GPGPU

General Purpose Graphics Processing Unit

Thomas Swift
Sean Brennan
Andrew Wong

Outline

e GPGPU Overview
o Terminology
o Graphics Pipeline
o CPU vs GPU
e CUDA
e NVIDIA's Kepler & AMD's GCN Architectures
e PTask

GPUs in Action

(product placement)

Graphics Processing Unit

e Traditionally used for 3D rendering, but now also used
for large computations
o QOriginally special function units with specialized HW
& ISAs
o (Good at applying same operation to large number of
iIndependent elements, in parallel
e Why GPUs?
o High performance/throughput for massively parallel
computations
o Much higher arithmetic capability and memory
bandwidth than even high-end CPUs

Terminology

e Streaming Processor abstraction
o Programming model designed to abstract away all
graphics terminology of GPU
o Stream
m Ordered set of data

o Kernel
m Function applied element-wise to a set of

streams and that outputs one or more streams

e SIMD - Single Instruction, Multiple Data
o SPMD - Single Program, Multiple Data

Graphics Pipeline

Memory Buffers
vertex < vertex descriptors
generation vertex data buffers
(ve)

- . i global buffers
e A series of generation and processing stages

o Connected by stream-entities
e Processing stages are programmable
o Shader functions used to alter appearance of
graphical output.

vertex topology

global buffers
textures

global buffers
textures

output image

fixed-function stage
- shader-defined stage

Vertex Generation

I—
Memory Buffers

vertex < vertex descriptors
generation vertex data buffers
(ve)

global buffers
textures

primitive # vertex topology

global buffers
textures
global buffers
textures

pixel - » output image

operations
(PO)

- fixed-function stage
- shader-defined stage

ovl

vD @ vb @

V4
o V2

vie@e

VG - prefetches vertex and texture data from memory
and constructs a stream of vertex data.

Vertex Processing

Memory Buffers © vl
vertex descriptors
vertex data buffers
— ‘ be
primitive % vertex topology
® V4
r global buffers
textures
¢ v3¢
fragment
generation
(FG)
global buffers .
textres e VP - programmable operation on each vertex (e.
! g. computing projection from 3D space to
< » output image
P atons o screen).
(PO)

- fixed-function stage
- shader-defined stage

Memory Buffers

vertex descriptors
vertex data buffers

global buffers
textures

vertex topology

global buffers
textures

pixel
operations
(PO)

global buffers
textures

output image

- fixed-function stage
- shader-defined stage

Primitive Generation
Primitive Processing

(b)

v0 @ a0y

® Vi

<
N

&
L J

PG - groups vertices into ordered streams of
primitives
PP - Produces zero or more output primitives.

Fragment Generation

Memory Buffers

vertex -
generation
(ve)

primitive

vertex descriptors
vertex data buffers

global buffers
textures

vertex topology

global buffers
textures

pixel
operations

(PO)

A 4

global buffers
textures

output image

- fixed-function stage
- shader-defined stage

(c)

p0

e FG - performs rasterization through sampling.
Distance from camera and other parameters
are saved

Memory Buffers
vertex < vertex descriptors
generation vertex data buffers
(ve) ¢

global buffers

textures
primitive % vertex topology
generation
(PB)

global buffers
textures

global buffers
textures

pixel - » output image

operations
(PO)

- fixed-function stage
- shader-defined stage

Fragment Processing

(d)

p0

FP - simulates light interaction to determine color
and opacity.

Pixel Operations

(e)
Memory Buffers
vertex < vertex descriptors
generation vertex data buffers
(ve)
global buffers
textures
primitve ¢ vertex topology
generation
(PG)
v
r global buffers
textures
v
fragment
generation
(FG)
f?éifféi”“““ e PO - calculates image pixel values based
. on distance and obstructions.
‘ plxelv < | output image ‘
operations
(PO)

- fixed-function stage
- shader-defined stage

Hardware Multithreading

e Threads stall due to memory
accesses M executin

- Y —
e Hardware contains multiple 0
execution units to perform - .
instructions from other threads J
when a thread stalls. 80
| Figure A: Example GPU core To ™ T b
ALUs (SIMD operation)

EEEEEEEEEEEEEEE
EEEEEEEEEEEEEEE

general register file
(partitioned among threads)

QUL

execution (thread) contexts

dEBEE

CPU vs GPU

CPUs

Parallelism through time
multiplexing

Emphasis on low memory latency
Allows wide range of control
flows + control flow optimizations
Low-latency caches that allow
performant out-of-order execution
Very high clock speeds

GPUs

e Parallelism through space
multiplexing

e Emphasis on high memory
throughput

e Very control flow restricted

e High-latency caches that tend to
be read-only

e Mid-tempo clock speeds

Other GPU Points

operations

better!

e Power efficient for large parallel

e Inexpensive on a TFLOP basis
e Difficult to program - but getting

CUDA

Compute Unified Device Architecture
Platform and programming model by Nvidia
Introduced in 2006 w/ GeForce 8800 GTX
First architecture targeted at general purpose use
o CUDA C provides high-level language familiar to most programmers
o ALUs built for more general types of computation
o Unified Shader Model improves use of GPU resources

Unified Shader Models

Unified Shader Architecture: all GPU units designed to handle any shader
Unified Shader Model. all shaders have similar instruction set
Unified Model does NOT require Unified Architecture!
Advantages over "classical" model:

o more dynamic and flexible use of GPU resources

o open to different workflows

m both of these make USA/USM well-suited to GPGPU
programming

Programming in CUDA

e CUDA C: good old C + a few new functions, structs, and primitives
e Kernel functions: global and device
© global :code executed on GPU from CPU
o device :code executed on GPU from other GPU functions
e Grid abstraction: spatial multiplexing
o grid — blocks — threads
o grid (2D) + block (3D) = 5 degrees of indexing freedom
e SIMD paradigm: Single Instruction Multiple Data
o well-suited to data-parallel tasks
o conditionals are costly and should be avoided

CUDA Workflow

1.

allocate data in main memory 1 // allocate arrays on host
d GPU 16 a_h = (x)malloc(size);
ana on 17 b_h = (x)malloc(size);
18
19 // allocate array on device
20 cudaMalloc((xk) &a_d, size);

move data from
MM — GPU

issue kernel
over given block
+ thread count

26

34
35

// copy data from host to device
cudaMemcpy(a_d, a_h, sizeof() * N, cudaMemcpyHostToDevice);

// Part 2 of 2. Call incrementArrayOnDevice kernel
incrementArrayOnDevice <<< nBlocks, blockSize >>> (a_d, N);

CUDA Workflow

- 2v __global__ incrementArrayOnDevice(*a, N) {
4' kernels exeCUte In para”el 3 // calculate index to work over; increment
4 idx = blockIdx.x * blockDim.x + threadIdx.Xx;
5 (idx < N)
6 alidx] = al[idx] + 1.f;
7}
5 copy data from 37 // Retrieve result from device and store in b_h

GPU — MM 38 cudaMemcpy(b_h, a_d, sizeof() * N, cudaMemcpyDeviceToHost);

CUDA Memory Layout

Grid

Block (0, 0)

WI"”‘“‘“I
oy

Thread (0,0) | Thread (1, 0)

t AA t AA

Local Local
Memory Memory
' Global

Memory

Constant
Memory

Texture
Memory

=] ==

Block (1, 0)

Shared Memory

: :
Thread (0, 0) | Thread (1, 0)
t AA t AL
Local | Local
Memory Memory

Per-thread registers
o Very fast; lifetime of thread
Per-block shared memory
o Very fast; lifetime of block
All-block global memory
o ~100x slower than shmem
o high throughput achieved
through coalescing
Per-thread local memory
o gotcha! as slow as global
All-block constant memory
o half-warp broadcast reduces
bandwidth
All-block texture memory
o useful when exploiting
spatial locality

CUDA Global Memory

e Global memory achieves high throughput through coalescing
o Works under certain global memory access patterns
o Half-warp coalescing: accesses by all threads in a half-warp (16
threads) are coalesced
m threads must access 32, 64, or 128-bit data types
m data accessed must be properly word-aligned
m threads must access words of coalesced access in sequence
o Responsibility is placed upon CUDA programmer
m no coalescing — huge hit to memory throughput
o Can use CUDA Profiler to track amount of coalesced/non-coalesced
accesses

CUDA Streaming

Task parallelism can be achieved
through streaming
o stream: queue of tasks to be
performed on GPU
asynchronous copies hide latency
of memory movement
o requires page-locked
("pinned") memory
m ruins virtual memory
abstraction
m steps on other
processes' toes
later versions support two
streaming memory accesses

copy A to GPU
copy B to GPU
kernel copy A to GPU
copy B to GPU
copy C from GPU kernel
copy C from GPU
copy A to GPU
copy B to GPU
kernel copy A to GPU
copy B to GPU
copy C from GPU kernel

copy C from GPU

CUDA Applications

e CUBLAS: CUDA Basic Linear Algebra Subprograms
o Adapted from well-known FORTRAN BLAS package
o Three tiers of routines
m level 1: vector scaling, inner product
m level 2: matrix-vector products, matrix triangularization
m level 3: matrix-matrix multiplication
e CUFFT: CUDA Fast Fourier Transforms
o 1D, 2D, and 3D transforms for real-valued and complex data

CUBLAS-Zgemm —MKL-Zgemm cuFFT Single Precision
450 = CUFFT -=-MKL
BO0 e R A RAPAANSAS A SN A A A A A A Y) e e
350) e A G
o S0 71|11 AUCRUSEUSERONVESUINRISEL TS, (RN P
% 250 [7d
S e A
ol e =
p.1 |1 MEBRURSINCy AUSISHSNS. S8 SIS a2
150 O
5l s e
100
i w R =
0
0 256 512 768 1024 1280 1536 1792 2048

Matrix Size (NxN)

1 3 5 7 9 1 13 15 17 19 21 23 25

* cuBLAS 4.1 on Tesla M2090, ECC on +Performance may vary based on OS5 ver. and motherboard config. LogZ(size)
* MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

NVIDIA

Kepler GK 110 Architecture

e Dynamic Parallelism
o Without ANY CPU help, GPU can

m dynamically create new worker threads

m synchronize among thread results

m schedule worker threads

o Advantages:

m GPU can adapt to varying amounts and types of
parallel workloads (choose optimal # threads and
program parameters)

CPU can perform other tasks in the meanwhile
m avoids CPU-GPU data transfers

Dynamic Parallelism Example

Dynamic Parallelism
Makes GPU Computing Easier & Broadens Reach

Too coarse Too fine Just right

Kepler: New Features Cont'd

e Hyper-Q
o Multiple streams (cores/threads/processes) can run
work on a single GPU at the same time, using
separate HW work queues

o Prevents streams from blocking each other due to
false dependencies

e GPUDirect
o Allows multiple GPUs on the same machine/network
to share data directly without using the CPU or main
memory
o RDMA feature allows third-party devices such as
SSDs to directly access GPU memory
o Greatly improves message passing performance

Hyper-Q Example

Fermi Model Kepler Hyper-Q Model
STREAM 1 STREAM 2 STREAM 3 STREAM1 STREAM 2 STREAM 3
A P X A P X
I I I I I I
B Q Y B Q Y
I I | | | I
C R Z € R Z

o e —

| — —_
Single hardware work queue <‘ P-Q-R
& X=Y-Z

Each stream receives its own work queue

Left: only (C,P) and (R,X) can run concurrently
Right: all 3 streams can run concurrently

Kepler Full Chip Diagram

PCl Express 3.0 Host Interface

SAL

pRabni I
Htld!le

15 SMX Units
(Streaming
Multiprocessors

Ja“onun:.l:; Aaowsapy
.muanuéa Ascwsap

+ | I

: :

6 64-bit memory B -
controllers T R R e =

HIHal‘.'E'I
T T
anlEnnRRRERANER

BIRIRINERD
i
JIIL

J@pOuu0 g AIouwagy
Japonuo s Klowapy

Kepler GK110 Full chip block diagram

192 single-precision
CUDA cores

64 double-precision
CUDA cores

32 special function
units (SFU)

32 load/store units
(LD/ST)

4 warp schedulers,
2 instruction
dispatch units each
64KB memory
48KB read-only
data cache

[WorpScheduler ! '\ WarpEcheduler | Warp Scheduler |
Driapaleh Dispateh Disgatah Diggate [hspatch Dispatch
& -+ 4 - F L !

Register Flle (65,536 x 32-bit)

4 44 4 & 4 4 & . S & A S & & &= &
hhh-hhm- war §FU hhh-mmm-mr sFL

G o o [s o [- v B e o (O o e e I
Mﬂﬂ_ Hlu--ﬁnﬂ: ﬁu- m- inay BFU hh; ﬁ.- h-lhi -Fu!-- LovsT EFU
core Cam Flﬂ--ﬂil mm- osr [BU :qihnm-mm'ﬁnr'-mn

NET

W-hm-mhh- et | SFL mmm-mmm-
h-#nm-mmm- = wm#m.mum- e

SMX Core Architecture

e Quad Warp Scheduler
o 32 threads / warp and 2 instruction dispatch units / warp
scheduler
o 4 warps can be executed concurrently; 2 instructions at a
time
e 255 reqisters per thread
e Shuffle Instruction
o Allows any thread in a warp to read registers of any other
thread in the same warp in a single step, instead of going
through shared memory with separate LD/ST insts.
e 64KB memory split between shared memory & L1 cache
e 48KB read-only cache for constant data
o can be managed automatically by the compiler, or
manually by the programmer

AMD GCN Architecture

e Tighter CPU-GPU integration
o Virtual Memory: supports 4KB pages
m could allow CPU & GPU to share single address
space in the future
o GCN includes I/O MMU, which maps GPU
addresses to CPU addresses
o ©64B cache lines
e Cache Coherency: data shared between cores through
L2 cache, instead of having to synchronize by flushing
to memory

Compute Unit Architecture

COMPUTE UNIT ARCHITECTURE Input Data PC.'S‘.atc"‘."cc.I:r Register/Scalar Register
v i
SIMD

8KB Registars 64 KB 64 KB 64 KB 64 KB
R/W

e— — p—
Regsters Registarns Regsters Registers
Infegar ALU — — — e dala = R/W L2

N WP "e e P L1
: _— Vecior Veachor Vector Vechor
ALU ALU ALU AL 16KB

5
g
g
L
s
kS
B
=
g

uoNesqlY UoINSU|

64 KB LDS Memory

~ 4 CU Shared 16KB Scalar Read Only L1

RO <rRW L2
4 CU Shared 32KB Instruction L1

4 SIMD Units (10 wavefronts each), 16KB R/W L1-D cache,
32KB L1-I cache per 4 CU's, 64KB Local Data Share (LDS)

Compute Units (CU's)

e Basic computational building block

e 4 SIMD units; each has PC and IB for 10 wavefronts

e Each cycle, single SIMD picked via RR to issue up to 5
Instructions
o instructions must be of different types, from different

wavefronts

e SIMD executes in parallel across multiple wavefronts,
instead of in parallel within a single wavefront

e 16KB R/W L1-D cache & 32KB L1-I cache per 4 CU's
o LRU replacement

e Local Data Share (LDS): 64KB memory used for intra-
work-group synchronization

GCN Cache Hierarchy

Figure 6: Cache Hierarchy

Command Processors - 64-128KB Read/Write
L2 Cache

Compute

' 32 KB L1 Instruction Cache Crosshar
Compute _

. 16KB L1 Vector Data Cache
Unit

L1-D cache per CU, L1-I cache per 4 CU's,
L2 cache partitioned and shared by all CU's

Unit 16KB L1 Vector Data Cache Request
| & 64-128KB Read/Write
16 KB L1 Scalar Data Cache Data '
, L2 Cache

Memory
Controller

N Memory
Controller

Cache Hierarchy

e L1-D cache per CU; L1-| cache per 4 CU's
o write-through
o data written to L2 cache at end of wavefront
iInstruction, or at a barrier
o work-group coherency
e |2 cache shared among all CU's and partitioned into
one slice per memory channel
o write-back
o absorbs L1-D cache misses
o synchronizes among different wavefronts --> global
coherency
e All caches use LRU replacement policy

GPGPU Challenges

« GPGPUs are more than just I/O devices
- First class computational devices
o Fairness and isolation guarantees
« Preempting GPUs is not easy
- Large number of parallel operations
» Limited interface
o Drivers are black boxes
o Existing OS/kernel interfaces use ioctl
« Memory can be disjoint

Additional Motivation

» Data movement tied to algorithms

» High-level languages (CUDA) are hard to
use.

« New applications that require OS support
o encrypted file systems
o gesture detection

Scheduling Bottlenecks

e GPU accelerated tasks
can impair seemingly

unrelated tasks 180

o GPU work causes g 160

svst 8 140
ystem pauses o

e CPU work interferes 2 120

with GPU throughput £ 100

g 80

s 60

5 40

2 20

0

Mouse Move Frequency

==No GPU work

==xform (nocomm)

\’\j

0 20000 40000 60000

Time (milliseconds)

Scheduling Bottlenecks (cont.)

No OS support > No isolation

GPU benchmark throughput

1200

©

c

S 1000

()

(%))}

T 800

o

(%))

C

5 600

©

9 400

>

c

= 200
. - o

Higher is

better no CPU load high CPU load

OS Support

User Mode - -
Application
Libraries
Processes Pipes Files
LIBC/CLR
03 Processes Pipes Files
Driver Driver Driver

Hardware CPU DISK NlC

GPGPU Support

User-mode

Libraries

Application

GPGPU API

Shader/Kernel

Language Int.

GPU Runtime (CUDA, OpenCL, DirectX)

0OS

loctl

Hardware

GPU

PTask

iLF

GPUs under a single resource manager for fairness and
Isolation guarantees

Simplify development for accelerators/GPGPUs by
iIntroducing a programming model that manages
devices, performs I/O, and deals with disjoint memory
spaces.

Create an environment that allows modular and fast
code

Dataflow Programming

« Modularity and efficiency

Matrix Multiplication

matrix gemm(A, B) {
matrix AxB = new matrix();
copy ToDevice(A); But what about A x B x C?
copyToDevice(B);
invokeGPU(gemm_kernel, A, B, AxB);
copyFromDevice(AxB);

return AxB:;
) matrix AXBxC(A,B,C) {

return gemm(gemm(A, B), C);

}

Matrix Multiplication (Cont.)

matrix AXBxC(A,B,C) {

\‘
matrix AxB = new matrix(); «\06“\6(
matrix AXBxC = new matrix(); wot
copy ToDevice(A);

copyToDevice(B);

copyToDevice(C);
invokeGPU(gemm_kernel, A, B, AxB);
invokeGPU(gemm_kernel, AxB, C, AxBxC);
copyFromDevice(AxBxC);

return AxBxC;

Dataflow Programming

« Allows modularity and efficiency

« Graph structured computation model
- Units of computation are vertices
o Vertices have data sources and data
sinks (ports)
- Channels connect ports
. Dataflow managed by the OS

matrix A W —’w matrix B
port:A port:B

ptask:
gemm(A,B)

matrix AxB

A

port:A

B

port:B

ptask:
gemm(A,B)

port:C

port:A

port:B

ptask:

gemm(AxB,C)

port:C

AxBxC

. Dataflow is managed

by the OS.

. PTasks (vertices) are

computation units

. Ports connected by

channels (edges)

. Both modular and

efficient

Case Study:

Gesture Recognition

e Computationally intensive

o |deal for GPGPU acceleration
Latency requirements

Largely data parallel

Multiple user-kernel memory copies
Follows dataflow paradigm

“Hand”
events

Data
Capture

T Recognition
+HID Input

Point cloud

Raw images

Geometric Noise
Transform Filtering

> capture | xform | filter | detect &

user

SN KERNEL

. . v

CAMDRYV) GPU Driver HIDdrv
A

o - _

usbsrc_0
process:

catusb

process:

catusb

raw_0O

ptask:
xform

cloud0 i 0

cloud1 i 1

ptask:

filter

fcloud

hid_in

process:
hidinput

ptask:
xform

raw_1

impl fps | tput (MB/s) | lat (ms) | user | sys | gpu | gmem | thrds ws-delta

Core2-Quad host-based real-time 20.2 35.8 36.6 | 78.1 3.9 - - 1 -
GTX580 handcode real-time 30 53.8 10.5 40| 53| 21.0 138 1 -
unconstrained | 138 248.2 - | 24| 64| 418 138 1 -

modular real-time 30 53.8 122 | 60| 8.1 194 72 1 0.8 (1%)

unconstrained | 113 202.3 - | 57| 86| 557 72 1 0.9 (1%)

pipes real-time 30 53.8 144 | 6.8 | 16.6 | 189 72 3 | 45.3 (58%)

unconstrained 90 161.9 —| 124 | 246 | 554 76 3 | 46.3 (59%)

ptask real-time 30 53.8 9.8 3.1 5.5 | 16.1 71 7 0.7 (1%)

unconstrained | 154 275.3 - | 49| 8.8 | 65.7 79 7 1.4 2%)

e Handcode
o remove unnecessary data copying

e Modular

o similar to Handcode but condensed into one process
o Pipes

o > capture | xform | filter | detect &
e PTasks

o Uses the PTask API

Gestural Interface Performance

N
n

w

Metric relative to handcode

runtime

gpu-util latency

i handcode
ul modular
M pipes

M ptask

References

e GPU Computing J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.
Stone, and J. C. Phillips. May 2008
e A Closer Look at GPUs K. Fatahalian, M. Houston. October 2008.

e Managing Accelerators: the Operating System Perspective K. Shantonu.

e CUDA C Programming Guide Nvidia Corporation. October 2012.

e CUDA by Example J. Sanders and E. Kandrot. April 2011.

e CUDA, Supercomputing for the Masses series R. Farber. April 2008 -
September 2010.

e NVIDIA Kepler GK110 Architecture. Nvidia Corporation. 2012.

e AMD GCN Architecture. AMD. June 2012.

e PTask: Operating Systems Abstractions To Manage GPUs as Compute
Devices. C Rossbach, J. Currey, M. Silberstein, B. Ray, E. Witchel.
Microsoft Research. October 2011.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4490127
http://dl.acm.org/citation.cfm?id=1400181.1400197
http://dl.acm.org/citation.cfm?id=1400181.1400197
http://www.cs.rochester.edu/users/faculty/sandhya/csc572_12/seminars/ptask_pegasus_kostas_shantonu.pdf
http://www.cs.rochester.edu/users/faculty/sandhya/csc572_12/seminars/ptask_pegasus_kostas_shantonu.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.amd.com/us/Documents/GCN_Architecture_whitepaper.pdf
http://www.amd.com/us/Documents/GCN_Architecture_whitepaper.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=154952
http://research.microsoft.com/apps/pubs/default.aspx?id=154952
http://research.microsoft.com/apps/pubs/default.aspx?id=154952

PTask API

Ssys_open_graph
Sys_open_port

sys _open_ptask
sys_open_channel
sys_open_template
Ssys_push

sys pull
Sys_run_graph
sys_terminate_graph
sys _set ptask prio
Ssys_set geometry

Create/open graph
Create/open port
Create/open a ptask
Create and bind a channel
Create/open a template
Write to a channel/port
Read from a channel/port
Run a graph

Terminate graph

Set ptask priority

Set iteration space

PTask Scheduling

e First-available
e Fifo

e Priority

e Data-aware

