).

Parallelizing a Pipeline (part 1)

Processor 1:

for(i=0; i<num_pics, read(in_pic[i]); i++) {

int_pic_1[i] = trans1(in_pic[i]);

signal(event_1_2[i]);

}

Parallelizing a Pipeline (part 2)

Processor 2:

for(i=0; i<num_pics; i++) {

wait(event_1_2[i]);

int_pic_2[i] = trans2(int_pic_1[i]);

signal(event_2_3[i]);

}

Same for processor 3

48 49

50 51

13

Parallelizing a Pipeline (part 3)

Processor 4:

for(i=0; i<num_pics; i++) {

wait(event_3_4[i]);

out_pic[i] = trans4(int_pic_3[i]);

}

Another Sequential Program

for(i=0; i<num_pic, read(in_pic); i++) {

int_pic_1 = trans1(in_pic);

int_pic_2 = trans2(int_pic_1);

int_pic_3 = trans3(int_pic_2);

out_pic = trans4(int_pic_3);

}

Can we use same parallelization?

Processor 2:

for(i=0; i<num_pics; i++) {

wait(event_1_2[i]);

int_pic_2 = trans1(int_pic_1);

signal(event_2_3[i]);

}

Same for processor 3

Can we use same parallelization?

• No, because of anti-dependence between

stages, there is no parallelism

• Another example of privatization

• Costly in terms of memory

52 53

54 55

14

In-between Solution

• Use n>1 buffers between stages.

• Block when buffers are full or empty

Perfect Pipeline

• Sequential

• Parallel

(Color -- picture; horizontal line -- processor).

Things are often not that perfect

• One stage takes more time than others

• Stages take a variable amount of time

• Extra buffers can provide some cushion

against variability

Acknowledgements

Slides reflect content from Willy Zwaenepoel

and from Grama/Gupta/Karypis/Kumar that

accompany their corresponding

course/textbooks and have been adapted to

suit the content of this course

56 57

58 155

