
TreadMarks:

Shared Memory Computing

on Networks of Workstations

Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher,

Honghui Lu, Ramakrishnan Rajamony, Weimin Yu and Willy Zwaenepoel

Rice University

treadmarks@ece.rice.edu

http://www.cs.rice.edu/�willy/TreadMarks/overview.html

Abstract

TreadMarks supports parallel computing on networks of workstations by providing the application

with a shared memory abstraction. Shared memory facilitates the transition from sequential to

parallel programs. After identifying possible sources of parallelism in the code, most of the data

structures can be retained without change, and only synchronization needs to be added to achieve a

correct shared memory parallel program. Additional transformations may be necessary to optimize

performance, but this can be done in an incremental fashion. We discuss the techniques used in

TreadMarks to provide e�cient shared memory, and our experience with two large applications,

mixed integer programming and genetic linkage analysis.

1 Introduction

High-speed networks and rapidly improving microprocessor performance make networks of work-

stations an increasingly appealing vehicle for parallel computing. By relying solely on commodity

hardware and software, networks of workstations o�er parallel processing at a relatively low cost.

A network-of-workstations multiprocessor may be realized as a processor bank, a number of pro-

cessors dedicated for the purpose of providing computing cycles. Alternatively, it may consist

of a dynamically varying set of machines on which idle cycles are used to perform long-running

computations. In the latter case, the (hardware) cost is essentially zero, since many organizations

already have extensive workstation networks in place. In terms of performance, improvements in

processor and network speed allow networked workstations to deliver performance approaching or

exceeding supercomputer performance for an increasing class of applications. It is by no means

our position that such loosely coupled multiprocessors will render obsolete more tightly coupled

designs. In particular, the lower latencies and higher bandwidths of these tightly coupled designs

allow e�cient execution of applications with more stringent synchronization and communication

This research was supported in part by the National Science Foundation under Grants CCR-9116343, CCR-9211004,

CDA-9222911, CDA-9222911, and CDA-9502791, and by the Texas Advanced Technology Program and Tech-Sym

Inc. under Grant 003604012.

1

requirements. However, we argue that the advances in networking technology and processor per-

formance will greatly expand the class of applications that can be executed e�ciently on a network

of workstations.

In this paper, we discuss our experience with parallel computing on networks of workstations

using the TreadMarks distributed shared memory (DSM) system. DSM allows processes to assume

a globally shared virtual memory even though they execute on nodes that do not physically share

memory [9]. Figure 1 illustrates a DSM system consisting of N networked workstations, each

with its own memory, connected by a network. The DSM software provides the abstraction of a

globally shared memory, in which each processor can access any data item, without the programmer

having to worry about where the data is, or how to obtain its value. In contrast, in the \native"

programming model on networks of workstations, message passing, the programmer must decide

when a processor needs to communicate, with whom to communicate, and what data to send. For

programs with complex data structures and sophisticated parallelization strategies, this can become

a daunting task. In a DSM system, the programmer can focus on algorithmic development rather

than on managing partitioned data sets and communicating values. In addition to ease of use,

DSM provides the same programming environment as that available on (hardware) shared-memory

multiprocessors, allowing programs written for a DSM to be ported easily to a shared-memory

multiprocessor. Porting a program from a hardware shared-memory multiprocessor to a DSM

system may require more modi�cations to the program, because the much higher latencies in a

DSM system put an even greater value on locality of memory access.

The programming interfaces to DSM systems may di�er in a variety of respects. We focus here

on memory structure and memory consistency model. An unstructured memory appears as a linear

array of bytes, whereas in a structured memory processes access memory in terms of objects or

tuples. The memory model refers to how updates to shared memory become visible to the processes

in the system. The most intuitive model of shared memory is that a read should always return

the last value written. Unfortunately, the notion of \the last value written" is not well de�ned

in a distributed system. A more precise notion is sequential consistency, whereby the memory

appears to all processes as if they were executing on a single multiprogrammed processor [7]. With

sequential consistency, the notion of \the last value written" is precisely de�ned. The simplicity of

this model may, however, exact a high price in terms of performance, and therefore much research

has been done into relaxed memory models.

Proc1

Mem1

Proc2

Mem2

Proc3

Mem3

Network
Shared Memory

Proc N

MemN

Figure 1 Distributed Shared Memory: Each processor sees a shared address space,

denoted by the dashed outline, rather than a collection of distributed address spaces.

2

In terms of implementation techniques, one of the primary distinguishing features of a DSM

system is whether or not it uses the virtual memory page protection hardware to detect accesses to

shared memory. The naive use of virtual memory protection hardware may lead to poor performance

because of discrepancies between the page size of the machine and the granularity of sharing in the

application.

The system discussed in this paper, TreadMarks [5], provides shared memory as a linear array of

bytes. The memory model is a relaxed memory model, namely release consistency. The implemen-

tation uses the virtual memory hardware to detect accesses, but it uses a multiple writer protocol

to alleviate the problems resulting from mismatch between the page size and the application's

granularity of sharing.

TreadMarks runs at user-level on Unix workstations. No kernel modi�cations or special privi-

leges are required, and standard Unix interfaces, compilers, and linkers are used. As a result, the

system is fairly portable. In particular, it has been ported to a number of platforms, including IBM

RS-6000, IBM SP-1, IBM SP-2, DEC Alpha, DEC DECStation, HP, SGI, and SUN-Sparc.

This paper �rst describes the application programming interface provided by TreadMarks (Sec-

tion 2). Next, we discuss some of the performance problems observed in DSM systems using

conventional sequential consistency (Section 3) and the techniques used to address these prob-

lems in TreadMarks (Sections 4 and 5). We brie
y describe the implementation of TreadMarks

in Section 6, and some basic operation costs in the experimental environment used in Section 7.

We demonstrate TreadMarks' e�ciency by discussing our experience with two large applications,

mixed integer programming and genetic linkage analysis (Section 8). Finally, we discuss related

work in Section 9, and we o�er some conclusions and directions for further work in Section 10.

2 Shared Memory Programming

2.1 Application Programming Interface

The TreadMarks API is simple but powerful (see Figure 2 for the C language interface). It provides

facilities for process creation and destruction, synchronization, and shared memory allocation.

Shared memory allocation is done through Tmk malloc(). Only memory allocated by Tmk malloc()

is shared. Memory allocated statically or by a call to malloc() is private to each process.

We focus on the primitives for synchronization. Synchronization is a way for the programmer to

express ordering constraints between the shared memory accesses of di�erent processes. A simple

form of synchronization occurs with critical sections. A critical section guarantees that only one

process at a time executes inside the critical section. Such a construct is useful when multiple

processes are updating a data structure, and concurrent access is not allowed.

More formally, two shared memory accesses are con
icting if they are issued by di�erent pro-

cessors to the same memory location and at least one of them is a write. A parallel program has a

data race if there is no synchronization between two con
icting accesses. Data races are often bugs

in the program, because the �nal outcome of the execution is timing-dependent. If, for example,

one of the accesses is a read and the other is a write and no synchronization is present between the

read and the write, it may be that either the read or the write execute �rst, with di�erent outcomes

from each execution. Data races can be avoided by introducing synchronization.

TreadMarks provides two synchronization primitives: barriers and exclusive locks. A process

waits at a barrier by calling Tmk barrier(). Barriers are global: the calling process is stalled until

all processes in the system have arrived at the same barrier. A Tmk lock acquire call acquires a

lock for the calling process, and Tmk lock release releases it. No process can acquire a lock while

another process is holding it. A lock can be used to implement critical sections, as described above.

3

/* the maximum number of parallel processes supported by TreadMarks */

#define TMK_NPROCS

/* the actual number of parallel processes in a particular execution */

extern unsigned Tmk_nprocs;

/* the process id, an integer in the range 0 ... Tmk_nprocs - 1 */

extern unsigned Tmk_proc_id;

/* the number of lock synchronization objects provided by TreadMarks */

#define TMK_NLOCKS

/* the number of barrier synchronization objects provided by TreadMarks */

#define TMK_NBARRIERS

/* Initialize TreadMarks and start the remote processes */

void Tmk_startup(int argc, char **argv)

/* Terminate the calling process. Other processes are unaffected. */

void Tmk_exit(int status)

/* Block the calling process until every other process arrives at the barrier. */

void Tmk_barrier(unsigned id)

/* Block the calling process until it acquires the specified lock. */

void Tmk_lock_acquire(unsigned id)

/* Release the specified lock. */

void Tmk_lock_release(unsigned id)

/* Allocate the specified number of bytes of shared memory */

char *Tmk_malloc(unsigned size)

/* Free shared memory allocated by Tmk_malloc. */

void Tmk_free(char *ptr)

Figure 2 TreadMarks C Interface

4

This particular choice of synchronization primitives is not in any way fundamental to the design

of TreadMarks; other primitives may be added later. We demonstrate the use of these and other

TreadMarks primitives with two simple applications.

2.2 Two Simple Illustrations

Figures 3 and 4 illustrate the use of the TreadMarks API for Jacobi iteration and for solving the

traveling salesman problem (TSP). Jacobi illustrates the use of barriers, while TSP provides an

example of the use of locks. We are well aware of the overly simplistic nature of these example

codes. They are included here for demonstration purposes only. Larger applications are discussed

in Section 8.

Jacobi is a method for solving partial di�erential equations. Our example iterates over a two-

dimensional array. During each iteration, every matrix element is updated to the average of its

nearest neighbors (above, below, left, and right). Jacobi uses a scratch array to store the new values

computed during each iteration, so as to avoid overwriting the old value of the element before it is

used by its neighbor. In the parallel version, all processors are assigned roughly equal size bands

of rows. The rows on the boundary of a band are shared by two neighboring processes.

The TreadMarks version in Figure 3 uses two arrays: a grid and a scratch array. grid

is allocated in shared memory, while scratch is private to each process. grid is allocated and

initialized by process 0. Synchronization in Jacobi is done by means of barriers. Tmk barrier(0)

guarantees that the initialization done by process 0 is completed before processes start computing.

Tmk barrier(1) makes sure that no processor overwrites any value in grid before all processors

have read the value computed in the previous iteration. In the terminology introduced in Section 2.1,

it avoids a data race between the reads of the grid array in the �rst nested loop and the writes in

the second nested loop. Tmk barrier(2) prevents any processor from starting the next iteration

before all of the grid values computed in the current iteration are written. In other words, it avoids

a data race between the writes of grid in the second nested loop and the reads of grid in the �rst

nested loop of the next iteration.

The Traveling Salesman Problem (TSP) �nds the shortest tour that starts at a designated city,

passes through every other city on the map exactly once and returns to the original city. A simple

branch and bound algorithm is used. The program maintains the length of the shortest tour found

so far in Shortest length. Partial tours are expanded one city at a time. If the current length of

a partial tour plus a lower bound on the remaining portion of the tour is longer than the current

shortest tour, the partial tour is not explored further, because it cannot possibly lead to a tour

shorter than the current minimum length tour. The lower bound is computed by a fast conservative

approximation of the length of the minimum spanning tree connecting all of the nodes not yet in

the tour with themselves and with the �rst and last node in the current tour.

The sequential TSP program keeps a queue of partial tours, with the most promising one at the

head. Promise is determined by the sum of the length of the current tour and the lower bound on

the length to connect the remaining cities. The program keeps adding partial tours to the queue

until a partial tour which is longer than a threshold number of cities is found at the head of the

queue. It removes this partial tour from the queue and tries all permutations of the remaining

cities. Next, it compares the shortest tour including this partial tour with the current shortest

tour, and updates the current shortest tour if necessary. Finally, the program goes back to the tour

queue and tries again to remove a promising partial tour of su�cient length from the queue.

Figure 4 shows pseudo code for the parallel TreadMarks TSP program. The shared data struc-

tures, the queue and the minimum length, are allocated by process 0. Exclusive access to these

shared data structures is achieved by surrounding all accesses to them by a lock acquire and a lock

5

#define M 1024

#define N 1024

float **grid; /* shared array */

float scratch[M][N]; /* private array */

main()

{

Tmk_startup();

if(Tmk_proc_id == 0) {

grid = Tmk_malloc(M*N*sizeof(float));

initialize grid;

}

Tmk_barrier(0);

length = M / Tmk_nprocs;

begin = length * Tmk_proc_id;

end = length * (Tmk_proc_id+1);

for(number of iterations) {

for(i=begin; i<end; i++)

for(j=0; j<N; j++)

scratch[i][j] = (grid[i-1][j]+grid[i+1][j]+

grid[i][j-1]grid[i][j+1])/4;

Tmk_barrier(1);

for(i=begin; i<end; i++)

for(j=0; j<N; j++)

grid[i][j] = scratch[i][j];

Tmk_barrier(2);

}

}

Figure 3 Pseudo Code for the TreadMarks Jacobi Program

6

release. All processes wait at Tmk barrier(0) to make sure that these shared data structures are

properly initialized before computation starts. Each process then acquires the queue lock to �nd

a promising partial tour that is long enough so that it can be expanded sequentially. When such

a tour is found, the process releases the queue lock. After expanding the current partial tour, a

process acquires the lock on the minimum length, updates the minimum length if necessary, and

then releases the lock. Finally, a process starts another iteration of the loop by acquiring the queue

lock and �nding another promising tour, and so forth until the queue is empty.

3 Implementation Challenges

DSM systems can migrate or replicate data to provide the abstraction of shared memory. Most

DSM systems choose to replicate data, because this approach gives the best performance for a wide

range of application parameters of interest [11]. With replicated data, the provision of memory

consistency is at the heart of a DSM system: the DSM software must control replication in a

manner that provides the abstraction of a single shared memory.

The consistency model de�nes how the programmer can expect the memory system to behave.

The �rst DSM system, IVY [9], implemented sequential consistency [7]. In this memory model,

processes observe shared memory as if they were executing on a multiprogrammed uniprocessor

(with a single memory). In other words, there is a total order on all memory accesses, and that

total order is compatible with the program order of memory accesses in each individual process.

In IVY's implementation of sequential consistency, the virtual memory hardware is used to

maintain memory consistency. The local (physical) memories of each processor form a cache of the

global virtual address space (see Figure 5). When a page is not present in the local memory of

a processor, a page fault occurs. The DSM software brings an up-to-date copy of that page from

its remote location into local memory and restarts the process. For example, Figure 5 shows the

activity occurring as a result of a page fault at processor 1, which results in a copy of the necessary

page being retrieved from the local memory of processor 3. IVY furthermore distinguishes read

faults fromwrite faults. With read faults, the page is replicated with read-only access for all replicas.

With write faults, an invalidate message is sent to all processors with copies of the page. Each

processor receiving this message invalidates its copy of the page and sends an acknowledgement

message to the writer. As a result, the writer's copy of the page becomes the sole copy.

Because of its simplicity and intuitive appeal, sequential consistency is generally viewed as a

\natural" consistency model. However, its implementation can cause a large amount of communica-

tion to occur. Communication is very expensive on a workstation network. Sending a message may

involve traps into the operating system kernel, interrupts, context switches, and the execution of

possibly several layers of networking software. Therefore, the number of messages and the amount

of data exchanged must be kept low. We illustrate some of the communication problems in IVY

using the examples from Section 2.2.

Consider for example the updates to the length of the current shortest tour in the TSP program

in Figure 4. In IVY, this shared memory update causes invalidations to be sent to all other

processors that cache the page containing this variable. However, since this variable is accessed

only within the critical section protected by the corresponding lock, it su�ces to send invalidations

only to the next processor acquiring the lock, and only at the time of the lock acquisition.

The second problem relates to the potential for false sharing. False sharing occurs when two or

more unrelated data objects are located in the same page and are written concurrently by separate

processors. Since virtual memory pages are large, false sharing is a potentially serious problem.

The Jacobi program in Figure 3 su�ers from false sharing, if the grid array is laid out in memory

7

queue_type *Queue;

int *Shortest_length;

int queue_lock_id, min_lock_id;

main()

{

Tmk_startup();

queue_lock_id = 0;

min_lock_id = 1;

if (Tmk_proc_id == 0) {

Queue = Tmk_malloc(sizeof(queue_type));

Shortest_length = Tmk_malloc(sizeof(int));

initialize Heap and Shortest_length;

}

Tmk_barrier(0);

while(true) do {

Tmk_lock_acquire(queue_lock_id);

if(queue is empty) {

Tmk_lock_release(queue_lock_id);

Tmk_exit();

}

Keep adding to queue until a long,

promising tour appears at the head;

Path = Delete the tour from the head;

Tmk_lock_release(queue_lock_id);

length = recursively try all cities not on Path,

find the shortest tour length

Tmk_lock_acquire(min_lock_id);

if (length < *Shortest_length)

*Shortest_length = length;

Tmk_lock_release(min_lock_id);

}

}

Figure 4 Pseudo Code for the TreadMarks TSP Program

8

Page Fault

Local Physical Memories

Global Virtual Memory

DSM Software

Proc1 Proc2 Proc3 Proc N

Figure 5 Operation of the IVY DSM System

such that portions of the array allocated to di�erent processors lie within the same page. As both

processors update their portion of the grid array, they are writing concurrently to the same page.

Assume that initially processor P

1

holds the sole writable copy of the page. When processor P

2

writes to the page, it sends an invalidate message to processor P

1

. P

1

sends the page to P

2

and

invalidates its own copy. When P

1

writes next to the page, the same sequence of events will occur,

with P

1

and P

2

interchanged. As each process writes to the page while it is held by the other

process, the page will travel across the network. This repeated back and forth of the page is often

referred to as the \ping-pong e�ect".

In order to address these problems, we have experimented with novel implementations of relaxed

memory consistency models, and we have designed protocols to combat the false sharing problem.

These approaches are discussed next.

4 Lazy Release Consistency

4.1 Release Consistency Model

The intuition underlying release consistency is as follows. Parallel programs should not have data

races, because they may lead to wrong results. Thus, su�cient synchronization must be present

to prevent data races. More speci�cally, synchronization must be present between two con
icting

accesses to shared memory. Since this synchronization is present, there is no need to make any

shared memory updates from one process visible to another process before they synchronize with

each other, because the second process will not access the data until the synchronization operation

9

has been executed.

We will illustrate this principle with the Jacobi and TSP examples from Section 2. Writes

to shared memory in Jacobi occur after barrier 1 is passed, when the newly computed values are

copied from the scratch array to the grid array (see Figure 3). This phase of the computation

terminates when barrier 2 is passed. Barrier 2 is present to prevent processes from starting the

next iteration before all the new values are written to the grid array. This barrier needs to be

there for correctness (to avoid data races), regardless of the memory model. However, its presence

allows us to delay notifying a process about updates to grid by another process until the barrier

is lowered.

In TSP, the tour queue is the primary shared data structure. Processors fetch tasks from the

queue and work on them, creating new tasks in the process. These newly created tasks are inserted

into the queue. Updates to the task queue structure require a whole series of shared memory

writes, such as its size, the task at the head of the queue, etc. Atomic access to the task queue

data structure is required in order for correct program execution. Only one processor is permitted

to access the task queue data structure at a time. This guarantee is achieved by putting a lock

acquire and a lock release around these operations. In order to access the tour queue, a process

needs to acquire the lock. It therefore su�ces to inform the next process that acquires the lock of

the changes to the tour queue, and this can be done at the time the lock is acquired.

These two examples illustrate the general principle underlying release consistency. Synchro-

nization is introduced in a shared memory parallel program to prevent processes from accessing

certain memory locations until the synchronization operation completes. From that it follows that

it is not necessary to inform a process of modi�cations to those shared memory locations until the

synchronization operation completes. If the program does not have data races, then it will appear

as if the program executes on a sequentially consistent memory, the intuitive memory model that

programmers expect. The above is true on one condition: all synchronization must be done us-

ing the TreadMarks supplied primitives. Otherwise, TreadMarks cannot tell when to make shared

memory consistent.

4.2 Release Consistency Implementations

The de�nition of release consistency speci�es the latest possible time when a shared memory up-

date must become visible to a particular processor. This allows an implementation of release

consistency considerable latitude in deciding when and how exactly a shared memory update gets

propagated. TreadMarks uses the lazy release consistency algorithm [5] to implement release con-

sistency. Roughly speaking, lazy release consistency enforces consistency at the time of an acquire,

in contrast to the earlier implementation of release consistency in Munin [3], sometimes referred

to as eager release consistency, which enforced consistency at the time of a release. Figure 6 il-

lustrates the intuitive argument behind lazy release consistency. Assume that x is replicated at

all processors. With eager release consistency a message needs to be sent to all processors at a

release informing them of the change to x. However, only the next processor that acquires the lock

can access x. With lazy release consistency, only that processor is informed of the change to x.

In addition to the reduction in message tra�c resulting from not having to inform all processes

that cache a copy of x, lazy release consistency also allows the noti�cation of modi�cation to be

piggybacked on the lock grant message going from the releasing to the acquiring process.

TreadMarks uses an invalidate protocol. At the time of an acquire, the modi�ed pages are

invalidated. A later access to that page causes an access miss which in turn causes an up-to-date

copy of the page to be installed. An alternative would be to use an update protocol, in which

the acquire message contains the new values of the modi�ed pages. A detailed discussion of the

10

1
P

2
P

3
P

acq(l) w(x) rel(l)

x

x

acq(l) w(x) rel(l)

x

xl

l

acq(l) r(x)

1

2

3

P

P

P

acq(l) w(x) rel(l)

acq(l) w(x) rel(l)

l/x

acq(l) r(x)

l/x

Figure 6 Eager vs. Lazy Release Consistency: The top portion of the �gure illustrates

eager release consistency, while the bottom portion illustrates lazy release consistency.

The �gure depicts the execution of three processes, P

1

, P

2

, and P

3

, with the time axis

going from left to right. The processes acquire and release the lock l, and read and write

the variable x.

protocols used in TreadMarks is beyond the scope of this paper. We refer the reader to Keleher's

thesis [5] for more detail. We will compare the performance of various implementations of release

consistency with each other and with sequential consistency in Section 9.

5 Multiple-Writer Protocols

Most hardware cache and DSM systems such as IVY use single-writer protocols. These protocols

allow multiple readers to access a given page simultaneously, but a writer is required to have

sole access to a page before performing any modi�cations. Single-writer protocols are easy to

implement because all copies of a given page are always identical, and page faults can always be

satis�ed by retrieving a copy of the page from any other processor that currently has a valid copy.

Unfortunately, this simplicity often comes at the expense of message tra�c. Before a page can be

written, all other copies must be invalidated. These invalidations can then cause subsequent access

misses if the processors whose pages have been invalidated are still accessing the page's data. False

sharing can cause single-writer protocols to perform even worse because of interference between

unrelated accesses. DSM systems typically su�er much more from false sharing than do hardware

systems because they track data accesses at the granularity of virtual memory pages instead of

cache lines.

As the name implies, multiple-writer protocols allow multiple processes to have, at the same

11

time, a writable copy of a page. Assume that process P

1

and P

2

concurrently write to di�erent

locations within the same page, and assume furthermore that both P

1

and P

2

initially have an

identical valid copy of the page. TreadMarks uses the virtual memory hardware to detect accesses

and modi�cations to shared memory pages (see Figure 7). The shared page is initially write-

protected. When a write occurs by P

1

, TreadMarks creates a copy of the page, or a twin, and saves

it as part of the TreadMarks data structures on P

1

. It then unprotects the page in the user's address

space, so that further writes to the page can occur without software intervention. When P

1

arrives

at the barrier, we now have the modi�ed copy in the user's address space and the unmodi�ed twin.

By doing a word-by-word comparison of the user copy and the twin, we can create a di�, a runlength

encoding of the modi�cations to the page. Once the di� has been created, the twin is discarded.

The same sequence of events happens on P

2

. It is important to note that this entire sequence of

events is local to each of the processors, and does not require any message exchanges, unlike in the

case of a single-writer protocol. When P

1

and P

2

synchronize, for instance through a barrier, P

1

is

informed that P

2

has modi�ed the page, and vice versa, and they both invalidate their copy of the

page. When they later access the page, they both take an access fault. The TreadMarks software

on P

1

knows that P

2

has modi�ed the page, sends a message to P

2

requesting the di�, and applies

that di� to the page when it arrives. Again, the same sequence of events happens on P

2

, with P

1

replaced by P

2

and vice versa. With the exception of the �rst time a processor accesses a page, its

copy of the page is updated exclusively by applying di�s; a new complete copy of the page is never

needed. The primary bene�t of using di�s is that they can be used to implement multiple-writer

protocols, thereby reducing the e�ects of false sharing. In addition, they signi�cantly reduce overall

bandwidth requirements because di�s are typically much smaller than a page.

The reader may wonder what happens when two processes modify overlapping portions of a

page. We note that this corresponds to a data race, because it means that two processes write to

the same location without intervening synchronization. Therefore, it is almost certainly an error in

the program. Even on a sequentially consistent memory the outcome would be timing-dependent.

The same is true in TreadMarks. It would be possible to modify TreadMarks such that it checks

for such occurrences. If a di� arrives for a page that is locally modi�ed, TreadMarks could check

for overlap between the modi�cations, but this is currently not done.

6 The TreadMarks System

TreadMarks is implemented entirely as a user-level library on top of Unix. Modi�cations to the Unix

kernel are not necessary because modern Unix implementations provide all of the communication

and memory management functions required to implement TreadMarks at the user-level. Programs

written in C, C++, or FORTRAN are compiled and linked with the TreadMarks library using any

standard compiler for that language. As a result, the system is relatively portable. Currently,

it runs on SPARC, DECStation, DEC/Alpha, IBM RS-6000, IBM SP-1, IBM SP-2, HP, and

SGI platforms and on Ethernet, ATM, FDDI, and HIPPI networks. In this section, we brie
y

describe how communication and memory management are implemented by TreadMarks. For a

more detailed discussion of the implementation, we refer the reader to Keleher's Ph.D. thesis [5].

By default, TreadMarks implements intermachine communication using UDP/IP through the

Berkeley sockets interface. Since UDP/IP does not guarantee reliable delivery, TreadMarks uses

light-weight, operation-speci�c, user-level protocols to insure message arrival. Every message sent

by TreadMarks is either a request message or a response message. Request messages are sent

by TreadMarks as a result of an explicit call to a TreadMarks library routine or a page fault.

Once a machine has sent a request message, it blocks until a request message or the expected

12

Write(x)

x:

Create twin

x:

Twin:

x:

Release:

Diff

Encode
Changes

If replicated,
write protect

Make x
writable

Diff

Figure 7 Di�Creation

13

response message arrives. If no response arrives within a certain timeout, the original request

is retransmitted. To minimize latency in handling incoming requests, TreadMarks uses a SIGIO

signal handler. Message arrival at any socket used to receive request messages generates a SIGIO

signal. After the handler receives the request message, it performs the speci�ed operation, sends

the response message, and returns to the interrupted process.

To implement the consistency protocol, TreadMarks uses the mprotect system call to control

access to shared pages. Any attempt to perform a restricted access on a shared page generates

a SIGSEGV signal. The SIGSEGV signal handler examines local data structures to determine the

page's state, and examines the exception stack to determine whether the reference is a read or a

write. If the local page is invalid, the handler executes a procedure that obtains the necessary di�s

from the minimal set of remote machines. If the reference is a read, the page protection is set to

read-only. For a write, the handler allocates a page from the pool of free pages and performs a

bcopy to create a twin. The same action is taken in response to a fault resulting from a write to

a page in read-only mode. Finally, the handler upgrades the access rights to the original page and

returns.

7 Basic Operation Costs

Our experimental environment consists of 8 DECstation-5000/240's, with a 4 kilobyte page size,

running Ultrix V4.3. Each machine has a Fore ATM interface connected to a Fore ATM switch.

The connection between the interface boards and the switch operates at 100 Mbps; the switch has

an aggregate throughput of 1.2 Gbps. The interface board does programmed I/O into transmit

and receive FIFOs, and requires messages to be assembled and disassembled from ATM cells by

software. Interrupts are raised at the end of a message or a (nearly) full receive FIFO. Unless

otherwise noted, the performance numbers describe 8-processor executions on the ATM LAN using

the low-level adaptation layer protocol AAL3/4.

The minimum round-trip time using send and receive for the smallest possible message is

500 �seconds. Using a signal handler to receive the message at both processors, the round-trip

time increases to 670 �seconds.

The minimum time to remotely acquire a free lock is 827 �seconds. The minimum time to

perform an 8-processor barrier is 2186 �seconds. A remote access miss, to obtain a full page from

another processor, takes 2792 �seconds.

The time to make a twin is 167 microseconds. The time to make a di� is somewhat data-

dependent. If the page is unchanged, it takes 430 microseconds. If the entire page is changed, it

takes 472 microseconds. The worst case occurs when every other word in the page is changed. In

that case, making a di� takes 686 microseconds.

8 Applications

A number of applications have been implemented using TreadMarks, and the performance of some

benchmarks has been reported earlier [5]. Here we describe our experience with two large ap-

plications that were recently implemented using TreadMarks. These applications, mixed integer

programming and genetic linkage analysis, were parallelized, starting from an existing e�cient

sequential code, by the authors of the sequential code with some help from the authors of this

paper. While it is di�cult to quantify the e�ort involved, the amount of modi�cation to arrive at

an e�cient parallel code proved to be relatively minor, as will be demonstrated in the rest of this

section.

14

8.1 Mixed Integer Programming

Mixed integer programming (MIP) is a version of linear programming (LP). In LP, an objective

function is optimized in a region described by a set of linear inequalities. In MIP, some or all of the

variables are constrained to take on only integer values (sometimes just the values 0 or 1). Figure 8

shows a precise mathematical formulation.

The TreadMarks code to solve the MIP problem uses a branch-and-cut approach. The MIP

problem is �rst relaxed to the corresponding LP problem. The solution of this LP problem will in

general produce non-integer values for some of the variables constrained to be integers. The next

step is to pick one of these variables, and branch o� two new MIP problems, one with the added

constraint that x

i

� bx

i

c and another with the added constraint that x

i

� dx

i

e. Over time, the

algorithm generates a tree of such branches. As soon as the algorithm �nds a solution to the LP

problem that satis�es the integer constraints, this solution establishes a bound on the �nal value of

the objective function. Nodes in the branch tree for which the solution of the LP problem generates

a result that is inferior to this bound need not be explored any further. In order to expedite this

process, the algorithm uses a technique called plunging, essentially a depth-�rst search down the

tree to �nd an integer solution and establish a bound as quickly as possible. One �nal algorithmic

improvement of interest is the use of cutting planes. These are additional constraints added to the

LP problem to tighten the description of the integer problem. The shared data structures are the

current best solution and the queue of LP problems to be solved. Each is protected by a separate

lock.

The code was used to solve all 51 of the problems from the MIPLIB library. This library includes

representative examples from airline crew scheduling, network
ow, plant location,
eet scheduling,

etc. Figure 9 shows the speedups obtained for those problems in MIPLIB whose sequential running

times are over 2,000 seconds. For most problems, the speedup is near-linear. One problem exhibits

super-linear speedup, because the parallel code happens to hit on a solution early on in its execution,

thereby pruning most of the branch-and-bound tree. For another problem, there is very little

speedup, because the solution is found shortly after the pre-processing step, which is not (yet)

parallelized. In addition to the problems from the MIPLIB library, the code was also used to solve

a previously unsolved multicommodity
ow problem. The problem took roughly 28 CPU days on

an 8-processor IBM SP-1 and also exhibited near-linear speedup.

8.2 Genetic Linkage Analysis

Genetic linkage analysis is a statistical technique that uses family pedigree information to map

human genes and locate disease genes in the human genome. Recent advances in biology and

genetics have made an enormous amount of genetic material available, making computation the

bottleneck in further discovery of disease genes.

In the classical Mendelian theory of inheritance, the child's chromosomes receive one strand of

each of the parent's chromosomes. In reality, inheritance is more complicated due to recombina-

tion. When recombination occurs, the child's chromosome strand contains a piece of both of the

Minimize c

T

x + d

T

y,

subject to A x + B y � b,

where x 2 Z

p

and y 2 R

q

(sometimes x 2 f0; 1g

p

).

Figure 8 The Mixed Integer Programming (MIP) Problem

15

8672

469955

22285

29857

2548

11405

Processors

1 2 3 4 5 6 7 8

S
pe

ed
up

0

2

4

6

8

10

12

14

Figure 9 Speedup Results from the MIPLIB Library: Each line represents a di�erent

data set. The numbers at the bottom indicate the sequential execution in seconds for the

corresponding data set. Only data sets with sequential running times larger than 2,000

seconds are presented.

strands of the parent's chromosome. The goal of linkage analysis is to derive the probabilities that

recombination has occurred between the gene we are looking for and genes with known locations.

From these probabilities an approximate location of the gene on the chromosome can be computed.

ILINK is a parallelized version of a widely used genetic linkage analysis program, which is part of

the FASTLINK package [4]. ILINK takes as input a family tree, called a pedigree, augmented with

some genetic information about the members of the family. It computes a maximum-likelihood

estimate of �, the recombination probability. At the top level, ILINK consists of a loop that

optimizes �. In each iteration of the optimization loop, the program traverses the entire pedigree,

one nuclear family at a time, computing the likelihood of the current � given the genetic information

known about the family members. For each member of a nuclear family, the algorithm updates a

large array of conditional probabilities, each representing the probability that the individual has

certain genetic characteristics, conditioned on � and on the part of the family tree already traversed.

The above algorithm is parallelized by splitting up the iteration space per nuclear family among

the available processors in a manner that balances the load. Load balancing is essential and relies on

knowledge of the genetic information represented in the array elements. An alternative approach,

splitting up the tree traversal, failed to produce good speedups because most of the computation

occurs in a small part of the tree (typically, the nodes closest to the root, representing deceased

individuals for whom little genetic information is known).

Figure 10 presents speedups obtained for various data sets using ILINK. The data sets origi-

nate from actual disease gene location studies. For the data sets with a long running time, good

speedups are achieved. For the smallest data sets, speedup is lower because the communication-to-

computation ratio becomes larger. In general, the speedup is highly dependent on the communication-

to-computation ratio, in particular on the number of messages per second. For the data set with

16

the smallest speedup, ILINK exchanged approximately 1,800 messages per second, while for the

data set with the best speedup the number of messages per second went down to approximately

300.

We found that the \overhead", i.e., time spent not executing application code, is dominated by

idle time and Unix overhead. Idle time results from load imbalance and from waiting for messages

to arrive over the network. Unix overhead is time spent in executing Unix library code and system

calls. Much of the Unix overhead is related to network communication. Only a small portion of

the overhead is spent in executing code in the TreadMarks library. We conclude therefore that the

largest single overhead contribution stems from network communication or related events, validating

our focus on reducing the number of messages and the amount of data exchanged. Space overhead

consists of memory used for twins, di�s, and other TreadMarks data structures. In the current

version of the system, 4 megabytes of memory are statically allocated for di�s and 0.5 megabyte for

other data structures. A garbage collection procedure is invoked if these limits are exceeded. Space

for twins is dynamically allocated. For a representative example of a large ILINK run, namely the

data set with a sequential running time of 4,085 seconds, the maximum memory usage for twins at

any point in the execution was approximately 1 megabyte per processor.

9 Related Work

Our goal in this section is not to provide an extensive survey of parallel programming research,

but instead to illustrate alternative approaches. We present one example system for each of these

approaches. We �rst discuss alternative programming models, and then turn to di�erent imple-

mentations of the shared memory programming models.

901 4682 774 4085 9570

Processors

1 2 3 4 5 6 7 8

S
pe

ed
up

1

2

3

4

5

6

7

Figure 10 Speedup Results for ILINK: Each line represents a di�erent data set. The

numbers at the bottom indicate the sequential execution time in seconds for the

corresponding data set.

17

9.1 Alternative Programming Models

Message Passing (PVM). Currently, message passing is the prevailing programming paradigm

for distributed memory systems. Parallel Virtual Machine (PVM) [12] is a popular software message

passing package. It allows a heterogeneous network of computers to appear as a single concurrent

computational engine. TreadMarks is currently restricted to a homogeneous set of nodes. While

programming in PVM is much easier and more portable than programming in the native message

passing paradigm of the underlying machine, the application programmer still needs to write code

to exchange messages explicitly. The goal in TreadMarks is to remove this burden from the pro-

grammer. For programs with complex data structures and sophisticated parallelization strategies,

we believe this to be a major advantage. The genetic linkage program provides a compelling ex-

ample of this argument. We built both a TreadMarks and PVM implementation of ILINK. In each

ILINK iteration, each process updates a subset of a large and sparse array of probabilities. To

implement this using message passing requires additional code to remember which locations were

updated and to marshal and unmarshal the modi�ed values from memory to a message and vice

versa. In TreadMarks the shared memory mechanism transparently moves these values between

processors as needed. On the downside, message passing implementations can be more e�cient

than shared memory implementations. Returning to the ILINK example, whereas in PVM all up-

dates are sent in a single message, the TreadMarks ILINK program takes several page faults and an

equal number of message exchanges to accomplish the same goal. For a more detailed comparison

in programmability and performance between TreadMarks and PVM we refer the reader to Lu's

M.S. thesis, which includes a comparison for nine di�erent applications [10].

Implicit Parallelism (HPF). TreadMarks and PVM are both explicitly parallel programming

methods: the programmer has to divide the computation among di�erent threads and use either

synchronization or message passing to control the interactions among the concurrent threads. With

implicit parallelism, as in HPF [6], the user writes a single-threaded program, which is then par-

allelized by the compiler. In particular, HPF contains data distribution primitives, which may be

used by the compiler to drive the parallelization process. This approach is suitable for data-parallel

programs, such as Jacobi. The memory accesses in these programs are regular and can be de-

termined completely at compile time. For these applications, the compiler can typically produce

code that runs more e�ciently than the same application coded for DSM, because the compiler

can predict accesses while the DSM system can only react to them. Recent work has explored

extensions of this paradigm to irregular computations, often involving sparse arrays, such as in

ILINK. Programs exhibiting dynamic parallelism, such as TSP or MIP, are not easily expressed in

the HPF framework.

9.2 Alternative Distributed Shared Memory Implementations

Hardware Shared Memory Implementations (DASH). An alternative approach to shared

memory is to implement it in hardware, using a snooping bus protocol for a small number of pro-

cessors or using a directory-based protocol for larger number of processors (e.g., [8]). We share with

this approach the programming model, but our implementation avoids expensive cache controller

hardware. On the other hand, a hardware implementation can e�ciently support applications

with �ner-grain parallelism. We have some limited experience with comparing the performance of

hardware and software shared memory [5]. In particular, we compared the performance of four

applications, including a slightly older version of ILINK, on an 8-processor SGI 4D/380 hardware

shared memory multiprocessor and on TreadMarks running on our 8-processor ATM network of

18

DECStation-5000/240s. An interesting aspect of this comparison is that both systems have the

same processor, running at the same clock speed and with the same primary cache, and both use

the same compiler. Only the provision for shared memory is di�erent: a hardware bus-based snoopy

protocol on the SGI, and a software release-consistent protocol in TreadMarks. Identical programs

were used on the SGI and on TreadMarks. For the ILINK data sets with long running times, the

communication-to-computation ratio is small, and the di�erences were minimal. For the shorter

runs, the di�erences became more pronounced.

Sequentially-Consistent Software Distributed Shared Memory (IVY). In sequential con-

sistency, messages are sent, roughly speaking, for every write to a shared memory page for which

there are other valid copies outstanding. In contrast, in release consistency, messages are sent

for every synchronization operation. Although the net e�ect is somewhat application dependent,

release consistent DSMs in general send fewer messages than sequentially consistent DSMs and

therefore perform better. A recent paper by Carter et al. [3] contains a comparison of seven appli-

cation programs run either with eager release consistency (Munin) or with sequential consistency.

Compared to a sequentially consistent DSM, Munin achieves performance improvements ranging

from a few to several hundred percent, depending on the application.

Lazy vs. Eager Release Consistency (Munin). Lazy release consistency causes fewer mes-

sages to be sent than eager release consistency, as implemented in Munin [3]. At the time of a lock

release, Munin sends messages to all processors who cache data modi�ed by the releasing processor.

In contrast, in lazy release consistency, consistency messages only travel between the last releaser

and the new acquirer. Lazy release consistency is somewhat more complicated than eager release

consistency. After a release, Munin can forget about all modi�cations the releasing processor made

prior to the release. This is not the case for lazy release consistency, since a third processor may

later acquire the lock and need to see the modi�cations. In practice, our experience indicates that

for networks of workstations, in which the cost of sending messages is high, the gains achieved

by reducing the number of messages outweighs the cost of a more complex implementation. In

particular, Keleher has compared the performance of ten applications under lazy and eager release

consistency, and found that for all but one (3-D Fast Fourier Transform) the lazy implementation

performed better [5]. It was also shown that an invalidate protocol works better than an update

protocol, because of the large amount of data resulting from the update protocol.

Entry Consistency (Midway). Entry consistency is another relaxed memory model [2]. As in

release consistency, consistency actions are taken in conjunction with synchronization operations.

Unlike release consistency, however, entry consistency requires that each shared data object be

associated with a synchronization object. When a synchronization object is acquired, only the

modi�ed data associated with that synchronization object is made consistent. Since there is no

such association in release consistency, it has to make all shared data consistent. As a result, entry

consistency generally requires less data tra�c than lazy release consistency. The entry consistency

implementation in Midway also uses an update protocol, unlike TreadMarks which uses an invalidate

protocol. The programmability and performance di�erences between these two approaches are not

yet well understood.

Structured DSM Systems (Linda). Rather than providing the programmer with a shared

memory space organized as a linear array of bytes, structured DSM systems o�er a shared space of

objects or tuples [1], which are accessed by properly synchronized methods. Besides the advantages

19

from a programming perspective, this approach allows the compiler to infer certain optimizations

that can be used to reduce the amount of communication. For instance, in the TSP example, an

object-oriented system can treat the queue of partial tours as a queue object with enqueue and

dequeue operations. Similarly, in Linda, these operations would be implemented by means of the

in and out primitives on the tuple space. These operations can typically be implemented more

e�ciently than paging in the queue data structure as happens in DSM. On the downside, the

objects that are \natural" in the sequential program are often not the right grain of parallelization,

requiring more changes to arrive at an e�cient parallel program. With sparse updates of larger

arrays, as in ILINK for instance, there is little connection between the objects in the program and

the updates.

10 Conclusions and Further Work

Our experience demonstrates that with suitable implementation techniques, distributed shared

memory can provide an e�cient platform for parallel computing on networks of workstations.

Large applications were ported to the TreadMarks distributed shared memory system with little

di�culty and good performance. In our further work we intend to experiment with additional real

applications, including a seismic modeling code. We are also developing various tools to further

ease the programming burden and improve performance. In particular, we are investigating the

use of compiler support for prefetching and the use of performance monitoring tools to eliminate

unnecessary synchronization.

References

[1] S. Ahuja, N. Carreiro, and D. Gelernter. Linda and friends. IEEE Computer, 19(8):26{34,

August 1986.

[2] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The Midway distributed shared memory

system. In Proceedings of the '93 CompCon Conference, pages 528{537, February 1993.

[3] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Techniques for reducing consistency-related

information in distributed shared memory systems. ACM Transactions on Computer Systems,

13(3):205{243, August 1995.

[4] S.K. Gupta, A.A. Sch�a�er, A.L. Cox, S. Dwarkadas, and W. Zwaenepoel. Integrating par-

allelization strategies for linkage analysis. Computers and Biomedical Research, 28:116{139,

June 1995.

[5] P. Keleher. Distributed Shared Memory Using Lazy Release Consistency. PhD thesis, Rice

University, December 1994. Appeared as Rice Technical Report RICE COMP-TR-240 and

available by anonymous ftp from cs.rice.edu under public/TreadMarks/papers.

[6] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel. The High Performance

Fortran Handbook. The MIT Press, 1994.

[7] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Transactions on Computers, C-28(9):690{691, September 1979.

20

[8] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The directory-based

cache coherence protocol for the DASH multiprocessor. In Proceedings of the 17th Annual

International Symposium on Computer Architecture, pages 148{159, May 1990.

[9] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM Transactions

on Computer Systems, 7(4):321{359, November 1989.

[10] H. Lu. Message passing versus distributed shared memory on networks of workstations. Mas-

ter's thesis, Rice University, April 1995. Appeared as Rice Technical Report RICE COMP-

TR-250 and available by anonymous ftp from cs.rice.edu under public/TreadMarks/papers.

[11] M. Stumm and S. Zhou. Algorithms implementing distributed shared memory. IEEE Com-

puter, 24(5):54{64, May 1990.

[12] V. Sunderam. PVM: A framework for parallel distributed computing. Concurrency:Practice

and Experience, 2(4):315{339, December 1990.

21

