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GPUs in Action
(product placement)



Graphics Processing Unit
● Traditionally used for 3D rendering, but now also used 

for large computations
○ Originally special function units with specialized HW 

& ISAs
○ Good at applying same operation to large number of 

independent elements, in parallel
● Why GPUs?

○ High performance/throughput for massively parallel 
computations

○ Much higher arithmetic capability and memory 
bandwidth than even high-end CPUs



Terminology
● Streaming Processor abstraction

○ Programming model designed to abstract away all 
graphics terminology of GPU

○ Stream
■ Ordered set of data

○ Kernel
■ Function applied element-wise to a set of 

streams and that outputs one or more streams

● SIMD - Single Instruction, Multiple Data
○ SPMD - Single Program, Multiple Data



Graphics Pipeline

● A series of generation and processing stages
○ Connected by stream-entities

● Processing stages are programmable
○ Shader functions used to alter appearance of 

graphical output.



Vertex Generation

● VG - prefetches vertex and texture data from memory 
and constructs a stream of vertex data.



Vertex Processing

● VP - programmable operation on each vertex (e.
g. computing projection from 3D space to 
screen).



Primitive Generation
Primitive Processing

● PG - groups vertices into ordered streams of 
primitives

● PP - Produces zero or more output primitives.



Fragment Generation

● FG - performs rasterization through sampling.  
Distance from camera and other parameters 
are saved



Fragment Processing

● FP - simulates light interaction to determine color 
and opacity.



Pixel Operations

● PO - calculates image pixel values based 
on distance and obstructions.



Hardware Multithreading
● Threads stall due to memory 

accesses
● Hardware contains multiple 

execution units to perform 
instructions from other threads 
when a thread stalls.



CPU vs GPU
CPUs
● Parallelism through time 

multiplexing
● Emphasis on low memory latency
● Allows wide range of control 

flows + control flow optimizations
● Low-latency caches that allow 

performant out-of-order execution
● Very high clock speeds

GPUs
● Parallelism through space 

multiplexing
● Emphasis on high memory 

throughput
● Very control flow restricted
● High-latency caches that tend to 

be read-only
● Mid-tempo clock speeds

Other GPU Points
● Power efficient for large parallel 

operations
● Inexpensive on a TFLOP basis
● Difficult to program - but getting 

better!



CUDA
● Compute Unified Device Architecture
● Platform and programming model by Nvidia
● Introduced in 2006 w/ GeForce 8800 GTX
● First architecture targeted at general purpose use

○ CUDA C provides high-level language familiar to most programmers
○ ALUs built for more general types of computation
○ Unified Shader Model improves use of GPU resources 



Unified Shader Models
● Unified Shader Architecture: all GPU units designed to handle any shader
● Unified Shader Model: all shaders have similar instruction set
● Unified Model does NOT require Unified Architecture!
● Advantages over "classical" model:

○ more dynamic and flexible use of GPU resources
○ open to different workflows

■ both of these make USA/USM well-suited to GPGPU 
programming



Programming in CUDA
● CUDA C: good old C + a few new functions, structs, and primitives
● Kernel functions: __global__ and __device__ 

○ __global__: code executed on GPU from CPU
○ __device__: code executed on GPU from other GPU functions

● Grid abstraction: spatial multiplexing
○ grid → blocks → threads
○ grid (2D) + block (3D) = 5 degrees of indexing freedom

● SIMD paradigm: Single Instruction Multiple Data
○ well-suited to data-parallel tasks
○ conditionals are costly and should be avoided



CUDA Workflow
1. allocate data in main memory 

and on GPU

2. move data from 
MM → GPU

3. issue kernel 
over given block 
+ thread count



CUDA Workflow
4. kernels execute in parallel

5. copy data from 
GPU → MM



● Per-thread registers
○ Very fast; lifetime of thread

● Per-block shared memory
○ Very fast; lifetime of block

● All-block global memory
○ ~100x slower than shmem
○ high throughput achieved 

through coalescing
● Per-thread local memory

○ gotcha! as slow as global
● All-block constant memory

○ half-warp broadcast reduces 
bandwidth

● All-block texture memory
○ useful when exploiting 

spatial locality

CUDA Memory Layout



● Global memory achieves high throughput through coalescing
○ Works under certain global memory access patterns
○ Half-warp coalescing: accesses by all threads in a half-warp (16 

threads) are coalesced
■ threads must access 32, 64, or 128-bit data types
■ data accessed must be properly word-aligned
■ threads must access words of coalesced access in sequence

○ Responsibility is placed upon CUDA programmer
■ no coalescing → huge hit to memory throughput

○ Can use CUDA Profiler to track amount of coalesced/non-coalesced 
accesses

CUDA Global Memory



CUDA Streaming
● Task parallelism can be achieved 

through streaming
○ stream: queue of tasks to be 

performed on GPU
● asynchronous copies hide latency 

of memory movement
○ requires page-locked 

("pinned") memory
■ ruins virtual memory 

abstraction
■ steps on other 

processes' toes
● later versions support two 

streaming memory accesses



CUDA Applications
● CUBLAS: CUDA Basic Linear Algebra Subprograms

○ Adapted from well-known FORTRAN BLAS package
○ Three tiers of routines

■ level 1: vector scaling, inner product
■ level 2: matrix-vector products, matrix triangularization
■ level 3: matrix-matrix multiplication

● CUFFT: CUDA Fast Fourier Transforms
○ 1D, 2D, and 3D transforms for real-valued and complex data



NVIDIA 
Kepler GK 110 Architecture

● Dynamic Parallelism
○ Without ANY CPU help, GPU can 

■ dynamically create new worker threads
■ synchronize among thread results 
■ schedule worker threads

○ Advantages: 
■ GPU can adapt to varying amounts and types of 

parallel workloads (choose optimal # threads and 
program parameters)

■ CPU can perform other tasks in the meanwhile
■ avoids CPU-GPU data transfers



Dynamic Parallelism Example



Kepler: New Features Cont'd
● Hyper-Q

○ Multiple streams (cores/threads/processes) can run 
work on a single GPU at the same time, using 
separate HW work queues

○ Prevents streams from blocking each other due to 
false dependencies

● GPUDirect
○ Allows multiple GPUs on the same machine/network 

to share data directly without using the CPU or main 
memory

○ RDMA feature allows third-party devices such as 
SSDs to directly access GPU memory

○ Greatly improves message passing performance



Left: only (C,P) and (R,X) can run concurrently
Right: all 3 streams can run concurrently

Hyper-Q Example



Kepler Full Chip Diagram

15 SMX Units 
(Streaming 
Multiprocessors)

+
 
6 64-bit memory 
controllers



● 192 single-precision  
CUDA cores

● 64 double-precision 
CUDA cores

● 32 special function 
units (SFU)

● 32 load/store units 
(LD/ST)

● 4 warp schedulers, 
2 instruction 
dispatch units each

● 64KB memory
● 48KB read-only 

data cache

SMX Unit



● Quad Warp Scheduler
○ 32 threads / warp and 2 instruction dispatch units / warp 

scheduler 
○ 4 warps can be executed concurrently; 2 instructions at a 

time
● 255 registers per thread
● Shuffle Instruction

○ Allows any thread in a warp to read registers of any other 
thread in the same warp in a single step, instead of going 
through shared memory with separate LD/ST insts.

● 64KB memory split between shared memory & L1 cache
● 48KB read-only cache for constant data

○ can be managed automatically by the compiler, or 
manually by the programmer

SMX Core Architecture



AMD GCN Architecture

● Tighter CPU-GPU integration
○ Virtual Memory: supports 4KB pages 

■ could allow CPU & GPU to share single address 
space in the future

○ GCN includes I/O MMU, which maps GPU 
addresses to CPU addresses

○ 64B cache lines
● Cache Coherency: data shared between cores through 

L2 cache, instead of having to synchronize by flushing 
to memory



Compute Unit Architecture

4 SIMD Units (10 wavefronts each), 16KB R/W L1-D cache, 
32KB L1-I cache per 4 CU's, 64KB Local Data Share (LDS)



Compute Units (CU's)
● Basic computational building block
● 4 SIMD units; each has PC and IB for 10 wavefronts
● Each cycle, single SIMD picked via RR to issue up to 5 

instructions
○ instructions must be of different types, from different 

wavefronts
● SIMD executes in parallel across multiple wavefronts, 

instead of in parallel within a single wavefront
● 16KB R/W L1-D cache & 32KB L1-I cache per 4 CU's

○ LRU replacement
● Local Data Share (LDS): 64KB memory used for intra-

work-group synchronization



GCN Cache Hierarchy

L1-D cache per CU, L1-I cache per 4 CU's, 
L2 cache partitioned and shared by all CU's



Cache Hierarchy
● L1-D cache per CU; L1-I cache per 4 CU's

○ write-through
○ data written to L2 cache at end of wavefront 

instruction, or at a barrier
○ work-group coherency

● L2 cache shared among all CU's and partitioned into 
one slice per memory channel
○ write-back
○ absorbs L1-D cache misses
○ synchronizes among different wavefronts --> global 

coherency
● All caches use LRU replacement policy



GPGPU Challenges
● GPGPUs are more than just I/O devices

○ First class computational devices
○ Fairness and isolation guarantees

● Preempting GPUs is not easy
○ Large number of parallel operations

● Limited interface
○ Drivers are black boxes
○ Existing OS/kernel interfaces use ioctl

● Memory can be disjoint



Additional Motivation
● Data movement tied to algorithms
● High-level languages (CUDA) are hard to 

use.
● New applications that require OS support

○ encrypted file systems
○ gesture detection



Scheduling Bottlenecks
● GPU accelerated tasks 

can impair seemingly 
unrelated tasks
○ GPU work causes 

system pauses
● CPU work interferes 

with GPU throughput



Scheduling Bottlenecks (cont.)



OS Support

Application

LIBC/CLR
Processes Pipes Files

Processes Pipes Files

Driver Driver Driver

CPU DISK NIC

User Mode

OS

Hardware

Libraries



GPGPU Support

Application

GPU Runtime (CUDA, OpenCL, DirectX)
GPGPU API Shader/Kernel Language Int.

ioctl

GPU

User-mode

OS

Hardware

Libraries



PTask
1. GPUs under a single resource manager for fairness and 

isolation guarantees
2. Simplify development for accelerators/GPGPUs by 

introducing a programming model that manages 
devices, performs I/O, and deals with disjoint memory 
spaces.

3. Create an environment that allows modular and fast 
code



Dataflow Programming
● Modularity and efficiency



Matrix Multiplication
matrix gemm(A, B) {

matrix AxB = new matrix();
copyToDevice(A);
copyToDevice(B);
invokeGPU(gemm_kernel, A, B, AxB);
copyFromDevice(AxB);
return AxB;

}

But what about A x B x C?

matrix AxBxC(A,B,C) {
return gemm(gemm(A, B), C);

}



Matrix Multiplication (Cont.)
matrix AxBxC(A,B,C) {

matrix AxB = new matrix();
matrix AxBxC = new matrix();
copyToDevice(A);
copyToDevice(B);
copyToDevice(C);
invokeGPU(gemm_kernel, A, B, AxB);
invokeGPU(gemm_kernel, AxB, C, AxBxC);
copyFromDevice(AxBxC);
return AxBxC;

}

Not modular!



Dataflow Programming

● Graph structured computation model
○ Units of computation are vertices
○ Vertices have data sources and data 

sinks (ports)
○ Channels connect ports

● Dataflow managed by the OS

● Allows modularity and efficiency



matrix A matrix B
Channel port:A port:B

ptask:
gemm(A,B)

port:C

matrix AxB

Channel

Channel



port:A port:B

ptask:
gemm(A,B)

port:C
port:A port:B

ptask:
gemm(AxB,C)

port:C

A B

c

AxBxC

● Dataflow is managed 
by the OS.

● PTasks (vertices) are 
computation units

● Ports connected by 
channels (edges)

● Both modular and 
efficient



Case Study:
Gesture Recognition
● Computationally intensive

○ Ideal for GPGPU acceleration
● Latency requirements
● Largely data parallel
● Multiple user-kernel memory copies
● Follows dataflow paradigm



> capture | xform | filter | detect &



capture xform filter detect

KERNELkernel

user

hardware

CAMDRV GPU Driver HIDdrv

GPUCamera





● Handcode
○ remove unnecessary data copying

● Modular
○ similar to Handcode but condensed into one process

● Pipes
○ > capture | xform | filter | detect &

● PTasks
○ Uses the PTask API



Performance Results
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PTask API
sys_open_graph

sys_open_port

sys_open_ptask

sys_open_channel

sys_open_template

sys_push

sys_pull

sys_run_graph

sys_terminate_graph

sys_set_ptask_prio

sys_set_geometry

Create/open graph

Create/open port

Create/open a ptask

Create and bind a channel

Create/open a template

Write to a channel/port

Read from a channel/port

Run a graph

Terminate graph

Set ptask priority

Set iteration space



PTask Scheduling
● First-available
● Fifo
● Priority
● Data-aware


