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GPUs in Action
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Graphics Processing Unit

e Traditionally used for 3D rendering, but now also used
for large computations
o QOriginally special function units with specialized HW
& ISAs
o (Good at applying same operation to large number of
iIndependent elements, in parallel
e Why GPUs?
o High performance/throughput for massively parallel
computations
o Much higher arithmetic capability and memory
bandwidth than even high-end CPUs



Terminology

e Streaming Processor abstraction
o Programming model designed to abstract away all
graphics terminology of GPU
o Stream
m Ordered set of data

o Kernel
m Function applied element-wise to a set of

streams and that outputs one or more streams

e SIMD - Single Instruction, Multiple Data
o SPMD - Single Program, Multiple Data



Graphics Pipeline

Memory Buffers
vertex < vertex descriptors
generation vertex data buffers
(ve)

- . i global buffers
e A series of generation and processing stages

o Connected by stream-entities
e Processing stages are programmable
o Shader functions used to alter appearance of
graphical output.

vertex topology

global buffers
textures

global buffers
textures

output image

fixed-function stage
- shader-defined stage



Vertex Generation

I—
Memory Buffers

vertex < vertex descriptors
generation vertex data buffers
(ve)

global buffers
textures

primitive  # vertex topology

global buffers
textures
global buffers
textures

pixel - » output image

operations
(PO)

- fixed-function stage
- shader-defined stage
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VG - prefetches vertex and texture data from memory
and constructs a stream of vertex data.



Vertex Processing

Memory Buffers © vl
vertex descriptors
vertex data buffers
— ‘ be
primitive % vertex topology
® V4
r global buffers
textures
¢ v3¢
fragment
generation
(FG)
global buffers .
textres e VP - programmable operation on each vertex (e.
! g. computing projection from 3D space to
< » output image
P atons o screen).
(PO)

- fixed-function stage
- shader-defined stage



Memory Buffers

vertex descriptors
vertex data buffers

global buffers
textures

vertex topology

global buffers
textures

pixel
operations
(PO)

global buffers
textures

output image

- fixed-function stage
- shader-defined stage

Primitive Generation
Primitive Processing

(b)
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PG - groups vertices into ordered streams of
primitives
PP - Produces zero or more output primitives.



Fragment Generation

Memory Buffers

vertex -
generation
(ve)

primitive

vertex descriptors
vertex data buffers

global buffers
textures

vertex topology

global buffers
textures

pixel
operations

(PO)

A 4

global buffers
textures

output image

- fixed-function stage
- shader-defined stage

(c)

p0

e FG - performs rasterization through sampling.
Distance from camera and other parameters
are saved



Memory Buffers
vertex < vertex descriptors
generation vertex data buffers
(ve) ¢

global buffers

textures
primitive % vertex topology
generation
(PB)

global buffers
textures

global buffers
textures

pixel - » output image

operations
(PO)

- fixed-function stage
- shader-defined stage

Fragment Processing

(d)

p0

FP - simulates light interaction to determine color
and opacity.



Pixel Operations

(e)
Memory Buffers
vertex < vertex descriptors
generation vertex data buffers
(ve)
global buffers
textures
primitve ¢ vertex topology
generation
(PG)
v
r global buffers
textures
v
fragment
generation
(FG)
f?éifféi”“““ e PO - calculates image pixel values based
. on distance and obstructions.
‘ plxelv < | output image ‘
operations
(PO)

- fixed-function stage
- shader-defined stage



Hardware Multithreading

e Threads stall due to memory
accesses M executin

- Y —
e Hardware contains multiple 0
execution units to perform - .
instructions from other threads J
when a thread stalls. 80
| Figure A: Example GPU core To ™ T b
ALUs (SIMD operation)
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CPU vs GPU

CPUs

Parallelism through time
multiplexing

Emphasis on low memory latency
Allows wide range of control
flows + control flow optimizations
Low-latency caches that allow
performant out-of-order execution
Very high clock speeds

GPUs

e Parallelism through space
multiplexing

e Emphasis on high memory
throughput

e Very control flow restricted

e High-latency caches that tend to
be read-only

e Mid-tempo clock speeds

Other GPU Points

operations

better!

e Power efficient for large parallel

e Inexpensive on a TFLOP basis
e Difficult to program - but getting




CUDA

Compute Unified Device Architecture
Platform and programming model by Nvidia
Introduced in 2006 w/ GeForce 8800 GTX
First architecture targeted at general purpose use
o CUDA C provides high-level language familiar to most programmers
o ALUs built for more general types of computation
o Unified Shader Model improves use of GPU resources



Unified Shader Models

Unified Shader Architecture: all GPU units designed to handle any shader
Unified Shader Model. all shaders have similar instruction set
Unified Model does NOT require Unified Architecture!
Advantages over "classical" model:

o more dynamic and flexible use of GPU resources

o open to different workflows

m both of these make USA/USM well-suited to GPGPU
programming



Programming in CUDA

e CUDA C: good old C + a few new functions, structs, and primitives
e Kernel functions: global and device
©  global :code executed on GPU from CPU
o  device :code executed on GPU from other GPU functions
e Grid abstraction: spatial multiplexing
o grid — blocks — threads
o grid (2D) + block (3D) = 5 degrees of indexing freedom
e SIMD paradigm: Single Instruction Multiple Data
o well-suited to data-parallel tasks
o conditionals are costly and should be avoided



CUDA Workflow

1.

allocate data in main memory 1 // allocate arrays on host
d GPU 16 a_h = ( x)malloc(size);
ana on 17 b_h = ( x)malloc(size);
18
19 // allocate array on device
20 cudaMalloc( ( xk) &a_d, size);

move data from
MM — GPU

issue kernel
over given block
+ thread count

26

34
35

// copy data from host to device
cudaMemcpy(a_d, a_h, sizeof( ) * N, cudaMemcpyHostToDevice);

// Part 2 of 2. Call incrementArrayOnDevice kernel
incrementArrayOnDevice <<< nBlocks, blockSize >>> (a_d, N);



CUDA Workflow

- 2v __global__ incrementArrayOnDevice( *a, N) {
4' kernels exeCUte In para”el 3 // calculate index to work over; increment
4 idx = blockIdx.x * blockDim.x + threadIdx.Xx;
5 (idx < N)
6 alidx] = al[idx] + 1.f;
7}
5 copy data from 37 // Retrieve result from device and store in b_h

GPU — MM 38 cudaMemcpy(b_h, a_d, sizeof( ) * N, cudaMemcpyDeviceToHost);



CUDA Memory Layout

Grid

Block (0, 0)

WI"”‘“‘“I
oy

Thread (0,0) | Thread (1, 0)

t AA t AA

Local Local
Memory Memory
' Global

Memory

Constant
Memory

Texture
Memory

=] ==

Block (1, 0)

Shared Memory

: :
Thread (0, 0) | Thread (1, 0)
t AA t AL
Local | Local
Memory Memory

Per-thread registers
o Very fast; lifetime of thread
Per-block shared memory
o Very fast; lifetime of block
All-block global memory
o ~100x slower than shmem
o high throughput achieved
through coalescing
Per-thread local memory
o gotcha! as slow as global
All-block constant memory
o half-warp broadcast reduces
bandwidth
All-block texture memory
o useful when exploiting
spatial locality



CUDA Global Memory

e Global memory achieves high throughput through coalescing
o Works under certain global memory access patterns
o Half-warp coalescing: accesses by all threads in a half-warp (16
threads) are coalesced
m threads must access 32, 64, or 128-bit data types
m data accessed must be properly word-aligned
m threads must access words of coalesced access in sequence
o Responsibility is placed upon CUDA programmer
m no coalescing — huge hit to memory throughput
o Can use CUDA Profiler to track amount of coalesced/non-coalesced
accesses



CUDA Streaming

Task parallelism can be achieved
through streaming
o stream: queue of tasks to be
performed on GPU
asynchronous copies hide latency
of memory movement
o requires page-locked
("pinned") memory
m ruins virtual memory
abstraction
m steps on other
processes' toes
later versions support two
streaming memory accesses

copy A to GPU
copy B to GPU
kernel copy A to GPU
copy B to GPU
copy C from GPU kernel
copy C from GPU
copy A to GPU
copy B to GPU
kernel copy A to GPU
copy B to GPU
copy C from GPU kernel

copy C from GPU




CUDA Applications

e CUBLAS: CUDA Basic Linear Algebra Subprograms
o Adapted from well-known FORTRAN BLAS package
o Three tiers of routines
m level 1: vector scaling, inner product
m level 2: matrix-vector products, matrix triangularization
m level 3: matrix-matrix multiplication
e CUFFT: CUDA Fast Fourier Transforms
o 1D, 2D, and 3D transforms for real-valued and complex data

CUBLAS-Zgemm —MKL-Zgemm cuFFT Single Precision
450 = CUFFT -=-MKL
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* cuBLAS 4.1 on Tesla M2090, ECC on +Performance may vary based on OS5 ver. and motherboard config. LogZ(size)
* MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz



NVIDIA

Kepler GK 110 Architecture

e Dynamic Parallelism
o Without ANY CPU help, GPU can

m dynamically create new worker threads

m synchronize among thread results

m schedule worker threads

o Advantages:

m GPU can adapt to varying amounts and types of
parallel workloads (choose optimal # threads and
program parameters)

CPU can perform other tasks in the meanwhile
m avoids CPU-GPU data transfers



Dynamic Parallelism Example

Dynamic Parallelism
Makes GPU Computing Easier & Broadens Reach

Too coarse Too fine Just right




Kepler: New Features Cont'd

e Hyper-Q
o Multiple streams (cores/threads/processes) can run
work on a single GPU at the same time, using
separate HW work queues

o Prevents streams from blocking each other due to
false dependencies

e GPUDirect
o Allows multiple GPUs on the same machine/network
to share data directly without using the CPU or main
memory
o RDMA feature allows third-party devices such as
SSDs to directly access GPU memory
o Greatly improves message passing performance



Hyper-Q Example

Fermi Model Kepler Hyper-Q Model
STREAM 1 STREAM 2 STREAM 3 STREAM1 STREAM 2 STREAM 3
A P X A P X
I I I I I I
B Q Y B Q Y
I I | | | I
C R Z € R Z

o e —

| — —_
Single hardware work queue <‘ P-Q-R
& X=Y-Z

Each stream receives its own work queue

Left: only (C,P) and (R,X) can run concurrently
Right: all 3 streams can run concurrently



Kepler Full Chip Diagram
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192 single-precision
CUDA cores

64 double-precision
CUDA cores

32 special function
units (SFU)

32 load/store units
(LD/ST)

4 warp schedulers,
2 instruction
dispatch units each
64KB memory
48KB read-only
data cache
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SMX Core Architecture

e Quad Warp Scheduler
o 32 threads / warp and 2 instruction dispatch units / warp
scheduler
o 4 warps can be executed concurrently; 2 instructions at a
time
e 255 reqisters per thread
e Shuffle Instruction
o Allows any thread in a warp to read registers of any other
thread in the same warp in a single step, instead of going
through shared memory with separate LD/ST insts.
e 64KB memory split between shared memory & L1 cache
e 48KB read-only cache for constant data
o can be managed automatically by the compiler, or
manually by the programmer



AMD GCN Architecture

e Tighter CPU-GPU integration
o Virtual Memory: supports 4KB pages
m could allow CPU & GPU to share single address
space in the future
o GCN includes I/O MMU, which maps GPU
addresses to CPU addresses
o ©64B cache lines
e Cache Coherency: data shared between cores through
L2 cache, instead of having to synchronize by flushing
to memory



Compute Unit Architecture

COMPUTE UNIT ARCHITECTURE Input Data PC.'S‘.atc"‘."cc.I:r Register/Scalar Register
v i
SIMD

8KB Registars 64 KB 64 KB 64 KB 64 KB
R/W

e— — p—
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64 KB LDS Memory

~ 4 CU Shared 16KB Scalar Read Only L1

RO <rRW L2
4 CU Shared 32KB Instruction L1

4 SIMD Units (10 wavefronts each), 16KB R/W L1-D cache,
32KB L1-I cache per 4 CU's, 64KB Local Data Share (LDS)




Compute Units (CU's)

e Basic computational building block

e 4 SIMD units; each has PC and IB for 10 wavefronts

e Each cycle, single SIMD picked via RR to issue up to 5
Instructions
o instructions must be of different types, from different

wavefronts

e SIMD executes in parallel across multiple wavefronts,
instead of in parallel within a single wavefront

e 16KB R/W L1-D cache & 32KB L1-I cache per 4 CU's
o LRU replacement

e Local Data Share (LDS): 64KB memory used for intra-
work-group synchronization



GCN Cache Hierarchy

Figure 6: Cache Hierarchy

Command Processors - 64-128KB Read/Write
L2 Cache

Compute

' 32 KB L1 Instruction Cache Crosshar
Compute _

. 16KB L1 Vector Data Cache
Unit

L1-D cache per CU, L1-I cache per 4 CU's,
L2 cache partitioned and shared by all CU's

Unit 16KB L1 Vector Data Cache Request
| & 64-128KB Read/Write
16 KB L1 Scalar Data Cache Data '
, L2 Cache

Memory
Controller

N Memory
Controller




Cache Hierarchy

e L1-D cache per CU; L1-| cache per 4 CU's
o write-through
o data written to L2 cache at end of wavefront
iInstruction, or at a barrier
o work-group coherency
e |2 cache shared among all CU's and partitioned into
one slice per memory channel
o write-back
o absorbs L1-D cache misses
o synchronizes among different wavefronts --> global
coherency
e All caches use LRU replacement policy



GPGPU Challenges

« GPGPUs are more than just I/O devices
- First class computational devices
o Fairness and isolation guarantees
« Preempting GPUs is not easy
- Large number of parallel operations
» Limited interface
o Drivers are black boxes
o Existing OS/kernel interfaces use ioctl
« Memory can be disjoint



Additional Motivation

» Data movement tied to algorithms

» High-level languages (CUDA) are hard to
use.

« New applications that require OS support
o encrypted file systems
o gesture detection



Scheduling Bottlenecks

e GPU accelerated tasks
can impair seemingly

unrelated tasks 180

o GPU work causes g 160

svst 8 140
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Scheduling Bottlenecks (cont.)

No OS support > No isolation

GPU benchmark throughput
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OS Support

User Mode - -
Application
Libraries
Processes Pipes Files
LIBC/CLR
03 Processes Pipes Files
Driver Driver Driver

Hardware CPU DISK NlC



GPGPU Support

User-mode

Libraries

Application

GPGPU API

Shader/Kernel

Language Int.

GPU Runtime (CUDA, OpenCL, DirectX)

0OS

loctl

Hardware

GPU




PTask

iLF

GPUs under a single resource manager for fairness and
Isolation guarantees

Simplify development for accelerators/GPGPUs by
iIntroducing a programming model that manages
devices, performs I/O, and deals with disjoint memory
spaces.

Create an environment that allows modular and fast
code



Dataflow Programming

« Modularity and efficiency



Matrix Multiplication

matrix gemm(A, B) {
matrix AxB = new matrix();
copy ToDevice(A); But what about A x B x C?
copyToDevice(B);
invokeGPU(gemm_kernel, A, B, AxB);
copyFromDevice(AxB);

return AxB:;
) matrix AXBxC(A,B,C) {

return gemm(gemm(A, B), C);

}



Matrix Multiplication (Cont.)

matrix AXBxC(A,B,C) {

\‘
matrix AxB = new matrix(); «\06“\6(
matrix AXBxC = new matrix(); wot
copy ToDevice(A);

copyToDevice(B);

copyToDevice(C);
invokeGPU(gemm_kernel, A, B, AxB);
invokeGPU(gemm_kernel, AxB, C, AxBxC);
copyFromDevice(AxBxC);

return AxBxC;



Dataflow Programming

« Allows modularity and efficiency

« Graph structured computation model
- Units of computation are vertices
o Vertices have data sources and data
sinks (ports)
- Channels connect ports
. Dataflow managed by the OS



matrix A W —’w matrix B
port:A port:B

ptask:
gemm(A,B)

matrix AxB



A

port:A

B

port:B

ptask:
gemm(A,B)

port:C

port:A

port:B

ptask:

gemm(AxB,C)

port:C

AxBxC

. Dataflow is managed

by the OS.

. PTasks (vertices) are

computation units

. Ports connected by

channels (edges)

. Both modular and

efficient



Case Study:

Gesture Recognition

e Computationally intensive

o |deal for GPGPU acceleration
Latency requirements

Largely data parallel

Multiple user-kernel memory copies
Follows dataflow paradigm



“Hand”
events

Data
Capture

T Recognition
+HID Input

Point cloud

Raw images

Geometric Noise
Transform Filtering

> capture | xform | filter | detect &
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usbsrc_0
process:

catusb

process:

catusb

raw_0O

ptask:
xform

cloud0 i 0

cloud1 i 1

ptask:

filter

fcloud

hid_in

process:
hidinput

ptask:
xform

raw_1




impl fps | tput (MB/s) | lat (ms) | user | sys | gpu | gmem | thrds ws-delta

Core2-Quad host-based real-time 20.2 35.8 36.6 | 78.1 3.9 - - 1 -
GTX580 handcode  real-time 30 53.8 10.5 40| 53| 21.0 138 1 -
unconstrained | 138 248.2 - | 24| 64| 418 138 1 -

modular real-time 30 53.8 122 | 60| 8.1 194 72 1 0.8 (1%)

unconstrained | 113 202.3 - | 57| 86| 557 72 1 0.9 (1%)

pipes real-time 30 53.8 144 | 6.8 | 16.6 | 189 72 3 | 45.3 (58%)

unconstrained 90 161.9 —| 124 | 246 | 554 76 3 | 46.3 (59%)

ptask real-time 30 53.8 9.8 3.1 5.5 | 16.1 71 7 0.7 (1%)

unconstrained | 154 275.3 - | 49| 8.8 | 65.7 79 7 1.4 2%)

e Handcode
o remove unnecessary data copying

e Modular

o similar to Handcode but condensed into one process
o Pipes

o > capture | xform | filter | detect &
e PTasks

o Uses the PTask API




Gestural Interface Performance
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PTask API

Ssys_open_graph
Sys_open_port

sys _open_ptask
sys_open_channel
sys_open_template
Ssys_push

sys pull
Sys_run_graph
sys_terminate_graph
sys _set ptask prio
Ssys_set geometry

Create/open graph
Create/open port
Create/open a ptask
Create and bind a channel
Create/open a template
Write to a channel/port
Read from a channel/port
Run a graph

Terminate graph

Set ptask priority

Set iteration space



PTask Scheduling

e First-available
e Fifo

e Priority

e Data-aware



