
GPGPU
General Purpose Graphics Processing Unit

Thomas Swift
Sean Brennan
Andrew Wong

Outline
● GPGPU Overview

○ Terminology
○ Graphics Pipeline
○ CPU vs GPU

● CUDA
● NVIDIA's Kepler & AMD's GCN Architectures
● PTask

GPUs in Action
(product placement)

Graphics Processing Unit
● Traditionally used for 3D rendering, but now also used

for large computations
○ Originally special function units with specialized HW

& ISAs
○ Good at applying same operation to large number of

independent elements, in parallel
● Why GPUs?

○ High performance/throughput for massively parallel
computations

○ Much higher arithmetic capability and memory
bandwidth than even high-end CPUs

Terminology
● Streaming Processor abstraction

○ Programming model designed to abstract away all
graphics terminology of GPU

○ Stream
■ Ordered set of data

○ Kernel
■ Function applied element-wise to a set of

streams and that outputs one or more streams

● SIMD - Single Instruction, Multiple Data
○ SPMD - Single Program, Multiple Data

Graphics Pipeline

● A series of generation and processing stages
○ Connected by stream-entities

● Processing stages are programmable
○ Shader functions used to alter appearance of

graphical output.

Vertex Generation

● VG - prefetches vertex and texture data from memory
and constructs a stream of vertex data.

Vertex Processing

● VP - programmable operation on each vertex (e.
g. computing projection from 3D space to
screen).

Primitive Generation
Primitive Processing

● PG - groups vertices into ordered streams of
primitives

● PP - Produces zero or more output primitives.

Fragment Generation

● FG - performs rasterization through sampling.
Distance from camera and other parameters
are saved

Fragment Processing

● FP - simulates light interaction to determine color
and opacity.

Pixel Operations

● PO - calculates image pixel values based
on distance and obstructions.

Hardware Multithreading
● Threads stall due to memory

accesses
● Hardware contains multiple

execution units to perform
instructions from other threads
when a thread stalls.

CPU vs GPU
CPUs
● Parallelism through time

multiplexing
● Emphasis on low memory latency
● Allows wide range of control

flows + control flow optimizations
● Low-latency caches that allow

performant out-of-order execution
● Very high clock speeds

GPUs
● Parallelism through space

multiplexing
● Emphasis on high memory

throughput
● Very control flow restricted
● High-latency caches that tend to

be read-only
● Mid-tempo clock speeds

Other GPU Points
● Power efficient for large parallel

operations
● Inexpensive on a TFLOP basis
● Difficult to program - but getting

better!

CUDA
● Compute Unified Device Architecture
● Platform and programming model by Nvidia
● Introduced in 2006 w/ GeForce 8800 GTX
● First architecture targeted at general purpose use

○ CUDA C provides high-level language familiar to most programmers
○ ALUs built for more general types of computation
○ Unified Shader Model improves use of GPU resources

Unified Shader Models
● Unified Shader Architecture: all GPU units designed to handle any shader
● Unified Shader Model: all shaders have similar instruction set
● Unified Model does NOT require Unified Architecture!
● Advantages over "classical" model:

○ more dynamic and flexible use of GPU resources
○ open to different workflows

■ both of these make USA/USM well-suited to GPGPU
programming

Programming in CUDA
● CUDA C: good old C + a few new functions, structs, and primitives
● Kernel functions: __global__ and __device__

○ __global__: code executed on GPU from CPU
○ __device__: code executed on GPU from other GPU functions

● Grid abstraction: spatial multiplexing
○ grid → blocks → threads
○ grid (2D) + block (3D) = 5 degrees of indexing freedom

● SIMD paradigm: Single Instruction Multiple Data
○ well-suited to data-parallel tasks
○ conditionals are costly and should be avoided

CUDA Workflow
1. allocate data in main memory

and on GPU

2. move data from
MM → GPU

3. issue kernel
over given block
+ thread count

CUDA Workflow
4. kernels execute in parallel

5. copy data from
GPU → MM

● Per-thread registers
○ Very fast; lifetime of thread

● Per-block shared memory
○ Very fast; lifetime of block

● All-block global memory
○ ~100x slower than shmem
○ high throughput achieved

through coalescing
● Per-thread local memory

○ gotcha! as slow as global
● All-block constant memory

○ half-warp broadcast reduces
bandwidth

● All-block texture memory
○ useful when exploiting

spatial locality

CUDA Memory Layout

● Global memory achieves high throughput through coalescing
○ Works under certain global memory access patterns
○ Half-warp coalescing: accesses by all threads in a half-warp (16

threads) are coalesced
■ threads must access 32, 64, or 128-bit data types
■ data accessed must be properly word-aligned
■ threads must access words of coalesced access in sequence

○ Responsibility is placed upon CUDA programmer
■ no coalescing → huge hit to memory throughput

○ Can use CUDA Profiler to track amount of coalesced/non-coalesced
accesses

CUDA Global Memory

CUDA Streaming
● Task parallelism can be achieved

through streaming
○ stream: queue of tasks to be

performed on GPU
● asynchronous copies hide latency

of memory movement
○ requires page-locked

("pinned") memory
■ ruins virtual memory

abstraction
■ steps on other

processes' toes
● later versions support two

streaming memory accesses

CUDA Applications
● CUBLAS: CUDA Basic Linear Algebra Subprograms

○ Adapted from well-known FORTRAN BLAS package
○ Three tiers of routines

■ level 1: vector scaling, inner product
■ level 2: matrix-vector products, matrix triangularization
■ level 3: matrix-matrix multiplication

● CUFFT: CUDA Fast Fourier Transforms
○ 1D, 2D, and 3D transforms for real-valued and complex data

NVIDIA
Kepler GK 110 Architecture

● Dynamic Parallelism
○ Without ANY CPU help, GPU can

■ dynamically create new worker threads
■ synchronize among thread results
■ schedule worker threads

○ Advantages:
■ GPU can adapt to varying amounts and types of

parallel workloads (choose optimal # threads and
program parameters)

■ CPU can perform other tasks in the meanwhile
■ avoids CPU-GPU data transfers

Dynamic Parallelism Example

Kepler: New Features Cont'd
● Hyper-Q

○ Multiple streams (cores/threads/processes) can run
work on a single GPU at the same time, using
separate HW work queues

○ Prevents streams from blocking each other due to
false dependencies

● GPUDirect
○ Allows multiple GPUs on the same machine/network

to share data directly without using the CPU or main
memory

○ RDMA feature allows third-party devices such as
SSDs to directly access GPU memory

○ Greatly improves message passing performance

Left: only (C,P) and (R,X) can run concurrently
Right: all 3 streams can run concurrently

Hyper-Q Example

Kepler Full Chip Diagram

15 SMX Units
(Streaming
Multiprocessors)

+

6 64-bit memory
controllers

● 192 single-precision
CUDA cores

● 64 double-precision
CUDA cores

● 32 special function
units (SFU)

● 32 load/store units
(LD/ST)

● 4 warp schedulers,
2 instruction
dispatch units each

● 64KB memory
● 48KB read-only

data cache

SMX Unit

● Quad Warp Scheduler
○ 32 threads / warp and 2 instruction dispatch units / warp

scheduler
○ 4 warps can be executed concurrently; 2 instructions at a

time
● 255 registers per thread
● Shuffle Instruction

○ Allows any thread in a warp to read registers of any other
thread in the same warp in a single step, instead of going
through shared memory with separate LD/ST insts.

● 64KB memory split between shared memory & L1 cache
● 48KB read-only cache for constant data

○ can be managed automatically by the compiler, or
manually by the programmer

SMX Core Architecture

AMD GCN Architecture

● Tighter CPU-GPU integration
○ Virtual Memory: supports 4KB pages

■ could allow CPU & GPU to share single address
space in the future

○ GCN includes I/O MMU, which maps GPU
addresses to CPU addresses

○ 64B cache lines
● Cache Coherency: data shared between cores through

L2 cache, instead of having to synchronize by flushing
to memory

Compute Unit Architecture

4 SIMD Units (10 wavefronts each), 16KB R/W L1-D cache,
32KB L1-I cache per 4 CU's, 64KB Local Data Share (LDS)

Compute Units (CU's)
● Basic computational building block
● 4 SIMD units; each has PC and IB for 10 wavefronts
● Each cycle, single SIMD picked via RR to issue up to 5

instructions
○ instructions must be of different types, from different

wavefronts
● SIMD executes in parallel across multiple wavefronts,

instead of in parallel within a single wavefront
● 16KB R/W L1-D cache & 32KB L1-I cache per 4 CU's

○ LRU replacement
● Local Data Share (LDS): 64KB memory used for intra-

work-group synchronization

GCN Cache Hierarchy

L1-D cache per CU, L1-I cache per 4 CU's,
L2 cache partitioned and shared by all CU's

Cache Hierarchy
● L1-D cache per CU; L1-I cache per 4 CU's

○ write-through
○ data written to L2 cache at end of wavefront

instruction, or at a barrier
○ work-group coherency

● L2 cache shared among all CU's and partitioned into
one slice per memory channel
○ write-back
○ absorbs L1-D cache misses
○ synchronizes among different wavefronts --> global

coherency
● All caches use LRU replacement policy

GPGPU Challenges
● GPGPUs are more than just I/O devices

○ First class computational devices
○ Fairness and isolation guarantees

● Preempting GPUs is not easy
○ Large number of parallel operations

● Limited interface
○ Drivers are black boxes
○ Existing OS/kernel interfaces use ioctl

● Memory can be disjoint

Additional Motivation
● Data movement tied to algorithms
● High-level languages (CUDA) are hard to

use.
● New applications that require OS support

○ encrypted file systems
○ gesture detection

Scheduling Bottlenecks
● GPU accelerated tasks

can impair seemingly
unrelated tasks
○ GPU work causes

system pauses
● CPU work interferes

with GPU throughput

Scheduling Bottlenecks (cont.)

OS Support

Application

LIBC/CLR
Processes Pipes Files

Processes Pipes Files

Driver Driver Driver

CPU DISK NIC

User Mode

OS

Hardware

Libraries

GPGPU Support

Application

GPU Runtime (CUDA, OpenCL, DirectX)
GPGPU API Shader/Kernel Language Int.

ioctl

GPU

User-mode

OS

Hardware

Libraries

PTask
1. GPUs under a single resource manager for fairness and

isolation guarantees
2. Simplify development for accelerators/GPGPUs by

introducing a programming model that manages
devices, performs I/O, and deals with disjoint memory
spaces.

3. Create an environment that allows modular and fast
code

Dataflow Programming
● Modularity and efficiency

Matrix Multiplication
matrix gemm(A, B) {

matrix AxB = new matrix();
copyToDevice(A);
copyToDevice(B);
invokeGPU(gemm_kernel, A, B, AxB);
copyFromDevice(AxB);
return AxB;

}

But what about A x B x C?

matrix AxBxC(A,B,C) {
return gemm(gemm(A, B), C);

}

Matrix Multiplication (Cont.)
matrix AxBxC(A,B,C) {

matrix AxB = new matrix();
matrix AxBxC = new matrix();
copyToDevice(A);
copyToDevice(B);
copyToDevice(C);
invokeGPU(gemm_kernel, A, B, AxB);
invokeGPU(gemm_kernel, AxB, C, AxBxC);
copyFromDevice(AxBxC);
return AxBxC;

}

Not modular!

Dataflow Programming

● Graph structured computation model
○ Units of computation are vertices
○ Vertices have data sources and data

sinks (ports)
○ Channels connect ports

● Dataflow managed by the OS

● Allows modularity and efficiency

matrix A matrix B
Channel port:A port:B

ptask:
gemm(A,B)

port:C

matrix AxB

Channel

Channel

port:A port:B

ptask:
gemm(A,B)

port:C
port:A port:B

ptask:
gemm(AxB,C)

port:C

A B

c

AxBxC

● Dataflow is managed
by the OS.

● PTasks (vertices) are
computation units

● Ports connected by
channels (edges)

● Both modular and
efficient

Case Study:
Gesture Recognition
● Computationally intensive

○ Ideal for GPGPU acceleration
● Latency requirements
● Largely data parallel
● Multiple user-kernel memory copies
● Follows dataflow paradigm

> capture | xform | filter | detect &

capture xform filter detect

KERNELkernel

user

hardware

CAMDRV GPU Driver HIDdrv

GPUCamera

● Handcode
○ remove unnecessary data copying

● Modular
○ similar to Handcode but condensed into one process

● Pipes
○ > capture | xform | filter | detect &

● PTasks
○ Uses the PTask API

Performance Results

References
● GPU Computing J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.

Stone, and J. C. Phillips. May 2008
● A Closer Look at GPUs K. Fatahalian, M. Houston. October 2008.

● Managing Accelerators: the Operating System Perspective K. Shantonu.

● CUDA C Programming Guide Nvidia Corporation. October 2012.

● CUDA by Example J. Sanders and E. Kandrot. April 2011.

● CUDA, Supercomputing for the Masses series R. Farber. April 2008 -

September 2010.

● NVIDIA Kepler GK110 Architecture. Nvidia Corporation. 2012.

● AMD GCN Architecture. AMD. June 2012.

● PTask: Operating Systems Abstractions To Manage GPUs as Compute
Devices. C Rossbach, J. Currey, M. Silberstein, B. Ray, E. Witchel.
Microsoft Research. October 2011.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4490127
http://dl.acm.org/citation.cfm?id=1400181.1400197
http://dl.acm.org/citation.cfm?id=1400181.1400197
http://www.cs.rochester.edu/users/faculty/sandhya/csc572_12/seminars/ptask_pegasus_kostas_shantonu.pdf
http://www.cs.rochester.edu/users/faculty/sandhya/csc572_12/seminars/ptask_pegasus_kostas_shantonu.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.amd.com/us/Documents/GCN_Architecture_whitepaper.pdf
http://www.amd.com/us/Documents/GCN_Architecture_whitepaper.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=154952
http://research.microsoft.com/apps/pubs/default.aspx?id=154952
http://research.microsoft.com/apps/pubs/default.aspx?id=154952

PTask API
sys_open_graph

sys_open_port

sys_open_ptask

sys_open_channel

sys_open_template

sys_push

sys_pull

sys_run_graph

sys_terminate_graph

sys_set_ptask_prio

sys_set_geometry

Create/open graph

Create/open port

Create/open a ptask

Create and bind a channel

Create/open a template

Write to a channel/port

Read from a channel/port

Run a graph

Terminate graph

Set ptask priority

Set iteration space

PTask Scheduling
● First-available
● Fifo
● Priority
● Data-aware

