
Hardware Counter Driven On-the-Fly Request Signatures∗

Kai Shen Ming Zhong† Sandhya Dwarkadas Chuanpeng Li Christopher Stewart Xiao Zhang
Department of Computer Science, University of Rochester

{kshen, zhong, sandhya, cli, stewart, xiao}@cs.rochester.edu

Abstract
Today’s processors provide a rich source of statistical information
on application execution through hardware counters. In this paper,
we explore the utilization of these statistics as request signatures
in server applications for identifying requests and inferring high-
level request properties (e.g., CPU and I/O resource needs). Our
key finding is that effective request signatures may be constructed
using a small amount of hardware statistics while the request is still
in an early stage of its execution. Suchon-the-flyrequest identifica-
tion and property inference allow guided operating system adapta-
tion at request granularity (e.g., resource-aware request scheduling
and on-the-fly request classification). We address the challenges
of selecting hardware counter metrics for signature construction
and providing necessary operating system support for per-request
statistics management. Our implementation in the Linux 2.6.10 ker-
nel suggests that our approach requires low overhead suitable for
runtime deployment. Our on-the-fly request resource consumption
inference (averaging 7%, 3%, 20%, and 41% prediction errorsfor
four server workloads, TPC-C, TPC-H, J2EE-based RUBiS, and
a trace-driven index search, respectively) is much more accurate
than the online running-average based prediction (73–82% errors).
Its use for resource-aware request scheduling results in a 15–70%
response time reduction for three CPU-bound applications.Its use
for on-the-fly request classification and anomaly detectionexhibits
high accuracy for the TPC-H workload with synthetically gener-
ated anomalous requests following a typical SQL-injectionattack
pattern.

Categories and Subject DescriptorsD.4.7 [Operating Systems]:
Organization and Design

General Terms Measurement, Performance, Design, Reliability,
Experimentation

Keywords Operating system adaptation, Hardware counter, Server
system, Request classification, Anomaly detection

∗ This work was supported in part by the National Science Foundation
(NSF) grants CCR-0306473, ITR/IIS-0312925, CNS-0411127,CAREER
Award CCF-0448413, CNS-0509270, CNS-0615045, CNS-0615139, CCF-
0621472, and CCF-0702505; by NIH grant 1 R21 GM079259-01A1;and
by several IBM Faculty Partnership Awards.
† Zhong is currently affiliated with Google (mzhong@google.com).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’08, March 1–5, 2008, Seattle, Washington, USA.
Copyright c© 2008 ACM 978-1-59593-958-6/08/0003. . . $5.00

� � � � � � �� � � � 	 �
 � � � �� � � � � � � � 	 � � � � � �� � �� � � � � � � � � � � � � �� �� � � � �� � � � � �� � � � �� � � � � � � � � � � � � � � �� � � �� � � �
�� � 	 � � � �� � � � 	 � 	 � � 	 � � � � 	 � � �� � � � � �� � � � � � � � � �� � � � � �� 	 � � � � � � �	 � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � 	 � � � � � 	 � � �� � �� � � �� �� � � � 	 � � � � 	 � � � � � � �	 � � � � � � �! � � � � � � � �� � 	 � � � � � 	 � � � �� � � � � � �� � � � � � � �� � �� � � � � � � � � � � � � �	 � � � � � �� � �� 	 � � �� � � � � � 	 � �	 � � � � " � � #$ %&' (� � � � � � �� �� 	 � � � � � � � � � � � �� � � � � � ��)� * �)� *+ , , , + , , ,

Figure 1. A single request’s view of our on-the-fly request signa-
ture identification and request property inference.

1. Introduction
Many operating system (OS) management functions benefit from
the knowledge of runtime workload properties. For instance, server
requests can be scheduled for better performance or quality-of-
service if each request’s resource needs are known at scheduling
time [28, 19]. As another example, components of a distributed net-
work service can be better composed to save communication costs
if the inter-component communication patterns are known when the
service composition policy is determined [24]. Conventional pro-
filing approaches such as offline profiling or history-based online
prediction rely on past request statistics to predict future workload
properties. However, as input parameters vary and runtime condi-
tions change, the properties of individual request executions may
deviate significantly from general patterns of past requests (even
from very recent ones).

This paper explores a new approach for server request identifi-
cation and property inference (illustrated in Figure 1). Bycollect-
ing available system-level metrics and attributing them tospecific
request contexts, we can use such metrics as signatures to identify
requests and infer request properties based on known signature-
to-property mappings. We construct and utilize request signatures
while a request executes (oron-the-fly). Such on-the-fly request sig-
natures facilitate request-granularity OS adaptations. Although our
goals of request identification and property inference may be real-
ized through direct application assistance or manipulation, our ap-
proach functionstransparentlyat the OS (i.e., requiring no change
of or assistance from applications or middleware software running
above the OS). Transparent system management provides more
general benefits and it is essential for third-party management en-
vironments such as service hosting platforms.

Many types of system-level metrics can be transparently col-
lected in today’s computing systems. For example, modern proces-
sors, through a set of counter registers, provide detailed hardware
information such as instruction mix, rate of execution (instructions
per cycle), branch (control flow) prediction accuracy, and memory

access behavior (including miss rates at each level of the memory
hierarchy as well as bus activity). At the software level, the OS pro-
cessing also leaves a trail of statistics such as task context switch
rate, system call frequency, and I/O operation pattern. In this pa-
per, we focus on hardware counter driven request signatures. We
believe this is an appropriate first-step effort due to two advantages
of hardware counter metrics: 1) event counter maintenance in hard-
ware requires no runtime overhead; 2) OS processing statistics may
be scarce in applications with few system calls and I/O activities
while processor hardware metrics are consistently available during
execution.

We address two key challenges in supporting hardware counter
driven on-the-fly request signatures. First, we derive general prin-
ciples by which to guide the selection of hardware counter metrics
used in the construction of request signatures. Our investigation fo-
cuses on several factors that affect the metric effectiveness as a re-
quest signature: the metric normalization base, environmental dy-
namics, and application variations. One notable factor unique to
server applications is theconcurrentexecution of multiple requests
and associated frequent context switches. Second, we propose OS
mechanisms for transparent online collection and management of
per-request counter metrics. This is challenging due to thecon-
tinually changing request-to-process-binding in multi-component
server systems. We employ a transparent message tagging scheme
so that request contexts can be tracked across multiple server com-
ponents with no application assistance.

Based on our on-the-fly request signature, we demonstrate its
effectiveness or potential in assisting request-granularity system
adaptations through case studies. First, the online knowledge of
each request’s resource needs makes it possible to realize shortest-
remaining-time-first scheduling [21], which is known to achieve
minimal average request response time. Further, on-the-flyre-
quest signature identification presents the opportunity for early
request classification and anomaly detection. By classifying a re-
quest early, an online workload tracker may save the overhead for
further tracing and event logging on the classified request.By de-
tecting anomalous requests early, the system may apply targeted
monitoring or even online request quarantine.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. Section 3 investigates several factors associ-
ated with the use of hardware counter metrics as request signa-
tures. Section 4 describes the OS mechanisms necessary for on-
the-fly request context tracking, per-request counter metric collec-
tion, as well as request identification and property inference. Sec-
tion 5 provides evaluation results using several server applications
and benchmarks. Section 6 illustrates possible OS adaptations that
can benefit from on-the-fly request identification and property in-
ference. Section 7 concludes the paper with a summary of findings.

2. Related Work
Continuous profiling (DCPI [2]) is a sampling-based profiling sys-
tem that uses hardware counters to characterize activitieswithin
the entire system. More recently, Barhamet al. (Magpie [8]), Chen
et al. (Pinpoint [12]), and Aguileraet al. [1] presented techniques
to capture the resource demands and other properties of applica-
tion requests as they are serviced across components and machines.
Magpie uses clustering to classify requests and summarize the be-
havior of a workload. The tools resulting from these studiesare
excellent for offline (or online history-based) performance analysis
and debugging. However, they do not provide on-the-fly identifi-
cation and behavior prediction with respect to individual requests
before their executions complete. Such on-the-fly prediction is es-
sential for request-granularity online system adaptation.

For the purposes of architectural and program adaptation, prior
work has utilized hardware counter metrics to dynamically iden-

tify execution phases [14, 23], and to predict other system proper-
ties [15]. Hardware counter metrics were also employed to identify
appropriate simulation points for desired workloads [16],to pre-
dict CPU scheduling performance [10, 29], and to detect anoma-
lies [25]. Our use of hardware counters as request signatures
presents unique challenges associated with our target server en-
vironments. In particular, the effectiveness of hardware counters as
request signatures is substantially affected by concurrent request
execution and frequent context switches. Further, it is challeng-
ing to attribute collected counter metrics to appropriate requests
on-the-fly.

Cohenet al. [13] showed that a set of system metrics (mostly
in software) can serve as signatures that cluster system failures of
similar types. Gniadyet al. [17] used program counter-based clas-
sification to estimate application I/O access patterns at a particular
point of execution. Although their studies do not address request-
granularity workload identification, their choices of system metrics
(other than hardware counters) can be incorporated into ourrequest
signatures. Additional system metrics can potentially improve the
effectiveness of our request signature while possibly incurring ad-
ditional runtime overhead. Further investigation would beneces-
sary to evaluate the benefit and cost of such extensions.

Our on-the-fly request signature attempts to identify requests
and infer high-level request properties. Although application-level
information can infer request properties for applicationswith
simple semantics (e.g., request resource consumption inference
through the requested file size in a static-content web server [19]),
such application-level inference is difficult for server applications
with more complex semantics. Further, direct application involve-
ment compromises system transparency. Consequently, its benefit
is restricted to specific applications and it is difficult to deploy
when application changes are not allowed.

3. Hardware Metrics As Request Signatures
We provide a simple example to motivate the use of hardware met-
rics as request signatures. Figure 2 shows the cumulative values of
one hardware counter metric for four different requests (running
four different TPC-H [27] queries). In this example, the hardware
metric (floating point operations per CPU cycle) serves as a good
signature to differentiate TPC-H Q4 and Q3. This is the case even
when statistics are collected for only a few milliseconds after re-
quests begin execution. However, this metric does a relatively poor
job in differentiating Q13 from Q17 — even though, these requests
have very different CPU needs. Additional hardware metricsmay
help differentiate them.

In this section, we derive an understanding of the effectiveness
of the use of individual hardware metrics as request signatures.
Such analysis is essential to selecting an appropriate set of met-
rics in request signature construction. Metric selection is necessary
because the processor usually has a limited number of physical
counter registers to which the hardware metrics must map. Ad-
ditionally, the configurations of some counter metrics are in con-
flict with each other and thus they cannot be observed simultane-
ously. Although multiple sets of metrics may be mapped to limited
counter registers through time-division multiplexing [5,29], they
provide inaccurate event count statistics that are inappropriate for
our on-the-fly request identification. In addition to accommodating
the limited counter registers, metric selection is also desirable in
order to screen out hardware metrics that provide little assistance
in identifying and differentiating requests with different behavior.

The challenge of selecting the right set of hardware metricslies
in the various factors that may affect each metric’s effectiveness as
a component of the request signature. Specifically, we investigate
several such factors: 1) time-based normalization (per-cycle met-
ric) vs. progress-based normalization (per-instruction metric); 2)

0 10 20 30 40 50 60 70 80 90 100
3

4

5

6

7

8

9

10

11
x 10

−4

Cumulative request execution (in millisec)

F
lo

at
in

g
po

in
t o

ps
 p

er
 C

P
U

 c
yc

le

TPC−H Q4 (short, memory−heavy)
TPC−H Q3 (long, memory−heavy)
TPC−H Q13 (long, memory−light)
TPC−H Q17 (short, memory−light)

Figure 2. The cumulative floating-point-ops-per-CPU-cycle (up
to 100 ms) for four requests (running four different TPC-H [27]
queries) with different CPU needs and memory usage intensity.
Here we identify a request’s memory usage intensity throughthe
hardware metric of memory-bus-event-count-per-CPU-cycle.

environmental dynamics such as concurrent request execution and
processor hardware resource sharing; 3) application-specific char-
acteristics.

To facilitate our study, we define an effectiveness measure for
a hardware metric to serve as request signature. The intuition be-
hind our measure (calledmetric-request-correlation) is as follows
— if two requests with similar hardware metric values are likely
to be inherently similar requests, then the metric serves asa good
request signature. In the context of our study, we assess theinher-
ent similarity of two requests using the difference of theirresource
consumption (e.g., CPU usage for CPU-bound requests). Specif-
ically, given n request-pair samples, letmi be the difference of
hardware metric values for thei-th request pair. Letri be the differ-
ence of their resource consumption. Further, letmi’s andri’s have
expected means̄m, r̄, and non-zero standard deviationsσm, σr. We
calculate their correlation coefficient as:

pm,r =
Covariance(m, r)

σm · σr

=

Pn

i=1
(mi − m̄)(ri − r̄)

n · σm · σr

(1)

A larger coefficient indicates a stronger positive correlation be-
tween hardware metric similarity and inherent request similarity.
Note that a correlation coefficient cannot exceed 1.0.

3.1 Impact of Normalization Bases

As a request’s execution progresses, we can acquire stable hard-
ware counter-based metrics by normalizing the hardware event
count with the elapsed time (available in CPU cycles). However,
in a concurrent server environment, the same request execution
(represented by a unique sequence of instructions) may makenon-
deterministic progress within the same number of CPU cycles.
Since many hardware event counts are linearly correlated with in-
struction executions, the unstable execution progress introduces
noise in these hardware event counts within a given time period.
This motivates a progress-based normalization, or per-instruction
hardware event count metric, with the goal of reducing dependence
on environmental variations.

To assess the impact of the two alternative normalization bases,
we show experimental results of some hardware metrics on In-
tel Xeon processors. We examine 22 hardware metrics that we
are able to configure for counter observation (listed in Table 1).
Among these 22 metrics, three represent instruction execution
progress: INSTRCTNRTD, UOPSRETIRED, and UOPQW. We
choose UOPQW — the number ofµ-instructions — as the base
for progress-based normalization since it causes least conflict in

Hardware metric Description

NONHALT TICKS Num. of ticks that CPU is in non-halt state
INSTRCTN RTD Num. of retired instructions
UOPSRETIRED Num. of retiredµops
L1 MISS RTD Num. of L1 cache misses due to retired accesses
L2 MISS RTD Num. of L2 cache misses due to retired accesses
L2 MISS Num. of L2 cache misses
L2 REFERENCE Num. of L2 cache references
DTLB MISS RTD Num. of data TLB misses due to retired accesses
PGWKMISSDTLB Num. of page walks that page miss handler

performs due to data TLB misses
DELIVER MODE Num. of cycles in trace cache deliver/build modes
TRACECACHEMS Num. of trace cache lookup misses
PGWKMISSITLB Num. of page walks that page miss handler

performs due to instruction TLB misses
FSB DATAREADY Num. of Data Ready and Data Busy events that

occur on the front side bus
BUSACCESCHIP Num. of transactions on the bus issued by chip
X87 FP UOP Num. of X87 float pointµops
MEM CANCEL Num. of canceled requests in the Data Cache

Address Control Unit
UOPQW Num. of validµops written to theµop queue
RESSTALL Num. of stalls in the Allocator
MISPREDBRANCH Num. of mis-predicted branches
RTD MISPREDBRANCH Num. of retired mis-predicted branches
BRANCH Num. of branches
FRONT END EVENT Num. of load/storeµops

Table 1. 22 counter-observable hardware metrics on the Intel Xeon
processors.

group counter setups. Figure 3 illustrates the comparison between
time-normalized metrics and progress-normalized metricsfor the
TPC-H workload.

Results in Figure 3 suggest that progress-based normalization
exhibits stronger or similar metric-request-correlationfor most
hardware metrics with one clear exception — DELIVERMODE.
This result is also consistent for several other applications we ex-
perimented with. A closer look uncovers that the DELIVERMODE
metric is not really an event count but rather it indicates the time
duration for a particular processor state (the number of execution
cycles during which the trace cache is in deliver mode). Unlike
event counts, it is affected more by the length of execution rather
than by execution progress.

In summary, our finding on the normalization base is that
“event count”-style metrics should be normalized with the re-
quest execution progress while “time duration”-style metrics (along
with instruction count metrics) should be normalized with the
elapsed time. For the remainder of this paper, we use per-cycle
values for INSTRCTNRTD, UOPSRETIRED, UOPQW, and
DELIVER MODE. We use per-instruction values for other hard-
ware metrics.

3.2 Impact of Environmental Dynamics

In a server environment, the hardware execution behavior (reflected
through counter metrics) of a request may vary as a result of dy-
namic environmental effects. In particular, the presence of other
requests results in potentially frequent context switchesand con-
sequently processor cache behavior may vary. Further, concurrent
request execution on hardware resource-sharing processors (multi-
core or hardware multi-threading) yields unstable behavior due to
resource contention and conflicts. Unstable metrics in dynamic ex-
ecution environments introduce noise into the request signature.

To assess the impact of concurrent request execution and
resource-sharing hardware, we experimentally examine themetric-
request-correlation in three different execution environments: 1)
requests run one-by-one with no concurrency in the server; 2)

0

0.1

0.2

0.3

0.4

0.5

M
et

ric
−

re
qu

es
t−

co
rr

el
at

io
n

NONHALT_TICKS

L1_M
ISS_RTD

L2_M
ISS_RTD

L2_M
ISS

L2_REFERENCE

DTLB_M
ISS_RTD

PGW
KM

ISS_DTLB

DELIVER_M
ODE

TRACECACHE_M
S

PGW
KM

ISS_ITLB

FSB_DATAREADY

BUSACCES_CHIP

X87_FP_UOP

M
EM

_CANCEL

RES_STALL

M
ISPRED_BRANCH

RTD_M
ISPRED_BRANCH

BRANCH

FRONT_END_EVENT

Time−normalized metric
Progress−normalized metric

Figure 3. Comparison of time-normalized (per-cycle) metrics and progress-normalized (per-instruction) metrics for the TPC-Hworkload.
We do not show results for the three instruction count metrics (INSTRCTNRTD, UOPSRETIRED, and UOPQW) since their choice of
normalization base is obvious — per-instruction normalization of instruction counts would yield total information loss.

0

0.1

0.2

0.3

0.4

0.5

M
et

ric
−

re
qu

es
t−

co
rr

el
at

io
n

NONHALT_TICKS

INSTRCTN_RTD

UOPS_RETIRED

L1_M
ISS_RTD

L2_M
ISS_RTD

L2_M
ISS

L2_REFERENCE

DTLB_M
ISS_RTD

PGW
KM

ISS_DTLB

DELIVER_M
ODE

TRACECACHE_M
S

PGW
KM

ISS_ITLB

FSB_DATAREADY

BUSACCES_CHIP

X87_FP_UOP

M
EM

_CANCEL

UOPQ_W

RES_STALL

M
ISPRED_BRANCH

RTD_M
ISPRED_BRANCH

BRANCH

FRONT_END_EVENT

Serial request execution
Concurrent execution
Concurrent execution with hyper−threading

Figure 4. Impact of environmental dynamics (including concurrent request execution and hardware resource-sharing in hyper-threading) for
the TPC-H workload.

requests run concurrently on a two-processor SMP machine;
3) requests run concurrently on a two-processor SMP machine
where each processor supports two hardware threads (Intel hyper-
threading). The three environments provide increasing levels of
dynamic effects on hardware counter metrics. Figure 4 showsthe
metric-request-correlation for the TPC-H workload.

Comparing serial and concurrent request executions, our re-
sults show that the execution concurrency degrades the metric-
request-correlation for almost all metrics. Among the mostsignifi-
cantly affected are metrics related to memory or L2 caching behav-
ior — L2 MISS RTD, L2 MISS, FSBDATAREADY, BUSAC-
CESCHIP, MEM CANCEL, and FRONTEND EVENT. This is
intuitive since L2 cache misses and memory accesses are heavily
influenced by frequent request context switches. L1 cache misses
are not as affected due to the L1’s fast warmup time. Note that
the L2 cache reference count reflects received workload at the L2
cache, which is related to the L1 caching behavior.

Figure 4 also shows that the processor-level hyper-threading
significantly degrades the metric-request-correlation for L1 cache
related events (L1MISS RTD, L2 REFERENCE), trace cache
event (TRACECACHEMS), and TLB event (PGWKMISSDTLB).
This is also intuitive since hyper-threads share these functional

units within a processor and contention for these units causes in-
stability of the related hardware metrics.

In summary, our finding on environmental dynamics is that
concurrent request execution in server environments substantially
degrades the effectiveness of memory and L2 cache miss re-
lated hardware metrics as request signatures. Processor-level hard-
ware resource-sharing can cause further degradation for metrics
related to shared resources. Finally, it is important to note that
these trends may not warrant absolute metric exclusion. Some af-
fected metrics may still exhibit strong correlation for request iden-
tification in dynamic environments — one particular exampleis
L2 REFERENCE.

3.3 Impact of Application Variations

We are also interested in whether the effectiveness of a metric as a
request signature is consistent across different server applications.
Specifically, we examine four applications: TPC-H, TPC-C, J2EE-
based RUBiS, and index search (details about these applications
can be found in Section 5). We find large differences in metricef-
fectiveness across applications. For instance, metric X87FP UOP
appears to be the best request signature for TPC-H but it is almost
useless for others (likely because other applications perform very
few floating point operations).

Application Selected hardware metrics to form request signature

TPC-H L2 REFERENCE, TRACECACHEMS, X87 FP UOP, RESSTALL, MISPRED BRANCH, FRONTEND EVENT
TPC-C UOPSRETIRED, L2 REFERENCE, TRACECACHEMS, MISPREDBRANCH, FRONTEND EVENT
RUBiS UOPSRETIRED, L2 REFERENCE, PGWKMISSDTLB, MISPREDBRANCH, FRONTEND EVENT
Retriever L2 REFERENCE, DTLBMISS RTD, PGWKMISSITLB, RTD MISPREDBRANCH, BRANCH

Table 2. Request signature composition for four server applications. In addition, UOPQW is always selected as the base for calculating
progress-normalized metrics.

The lack of consistent metric effectiveness across applications
makes it unlikely that one can construct a universally effective
set of hardware metrics as a request signature. Instead, calibra-
tion would be beneficial in order to arrive at an appropriate re-
quest signature setup according to application-specific metric-to-
request correlations. The final selection must also consider phys-
ical constraints for metric setup on the target processors.Further,
some metrics are inherently redundant and selecting one repre-
sentative from each redundant group is sufficient. A simple cor-
relation analysis among metric pairs uncovers the following re-
dundant groups: (L1MISS RTD, L2 REFERENCE) and (MIS-
PREDBRANCH, RTD MISPREDBRANCH). Table 2 lists the
hardware counter metrics (on Intel Xeon processors) selected as
request signatures for the four server applications.

4. Operating System Mechanisms
We collect per-request hardware counter metrics and synthesize
them on-the-fly. Constructed request signatures are then used to
identify requests or to infer desired high-level request properties.
This section presents the OS mechanisms necessary for transparent
management of hardware counter driven on-the-fly request signa-
tures.

4.1 On-the-Fly Request Context Binding

We attribute collected hardware counter metrics to corresponding
server requests by maintaining on-the-fly request context binding
in the system. We use therequest contextto encapsulate runtime
activities belonging to a single request execution. The maintenance
of on-the-fly request context binding can also support request-
granularity OS adaptation, where a customized set of OS policies
and configurations are used for each request.

A request context mostly coincides with a thread/process con-
text in many cases (aside from the proper attribution of kernel
activities such as interrupt handlers). Therefore, the system can
bind a thread or process to the context of the request it executes.
The currently active request context is the one that the active
thread/process is bound to. However, the request context binding
must be propagated when a request execution flows through multi-
ple threads/processes. For instance, a request may includeactivities
in an application server process and a database thread. The appli-
cation server itself may also contain multiple components (e.g.,
Enterprise Java Beans in J2EE services) that a request traverses
through.

The issue of request context binding in multi-component servers
was addressed in several previous studies. In resource contain-
ers [6] and Pinpoint [12], applications or the component middle-
ware must explicitly pass request context bindings across multiple
threads/processes in the system. In Magpie [8], system events are
logged regardless of their request contexts and they are attributed
to specific requests after request completion (online or offline) ac-
cording to application-specific schema. Though Magpie provides
a high level of flexibility in request modeling, it does not support
on-the-fly request context binding.

We propose an OS-level approach to transparently track each
request across multiple server components. The high-levelguid-
ing principle for our transparent request tracking is that compo-
nent activities reachable through control or data flows are semanti-
cally connected, and therefore are very likely parts of one request
context. Specifically, we consider two such control/data flows: pro-
cess/thread forking and message passing. In the first case, we let
the newly forked process or thread inherit the context binding of its
parent. This is easy to implement in the OS and it has already been
supported in past work [6]. For message passing, we intend tore-
alize the following simple propagation rule when thread/processS
sends a message to thread/processR: “If S ’s request context bind-
ing is C at the message send time, thenR inheritsC at the mes-
sage receipt time.” Below we describe how to implement this rule
for TCP/IP socket messages using a transparent message tagging
mechanism.

We tag each socket message header with the identifier of the
request context for the sending thread/processS . To maintain com-
patibility with the Internet protocol standard, we store the tag in a
new option field of the TCP message header. In this way, commu-
nicating peers that do not understand the tagging will simply ignore
it but still receive the message properly. At the receiving side, we
would like to bind the receiving thread/processR to the tagged
request context. SinceR might not have initiated the receive oper-
ation when the message arrives, we record the association ofprop-
agated request context with the buffered message at the socket.R
will inherit the context when initiating the receive operation. When
component interactions employ connection pooling, a single socket
connection may be used for propagating multiple request contexts.
Therefore, the socket to request context binding may changedy-
namically at runtime. Figure 5 illustrates request contextpropaga-
tions for a single request in a J2EE-based service.

There is no explicit context unbinding operation in our scheme.
An inherited request context expires when the thread/process re-
ceives a new context propagation or when it exits. A thread/process
in some server components may be used repeatedly to execute re-
quests (as in thread pooling and event-driven servers). Ourscheme
automatically handles this situation by performing a request con-
text switch whenever a new context propagation is received in a
socket message.

Our message-tagging based request context propagation is ap-
plicable for both intra-machine or cross-machine messages. For
multi-machine server systems, sub-instances of a request context
may exist on multiple machines and an on-the-fly aggregationof
these sub-instances may incur significant overhead. A proper han-
dling of such cross-machine aggregation falls beyond the scope of
this paper and all experiments in this paper utilize single-machine
servers.

Our current scheme is sufficient to support many multi-component
server applications. However, we acknowledge two limitations that
need to be addressed in future work. First, our scheme targets
server applications in which request contexts propagate through
process/thread forking or message passing. However, some appli-
cations contain context propagations over other means (e.g., thread
synchronization via shared memory). Second, there can be am-

Tomcat

Servelet

Jboss

Invoker

Jboss

RMI-Disc

RUBiS

QueryHome

RUBiS

ItemHome

MySQL

Database

146

Request

232

1614

1044

2680

1

1

2568

527

16

...

1

...

232

1614

1043

2748

T
im
e

Figure 5. Illustrated request context propagations using socket
communications for a RUBiS [20] request. RUBiS in this exam-
ple is supported by the JBoss Application server and MySQL
database. Darkened lines indicate portions of component execu-
tions attributed to the request context. The number on each message
indicates the application-level message size in bytes. Ourrequest
propagation tag contains a small request context identifierand it
only consumes an additional 12 bytes per message.

biguous request context propagation when a single receive oper-
ation reads data across the boundary of multiple messages that
bear different context bindings. These messages are typically de-
multiplexed later at application level, which is beyond OS detec-
tion. Such a scenario may occur in event-driven servers.

4.2 Metric Collection and Synthesis

We maintain raw system statistics in the form of cumulative event
counters per processor. To retrieve the event counts for a duration
of continuous execution on a processor, we only need to sample
the counter values at the start and end of the duration and then
calculate the difference. When there is a request context switch
on a processor, we must sample the counter values at the switch
time to properly attribute the before-switch and after-switch event
counts to the respective requests. Request context switches may
occur at CPU context switches between different threads/processes.
They also occur when the request context binding of a running
thread/process changes. In addition to sampling at requestcontext
switches, it may also be desirable to sample the counter values
periodically to acquire fine-grained execution statistics. On our
experimental platform (Linux 2.6.10), kernel timers allowus to
sample at a frequency as high as once every millisecond.

The collected counter metric trace for each request consists of a
series of metric samples in chronological order. Each sample con-
tains the elapsed CPU cycles and incremental hardware metrics
since the last sampling point. Periodic sampling at once every mil-
lisecond results in a 1 ms upperbound on the duration of each met-
ric sample. However, the metric samples for each request typically
do not follow synchronized steps due to non-deterministic request
context switches in concurrent server environments. When calcu-
lating cumulative event counts up to a specified execution point
(e.g., 3 ms since the beginning of the request), there often exists
one metric sample whose duration crosses the desired execution

point. In this case, we approximate by discounting part of the event
counts in this metric sample with the assumption of constantevent
occurrence frequency over the sample duration.

Processor-level multi-threading technologies such as Intel’s
hyper-threading allow concurrent thread execution on a single pro-
cessor. This feature slightly complicates hardware counter metric
collection because multiple hardware threads on one physical pro-
cessor share a single set of counter registers. In a typical setup,
some counter registers may be exclusive to one of the hardware
threads. A single request may utilize different sets of counter reg-
isters when it migrates over different hardware threads.

4.3 Request Identification and Property Inference

Our on-the-fly request identification is realized by matching request
signatures (as a composite of several hardware counter metrics)
against those in a bank of representative requests maintained by the
system. The matching request in the bank can simply be the one
with the most similar signature to the on-the-fly request. Toinfer
high-level request properties (e.g., CPU and I/O resource usage),
the request bank also contains a signature-to-property mapping,
which returns the property of the matching request. The bankof
representative requests can be constructed either offline or through
online self-learning. In online self-learning, signatures and addi-
tional properties of interest for just-completed requestsare added to
the request bank as replacements of older requests. This is partic-
ularly useful for automatically adapting to gradual systemchanges
in long-running servers.

Our approach is simplistic in that it does not need any prior
knowledge of the semantic relationships between the collected
hardware metrics and the desired request properties. Such knowl-
edge would be required for parametric prediction techniques such
as neural networks, hidden Markov models, and Bayesian net-
works.

To determine matching requests, we need a measure of dis-
tance between two request signatures, each of which is represented
as a vector of hardware metrics(M1,M2, · · · ,Mk). We have
tried three distance measures:L1 distance,L2 distance, and co-
sine distance (the cosine of the angle between two vectors).We
find that different distance measures yield very small deviations
in identification accuracy. This is because similar requests tend
to exhibit small distance under any reasonable distance measure.
For simplicity, we currently employ the normalizedL1 distance.
Specifically, the distance between two request signature vectors
(M1[x],M2[x], · · · ,Mk[x]) and (M1[y],M2[y], · · · ,Mk[y])
is:

k
X

i=1

|Mi[x] −Mi[y]|

M̄i

. (2)

where the weightM̄i is the expected mean of metricMi for all
requests.

For each request, the amount of time spent collecting metrics
before querying the request bank for request identificationmust be
carefully assessed. Too short a metric collection phase mayprovide
insufficient information for identifying a request. On the other
hand, too long a metric collection phase requires large collection
overhead and most importantly a late-stage inference may not allow
effective system adaptation for this request. Although it is simple
to make request identifications at a deterministic point of arequest
execution, different requests in a server application may require
different time periods for metric collection in order to achieve
accurate identification. We therefore consider two approaches to
determining the request identification time:

1. Fixed-point identification. This approach attempts to identify
all requests by querying the request bank for the closest match
at a fixed time point (e.g., after the request runs for 3 ms). The

point is determined by offline calibration to achieve satisfactory
request identification and property inference accuracy while
still being sufficiently early for effective OS adaptation using
the inferred request property.

2. Confidence-driven incremental identification. For each request,
this approach queries the request bank at incremental stages
(e.g., 1 ms, 2 ms, 3 ms,· · · after the request begins) using up-to-
date cumulative metrics. At each stage, it assesses a confidence
metric in the current request identification result and stops fur-
ther identification if a high-enough confidence has been at-
tained. In our current design, a high confidence is indicatedby
the agreement of the identification results made during the most
recent stages. For example, we can finalize a request identifi-
cation if the property of the closest matching request (in the
request bank) at the most recent stage is within aδ difference
from that at the second most recent stage.

5. Implementation and Evaluation
We have developed a prototype implementation of the proposed
request signature management in the Linux 2.6.10 kernel. Our im-
plementation supports the online self-learning based request bank
construction described in Section 4.3. Hardware counters are typ-
ically accessed through privileged instructions (for concerns such
as information leaking [29]), so counter value sampling must be
performed in the OS kernel. To avoid domain crossing overhead,
all our hardware counter management is performed in the kernel.
It is also possible to employ a microkernel-style implementation,
which would retain only the basic counter metric collectionand re-
quest context maintenance in the kernel while leaving the signature
construction, request identification, and property inference at the
user level. This alternative architecture would allow easier policy
changes at the cost of additional domain crossing overheads.

Using our prototype, this section evaluates the overhead and
request property inference accuracy of our system. We also per-
formed several system adaptation case studies using our request
signatures, which we present in the next sections. The machines
in our experimental platform each contain dual 2 GHz Intel Xeon
processors and 2 GB memory. We configure the hardware counter
registers to report the application-specific hardware metrics listed
in Table 2. Each experiment in our application studies involves
a server and a load generation client. The client generates in-
put workloads according to traces or synthetic setups in applica-
tion/benchmark specifications.

Our evaluation employs four server applications:

• TPC-C [26] simulates a population of terminal operators ex-
ecuting Order-Entry transactions against a database. It con-
tains five types of transactions: “new order”, “payment”, “order
status”, “delivery”, and “stock level”, constituting 30%,20%,
20%, 10%, and 20% of all requests, respectively. TPC-C runs
on the MySQL 5.0.18 database.

• TPC-H [27] is a database-driven decision support benchmark.
The TPC-H workload consists of 22 complex SQL queries.
Some queries require an excessive amount of time to finish and
thus they are not appropriate for interactive server workloads.
We choose a subset of 17 queries in our experimentation: Q2,
Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q11, Q12, Q13, Q14, Q15, Q17,
Q19, Q20, and Q22. Our synthetic workload contains an equal
proportion of requests of each query type. TPC-H runs on the
MySQL 5.0.18 database.

• RUBiS [20] is a J2EE-based multi-component online service
that implements the core functions of an auction site includ-
ing selling, browsing, and bidding. It uses a three-tier service
model, containing a front-end web server, a back-end database,

0

0.5%

1%

1.5%

S
er

ve
r

th
ro

ug
hp

ut
 d

eg
ra

da
tio

n

Collect/10ms
Collect/1ms
Collect/1ms with fixed−point id.
Collect/1ms with incremental id.

Figure 6. System overhead for TPC-H at two different metric
collection frequencies (once per 10 ms and once per 1 ms) as well
as two different request identification approaches (fixed-point and
incremental).

and nine business logic components implemented as Enterprise
Java Beans. RUBiS runs on the JBoss 3.2.3 application server
with an embedded Tomcat 5.0 servlet container. The back-end
is powered by the MySQL 5.0.18 database. In our application
setup, most of the server CPU consumption (around 84%) is
in the JBoss J2EE application server and its hosted application
components.

• Index search:The above workloads are all fully CPU-bound.
To enhance the workload variety, we include one data-intensive
server application that provides full-text search on a web key-
word index dataset. The dataset, acquired from the Ask.com
search engine [4], contains 1.58 million indexed web pages.Its
size — 2.37 GB — is slightly larger than the server memory
size. The search queries in our test workload are based on a real
trace recorded at Ask.com in summer 2004.

5.1 System Overhead

We assess the overhead of our per-request system metric collec-
tion and on-the-fly request identification. We consider two differ-
ent metric collection frequencies (once every 10 ms and onceev-
ery 1 ms). We also consider two request identification approaches
(fixed-point and incremental). For the incremental requestidentifi-
cation, we assume all requests require 10 stages to complete. This
is an over-estimation to provide us an overhead upper bound.

Figure 6 illustrates the overhead assessment result for TPC-H.
We find that the hardware metric collection incurs 0.4% and 0.8%
overhead at the frequencies of once per 10 ms and once per 1 ms
respectively. Note that the overhead does not scale linearly with
the collection frequency because the per-collection cachewarmup
cost is less when the collection routine runs more often. Thetwo
request identification approaches yield additional 0.1% and 0.6%
throughput reductions respectively. We believe this overhead is
sufficiently low for runtime deployment.

5.2 Request Property Inference Accuracy

We evaluate the effectiveness of hardware counter metric driven
on-the-fly request property inference. Although our framework can
support many inference targets, our evaluation here focuses on pre-
dicting request resource consumption, which is particularly use-
ful for some online system adaptations (as illustrated later in Sec-
tion 6.1). For CPU-bound applications (TPC-C, TPC-H, and RU-
BiS), our prediction target is the request CPU usage. For data-
intensive index search, our prediction target is the request I/O size.

As a comparison basis to our hardware counter driven request
property inference, we look for a representative conventional ap-
proach that is also transparent to server applications (i.e., requir-

1 2 3 4 5 6 7 8 9 10

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

M
ea

n
pr

ed
ic

tio
n

er
ro

r
ov

er
 a

ll
re

qu
es

ts

TPC−H serial execution

1 2 3 4 5 6 7 8 9 10

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

M
ea

n
pr

ed
ic

tio
n

er
ro

r
ov

er
 a

ll
re

qu
es

ts

TPC−H concurrent execution

1 2 3 4 5 6 7 8 9 10

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

M
ea

n
pr

ed
ic

tio
n

er
ro

r
ov

er
 a

ll
re

qu
es

ts

TPC−H concurrent execution w. hyper−threading

1 2 3 4 5 6 7 8 9 10

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

M
ea

n
pr

ed
ic

tio
n

er
ro

r
ov

er
 a

ll
re

qu
es

ts

TPC−C concurrent execution

1 2 3 4 5 6 7 8 9 10

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

M
ea

n
pr

ed
ic

tio
n

er
ro

r
ov

er
 a

ll
re

qu
es

ts

RUBiS concurrent execution

1 2 3 4 5 6 7 8 9 10

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

M
ea

n
pr

ed
ic

tio
n

er
ro

r
ov

er
 a

ll
re

qu
es

ts

Index search concurrent execution

Online running avg.
Counter inference

Online running avg.
Counter inference

Online running avg.
Counter inference

Online running avg.
Counter inference

Online running avg.
Counter inference

Online running avg.
Counter inference

Figure 7. The accuracy of predicting request CPU usage (I/O size for the data-intensive index search) using our hardware counter driven
inference and using an online running average. For our hardware counter driven method, we show the prediction accuracy using up to 10 ms
of execution statistics for each request. The mean full request execution time (mean CPU time for each request to complete) is 600.8 ms,
25.9 ms, 29.3 ms, and 16.3 ms for TPC-H, TPC-C, RUBiS, and index search respectively. The prediction error for a particular request is
defined as|prediction−actual|

actual . Note that this definition of error may exceed 100% and we count it as 100% in such cases.

ing no application instrumentation or assistance). Fundamentally,
without on-the-fly information about an incoming request, there is
little other choice but to use recent past workloads as the basis to
predict incoming workloads [11, 22, 9]. Specifically, we employ a
transparent workload property prediction method — online running
average — as our comparison basis. In this method, the property of
the next runtime request is estimated as the average ofN recent
past requests. We find that the prediction accuracy is not very sen-
sitive to the parameterN and our reported results were produced
usingN = 10.

Figure 7 illustrates the inference accuracy for our four server ap-
plications (we also show the serial execution and hyper-threading-
enabled results for TPC-H). With 10 ms execution statisticsfor each
request, the prediction errors for TPC-C, TPC-H, RUBiS, andindex
search are 7%, 3%, 20%, and 41% respectively. They are all sub-
stantially lower than the online running average-based prediction
(73–82% errors).

Comparing across the four applications, the prediction accuracy
of TPC-C and TPC-H is much better than that of RUBiS and index
search. Further, TPC-C and TPC-H requests can reach high predic-
tion accuracy with no more than 3 ms request execution statistics.
Both RUBiS and index search require more statistics. Our appli-
cation studies suggest the following explanation. For TPC-C and
TPC-H, different requests exhibit clearly differentiatedexecution
behaviors early in their executions. In contrast, all indexsearch re-
quests follow similar code paths, which makes them very difficult
to differentiate. Finally, RUBiS requests start with almost identical
code paths due to common processing for Enterprise Java Beans,
but they deviate later with processing behaviors unique to the re-
spective request functions.

5.3 Request Identification Timing

Determining the time at which request identification is performed
is critical since the need to achieve reasonable predictionaccu-
racy must be balanced by the need to ensure that the identification
is early enough to guide request-granularity system adaptation. In
Section 4.3, we described two approaches to determining this time:
fixed-point request identification and confidence-driven incremen-
tal identification. Results in Figure 7 can directly guide the choice
of the fixed inference time point (e.g., 2 ms for TPC-H requests and
9 ms for RUBiS requests).

In the confidence-driven incremental approach, request identi-
fications are performed incrementally (e.g., every millisecond) and
only those with high confidence are finalized at each stage. Weeval-
uate this approach using our simple confidence measure described
in Section 4.3. Here, we focus on RUBiS and index search since
their request identification accuracy is more dependent on the iden-
tification timing. Figure 8 shows that by making request property
predictions only when the confidence is high, higher prediction ac-
curacy can be achieved for the requests identified (comparedto the
prediction error when using a fixed cumulative window, as speci-
fied on the X-axis, for all requests). However, this comes at the cost
of incomplete request identifications, as shown in Figure 9.

6. Operating System Adaptations
Our hardware counter driven request signature supports on-the-fly
request identification and inference of high-level requestproper-
ties. This makes it possible to adapt system management on a per-
request basis using the request identification or inferred properties.
This section explores several such adaptations: resource-aware re-

2 3 4 5 6 7 8 9 10

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

M
ea

n
pr

ed
ic

tio
n

er
ro

r

RUBiS

All requests
Confident requests only

2 3 4 5 6 7 8 9 10

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

M
ea

n
pr

ed
ic

tio
n

er
ro

r

Index search

All requests
Confident requests only

Figure 8. Request property inference accuracy when identification ismade only for
requests demonstrating a high confidence.

2 3 4 5 6 7 8 9 10

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

P
ro

po
rt

io
n

of
 r

eq
ue

st
s

RUBiS
Index search

Figure 9. The cumulative proportion of re-
quest identifications made under high confi-
dence.

quest scheduling, on-the-fly request classification, and anomaly de-
tection.

6.1 Resource-Aware Request Scheduling

It is well known that user request rates for server systems can
fluctuate dramatically over time. Consequently, it is important to
manage requests efficiently under high load conditions. Knowledge
of request resource usage at scheduling time is essential orat least
helpful in realizing several request management schemes:

• Shortest-remaining-processing-time (SRPT) schedulingis known
to achieve minimal average request response time [21]. Bansal
and Harchol-Balter [7] further showed that concern over its
unfairness to long-running tasks is unwarranted.

• Deadline-driven scheduling: Interactive users often desire ser-
vice responses within a certain time limit. Deadline-driven
scheduling can benefit from advance knowledge of whether
a request can be completed before its deadline.

• Resource-aware admission control: Scenarios in which a rela-
tively few resource-hungry requests in a server consume a dis-
proportionately large amount of resources are not uncommon.
An overloaded system may want to drop these resource-hungry
requests in order to achieve higher request throughput.

Despite these benefits, acquiring request resource usage in-
formation before a request completes is challenging. Although
application-level information can infer request resourceconsump-
tion for applications with simple semantics (e.g., inferred through
file size in a static-content web server [19]), such inference is dif-
ficult for applications with more complex semantics. Further, the
involvement of application information compromises system trans-
parency. As a different design point, Capriccio [28] acquires appli-
cation resource consumption information through extensive com-
piler and language-level runtime support. However, such methods
are not applicable to many existing applications or new applications
written in unsupported programming languages. In contrast, our
OS-level inference of request resource usage provides a high level
of transparency that requires no application assistance orchange.

An Empirical Evaluation of SRPT Scheduling We measure the
effectiveness of our hardware counter driven request resource usage
inference in supporting the SRPT request scheduling. To facilitate
this study, we implemented a simple SRPT scheduling scheme in
the Linux kernel. Our implementation mainly involves an augmen-
tation each time the Linux CPU scheduler is about to pick a task
from the head of the ready task queue. Specifically, at this time, we
search for the ready task whose request binding has the shortest re-

maining processing time, and move this task to the head of thetask
queue so that it will be chosen at the subsequent scheduling point.
Note that our simple implementation is not perfect SRPT since we
do not interfere with the Linux task quantum management, which
may force round-robin scheduling when the task quanta are used
up.

Our on-the-fly request resource usage inference can enable
SRPT request scheduling. Note that a running request does not
have inferred resource usage during its metric collection phase
before our signature-based identification is made. Our scheduler
always gives such unidentified requests higher priority over those
that are already identified. We compare the performance of our re-
quest scheduling scheme against three alternative approaches: 1)
Default Linuxscheduling; 2) SRPT scheduling usingonline run-
ning average-based request resource usage estimation; and 3) a
hypotheticaloracle SRPT scheduling that has perfect knowledge
of request resource usage before execution.

Figure 10 illustrates the mean request response time under dif-
ferent request scheduling schemes when the workload request rates
approach server saturation load levels. Since only CPU-bound ap-
plications are affected by CPU scheduling, here we only show
results for RUBiS, TPC-C, and TPC-H. The results demonstrate
that our counter-driven scheduling yields 15–27% less request re-
sponse time compared to the online running average based schedul-
ing. Its improvement over default Linux is greater (up to 70%re-
sponse time reduction). More importantly, the performanceof our
approach is within 5% that of the oracle scheduler, indicating its
ability to realize the full benefit of resource-aware scheduling.

6.2 On-the-Fly Request Classification and Anomaly
Detection

In a server system, online continuous collection of per-request
information can help construct workload models, classify work-
load patterns, and support performance projections. For instance,
grouping similar requests into clusters helps understand the pro-
portion of requests with different levels of resource consumption,
which consequently enables performance projection on new pro-
cessor/memory platforms. As far as we know, existing onlinere-
quest modeling techniques (and Magpie [8] in particular) classify
each request into a request cluster after it completes. Our on-the-fly
request signature makes it possible to classify a request shortly after
it begins execution. By classifying a request early, an online work-
load tracker may save the overhead for further tracing and event
logging on the classified request. Further, early request classifica-
tion allows on-the-fly flagging of potentially anomalous requests
— those that do not fall into any existing request cluster. The sys-

56 58 60 62
0

200

400

600

800

1000

1200

Request rate (in requests/sec)

M
ea

n
re

qu
es

t r
es

po
ns

e
tim

e
(in

 m
ill

is
ec

)

RUBiS

Default Linux
Online running avg.
Counter inference
Oracle

70 72 74 76
0

100

200

300

400

500

600
1062ms for Linux

Request rate (in requests/sec)

M
ea

n
re

qu
es

t r
es

po
ns

e
tim

e
(in

 m
ill

is
ec

)

TPC−C

3.1 3.2 3.3 3.4 3.5
0

1

2

3

4

5

6

Request rate (in requests/sec)

M
ea

n
re

qu
es

t r
es

po
ns

e
tim

e
(in

 s
ec

)

TPC−H

Figure 10. Performance of shortest-remaining-processing-time scheduling when workload request rates approach server saturation load
levels.

0 1 2 3 4 5 6 7 8

x 10
−3

0

1

2

3

4

5

6

7

8

x 10
−3

Trace cache lookup misses per µ−instruction

F
lo

at
in

g
po

in
t o

ps
 p

er
 µ

−
in

st
ru

ct
io

n

Figure 11. Per-request 10 ms-cumulative values of two hardware
counter metrics (floating point operations and trace cache lookup
misses perµ-instruction) for an execution of TPC-H requests. The
plot includes 1227 normal TPC-H requests (marked as dots) and 16
anomalous requests (marked as circles).

tem may then apply targeted monitoring or even online quarantine
on those requests.

We provide a simple illustration to motivate the use of hardware
metrics for request classification and anomaly detection. Figure 11
shows the per-request 10 ms-cumulative values of two hardware
counter metrics for an execution of over 1000 TPC-H requests. This
execution includes some anomalous requests generated syntheti-
cally following the pattern of SQL-injection attacks, which may
enable the attackers to bypass authentication and extract sensitive
data [3, 18]. In particular, a tautology-based attack is to inject code
in one or more SQL conditional statements so that they always
evaluate to true (or they are effectively removed from conjunctive
conditions). For each of the 17 TPC-H query types (except Q13,
which does not contain a conditionalwhere clause), we generated
one anomalous request by removing one or two conditional state-
ments at the end of thewhere clause. Results in Figure 11 indicate
that normal requests do tend to form clusters according to early-
execution hardware metrics and anomalous requests are typically
distant from these clusters. Note that this plot only considers two
hardware metrics due to illustrative limitation while our full request
signature includes more metrics.

An Empirical Study of Request ClassificationUsing a simple
empirical study, we assess the potential of our request signature
enabled on-the-fly request classification. To facilitate this study, we
implemented a simple request classifier. First, we define thecluster
signatureas the centroid of all signatures (hardware metric vectors)
of requests in the cluster. For each new request, we match itson-
the-fly signature with the cluster signatures of all existing request
clusters. If the closest match exhibits a small enough signature
difference, the request is then classified into the corresponding
request cluster. Otherwise, it initiates a new cluster.

Figure 12 illustrates the accuracy of our on-the-fly requestclas-
sification for TPC-H (without anomalous requests). We show re-
sults using different windows for per-request metric collection (up
to 100 ms since request begins execution). We defineperfect clas-
sificationas the one that groups requests according to similar CPU
usage. We then define the error of an on-the-fly classificationas its
deviation from the perfect classification. More specifically, a mis-
classifiedrequest is one that is put into a cluster of requests with
predominantly different CPU usage. Anover-classifiedrequest is
not mis-classified but it (along with other similar requestsin the
same cluster) should be merged into another (larger) cluster. Mis-
classification is much more worrisome since it would yield erro-
neous information in the produced workload model. In comparison,
over-classification only incurs some additional cluster management
overhead.

Results in Figure 12 show that our on-the-fly request clas-
sification can achieve zero mis-classification with as low asa
2 ms window of cumulative request execution statistics. Theover-
classification rate is less than 25% with a 4 ms or higher window
of cumulative statistics. Since the mean TPC-H request execution
time is around 600 ms, on-the-fly request classification with4 ms
cumulative statistics can potentially save up to 99% of request
monitoring and tracing overhead.

An Empirical Study of Anomaly Detection We perform another
simple empirical study to assess the potential of our request sig-
nature enabled on-the-fly anomaly detection. Building on our re-
quest classifier, we consider requests in unusually small clusters as
anomalous requests. We use two measures to evaluate the effective-
ness of our anomaly detection:

anomaly recall=
of correctly detected anomalies

of actual anomalies

normal request recall=
of correctly identified normal requests

of actual normal requests
A high anomaly recall indicates that most anomalies are properly
detected while a high normal request recall indicates that most
normal requests are not misclassified as anomalies. Note that the

0 10 20 30 40 50 60 70 80 90 100
0

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

P
ro

po
rt

io
n

of
 r

eq
ue

st
s

Over−classification of requests

Mis−classification of requests

Figure 12. Classification accuracy of hardware counter driven on-the-fly request classification for TPC-H (without anomalous requests). We
show results using different windows for per-request metric collection (up to 100 ms since request begins execution).

0 10 20 30 40 50 60 70 80 90 100
0

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

R
ec

al
l r

at
io

s
fo

r
an

om
al

ou
s/

no
rm

al
 r

eq
ue

st
s

Anomaly recall

Normal request recall

Figure 13. Detection accuracy of hardware counter driven on-the-fly anomaly detection for TPC-H (including 1227 normal requests and 16
SQL-injection-style anomalous requests).

second measure is necessary since a trivial detector that flags all
requests as anomalous would achieve the perfect anomaly recall.

Figure 13 shows the accuracy of our on-the-fly anomaly de-
tection for TPC-H (with some SQL-injection-style anomalous re-
quests). For this experiment, small clusters containing less than 1%
of all requests are considered as anomalous. Results suggest that
high recall ratios (around 90% or higher) for both anomaliesand
normal requests can be achieved with only a 4 ms or higher win-
dow of cumulative statistics for each request.

7. Conclusion
This paper makes the case for constructing on-the-fly request sig-
natures using hardware counter metrics available on modernpro-
cessors. The signature enables on-the-fly request identification and
inference of high-level request properties, which subsequently al-
low request-granularity system adaptations that are otherwise im-
possible (or difficult). We address two key challenges in realiz-
ing such on-the-fly request signatures: deriving general principles
to guide the selection of hardware counter metrics, and proposing
OS mechanisms for transparent online management of per-request
counter metrics. Our experiments using four server applications
demonstrate the high accuracy of our on-the-fly request identifi-
cation and request resource usage inference. We also illustrate the
effectiveness of request signature-enabled OS adaptations includ-
ing resource-aware request scheduling, on-the-fly requestclassifi-
cation, and anomaly detection.

Our experience allows us to make several important conclusions
that can guide the practical deployment of our technique. First, a
number of factors may influence the effectiveness of hardware met-

rics as request signatures in a concurrent server environment. In
particular, metrics that are most susceptible to concurrency-related
environmental perturbations tend to be less effective. Second, de-
pendence on application characteristics makes it unlikelyto find a
small but universally useful set of hardware metrics as a request
signature. Instead, application-specific calibration is needed to de-
rive the appropriate request signature composition for each server
application. Third, quick and accurate request identification is more
likely for those server applications whose requests possess a variety
of different semantics and tend to exhibit differentiatingpatterns
of execution early. Identification is more difficult for applications
whose requests only bifurcate in behavior later in their execution
path (such as RUBiS in our study) but they may still benefit from
our technique.

Today’s hardware counter interfaces are non-standard across
processor versions and are not ”architected” for general software
utilization. While our experiments in this paper employ a single
x86 processor platform, almost all of the metrics we collect(e.g.,
floating point operations, L1 misses, number of loads, stores, and
branches, CPI) are available on every processor platform weare
familiar with (including Power and other x86 versions). More im-
portantly, along with several other recent studies [25, 10,29], we
demonstrate the potential importance of their use in improving soft-
ware system performance and dependability. This may help influ-
ence the standardization of processor hardware metrics andtheir
broad exploitation in computer systems.

References
[1] M.K. Aguilera, J.C. Mogul, J.L. Wiener, P. Reynolds, and

A. Muthitacharoen. Performance Debugging for Distributed
Systems of Black Boxes. InProc. of the 19th ACM Symp. on
Operating Systems Principles, pages 74–89, Bolton Landing,
NY, October 2003.

[2] J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Hen-
zinger, S.A. Leung, R.L. Sites, M.T. Vandevoorde, C.A. Wald-
spurger, and W.E. Weihl. Continuous Profiling: Where Have
All the Cycles Gone?ACM Trans. on Computer Systems, 15
(4):357–390, November 1997.

[3] C. Anley. Advanced SQL Injection in SQL Server Applica-
tions. Technical report, Next Generation Security Software
Ltd., 2002.

[4] Ask.com Search Engine (formerly Ask Jeeves). http://www
.ask.com.

[5] R. Azimi, M. Stumm, and R. W. Wisniewski. Online Per-
formance Analysis by Statistical Sampling of Microprocessor
Performance Counters. InProc. of the 19th ACM Conf. on Su-
percomputing, pages 101–110, Cambridge, MA, June 2005.

[6] G. Banga, P. Druschel, and J.C. Mogul. Resource Containers:
A New Facility for Resource Management in Server Systems.
In Proc. of the Third USENIX Symp. on Operating Systems
Design and Implementation, pages 45–58, New Orleans, LA,
February 1999.

[7] N. Bansal and M. Harchol-Balter. Analysis of SRPT Schedul-
ing: Investigating Unfairness. InProc. of the ACM SIGMET-
RICS, pages 279–290, Cambridge, MA, June 2001.

[8] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for Request Extraction and Workload Modeling. In
Proc. of the 6th USENIX Symp. on Operating Systems Design
and Implementation, pages 259–272, San Francisco, CA, De-
cember 2004.

[9] J.M. Blanquer, A. Batchelli, K. Schauser, and R. Wolski.Quo-
rum: Flexible Quality of Service for Internet Services. In
Proc. of the Second USENIX Symp. on Networked Systems De-
sign and Implementation, pages 159–174, Boston, MA, May
2005.

[10] J.B. Bulpin and I.A. Pratt. Hyper-Threading Aware Process
Scheduling Heuristics. InProc. of the USENIX Annual Tech-
nical Conf., pages 103–106, Anaheim, CA, April 2005.

[11] J.S. Chase, D.C. Anderson, P.N. Thakar, A.M. Vahdat, and
R.P. Doyle. Managing Energy and Server Resources in Host-
ing Centers. InProc. of the 18th ACM Symp. on Operating
Systems Principles, pages 103–116, Banff, Canada, October
2001.

[12] M. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson,
A. Fox, and E. Brewer. Path-Based Failure and Evolution
Management. InProc. of the First USENIX Symp. on Net-
worked Systems Design and Implementation, pages 309–322,
San Francisco, CA, March 2004.

[13] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and
A. Fox. Capturing, Indexing, Clustering, and Retrieving Sys-
tem History. InProc. of the 20th ACM Symp. on Operating
Systems Principles, pages 105–118, Brighton, United King-
dom, October 2005.

[14] A.S. Dhodapkar and J.E. Smith. Managing Multi-
Configuration Hardware via Dynamic Working Set Analysis.
In Proc. of the 29th Int’l Symp. on Computer Arch., pages
233–244, Anchorage, AL, May 2002.

[15] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characteriz-
ing and Predicting Program Behavior and its Variability. In
Proc. of the Int’l Conf. on Parallel Arch. and Compilation
Tech., pages 220–231, New Orleans, LA, September 2003.

[16] L. Eeckhout, H. Vandierendonck, and K.D. Bosschere. Work-
load Design: Selecting Representative Program-Input Pairs. In
Proc. of Int’l Conf. on Parallel Arch. and Compilation Tech.,
pages 83–94, Charlottesville, VA, September 2002.

[17] C. Gniady, A.R. Butt, and Y.C. Hu. Program-Counter-Based
Pattern Classification in Buffer Caching. InProc. of the 6th
USENIX Symp. on Operating Systems Design and Implemen-
tation, pages 395–408, San Francisco, CA, December 2004.

[18] W.G.J. Halfond, J. Viegas, and A. Orso. A Classificationof
SQL Injection Attacks and Countermeasures. InInt’l Symp.
on Secure Software Engineering, Arlington, VA, March 2006.

[19] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal.
Size-Based Scheduling to Improve Web Performance.ACM
Trans. on Computer Systems, 21(2):207–233, May 2003.

[20] RUBiS: Rice University Bidding System. http://rubis
.objectweb.org.

[21] L.E. Schrage and L.W. Miller. The Queue M/G/1 with the
Shortest Remaining Processing Time Discipline.Operations
Research, 14(4):670–684, 1966.

[22] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated Resource
Management for Cluster-based Internet Services. InProc. of
the 5th USENIX Symp. on Operating Systems Design and Im-
plementation, pages 225–238, Boston, MA, December 2002.

[23] T. Sherwood, S. Sair, and B. Calder. Phase Tracking and
Prediction. InProc. of the 30th Int’l Symp. on Computer Arch.,
pages 336–349, San Diego, CA, June 2003.

[24] C. Stewart and K. Shen. Performance Modeling and System
Management for Multi-component Online Services. InProc.
of the Second USENIX Symp. on Networked Systems Design
and Implementation, pages 71–84, Boston, MA, May 2005.

[25] P.F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Di-
wan, D. Grove, and M. Hind. Using Hardware Performance
Monitors to Understand the Behaviors of Java Applications.
In Proc. of the Third USENIX Virtual Machine Research and
Technology Symp., pages 57–72, San Jose, CA, May 2004.

[26] TPC Benchmark C. http://www.tpc.org/tpcc.

[27] TPC Benchmark H. http://www.tpc.org/tpch.

[28] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer. Capriccio: Scalable Threads for Internet Services.
In Proc. of the 19th ACM Symp. on Operating Systems Prin-
ciples, pages 268–281, Bolton Landing, NY, October 2003.

[29] X. Zhang, S. Dwarkadas, G. Folkmanis, and K. Shen. Pro-
cessor Hardware Counter Statistics As A First-Class System
Resource. InProc. of the 11th Workshop on Hot Topics in
Operating Systems, San Diego, CA, May 2007.

