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Abstract
Modern operating systems avoid duplication of code and
data when they are mapped by multiple processes by sharing
physical memory through mechanisms like copy-on-write.
Nonetheless, a separate copy of the virtual address trans-
lation structures, such as page tables, are still maintained
for each process, even if they are identical. This duplication
can lead to inefficiencies in the address translation process
and interference within the memory hierarchy. In this paper,
we show that on Android platforms, sharing address trans-
lation structures, specifically, page tables and TLB entries,
for shared libraries can improve performance. For example,
at a low level, sharing address translation structures reduces
the cost of fork by more than half by reducing page table
construction overheads. At a higher level, application launch
and IPC are faster due to page fault elimination coupled with
better cache and TLB performance when context switching.

1. Introduction
Physical memory sharing among processes is commonplace
under current operating systems. In some cases, such as
the buffer pool that is shared by PostgreSQL processes, the
application has explicitly directed the operating system to
share memory. More often, memory sharing is performed
automatically by the operating system. For example, dy-
namic linking has enabled the operating system to share a
single physical copy of a library, such as the standard C li-
brary, among all processes. However, at the same time, a sep-
arate copy of the virtual address translation structures, e.g.,
page table, is maintained for each process. Consequently,
while the amount of memory required for mapping a physi-
cal page of private data is small and constant, in contrast, for
shared memory regions, this overhead grows linearly with
the number of processes. This duplication in the virtual ad-
dress translation mechanism leads to a scalability problem,
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especially when there are large numbers of processes all
sharing data. Moreover, in multicore processors with shared
caches, it can lead to inefficient utilization of the shared
caches. Multiple copies of a page table entry mapping the
same physical page might exist in the shared cache, displac-
ing other data.

Previous efforts at sharing virtual address translation
structures focused on applications, such as the PostgreSQL
database system, that handle large amounts of data [30, 31].
In the end, these efforts were largely overshadowed by sup-
port for large pages, which also reduces the amount of mem-
ory used by the page table on x86 processors. Page table
page (PTP) sharing was also applied in a limited manner: to
sharable or read-only memory regions that span the entire
address range of a shared PTP. These constraints limit the
potential benefits to other types of applications.

In this paper, we show that sharing address translation
structures (subsets of page tables) across processes in a mod-
ern smart device setting can complement large pages in re-
ducing address translation overhead. In particular, we show
that in the Android operating system sharing address trans-
lation structures for shared libraries can have an impact on
application performance. In order to unlock these benefits,
we propose a more flexible page table sharing approach than
previous attempts, allowing, in addition, sharing of page ta-
bles for memory regions that may be marked copy-on-write,
as well as regions that only span a subset of the address space
managed by a single PTP.

Android’s process model provides some unique oppor-
tunities for leveraging shared address translation capabil-
ities. At initialization time, the Android operating system
starts a special process called the zygote, which preloads
all of the most commonly used shared libraries. All sub-
sequent application processes are forked from this zygote
process. However, in contrast to the conventional Unix pro-
cess model, the child process never performs an execve(2)

system call. Instead, it dynamically loads the application-
specific code into the pre-existing address space. In this way,
the shared libraries are preloaded into the address space of
each application process in a copy-on-write fashion. This re-
duces application launch time and avoids dynamic loading of
the shared libraries each time that an application process is
started. A notable side effect of this model is that the virtual-



to-physical address translations for the preloaded shared li-
braries are identical across all application processes.

Moreover, our analysis of Android applications’ access
patterns to shared libraries supports our belief that improv-
ing the efficiency of address translation could have impact.
In particular, we found that: (1) Shared libraries constitute
a very large part of the instruction footprint of Android ap-
plications. Specifically, across a range of applications, we
found that 93% of the instruction pages accessed (in user
space) are from shared libraries and, on average, 98% of the
instruction fetches go to shared libraries. (2) There is con-
siderable overlap in the shared library code accessed across
different applications. Our pair-wise comparison of applica-
tion instruction accesses shows that on average the number
of pages in the intersection of the shared library code that are
accessed by each application is 46% of the total instruction
pages accessed by the application. (3) Large pages 1 can-
not be used for shared library code without wasting physical
memory in most of cases.

In order to improve address translation efficiency, we pro-
pose to share page tables and translation lookaside buffer
(TLB) entries for the preloaded shared libraries across dif-
ferent applications. We implement our approach in Android.
Most of our modifications are in the machine-independent
code of the (Linux-based) kernel, although we leverage ex-
isting hardware support. PTPs are shared at fork time be-
tween the parent and child processes, and the shared PTPs
are managed in a copy-on-write (COW) manner. Sharing
TLB entries is achieved by leveraging the global bit and the
domain protection model of the 32-bit ARM architecture [7].
In this way, we eliminate duplication of address translation
information both in memory (page tables) and in hardware
structures such as the TLB and caches, and thereby improve
both the performance and the scalability of applications with
high degrees of parallelism and data/code sharing.

Modifying any memory region of a shared PTP will stop
a process from sharing the PTP. In particular, if the code
and data segments of a shared library are mapped by the
same PTP, modifying the data segment, such as updating
a global data structure, will risk losing the opportunity to
share the PTP for the code segment, although shared library
code is typically unmodified over the course of execution.
To address this issue, we evaluate the impact of recompiling
the shared libraries so that the code and data segments are
in different PTPs, thereby increasing opportunities to share
translation information for code.

On Android, a zygote fork is now 54% faster than the
baseline kernel due to eliminating copy of page table en-
tries (PTEs) for each shared PTP; only a reference to the
shared PTP needs to be duplicated. In addition, for the set
of benchmarks we tested, the average reduction during ex-
ecution in the number of PTPs allocated is 35% and in the

1 Android, which is based on the Linux kernel, would need to be modified
to support large pages for code.

number of page faults incurred is 38%. Any new PTE that is
created by one process in a shared PTP is immediately visi-
ble to all sharers, thereby reducing the number of soft page
faults. The reduction in soft page faults and the improve-
ment in cache utilization result in a speedup of 10% during
application launch. For Android IPC, sharing TLB entries
can improve the client and the server’s instruction main TLB
performance by as much as 36% and 19% respectively.

In Section 2, we elaborate on the relevant characteris-
tics of the Android process creation model that facilitates
shared address translation, and motivate the need via a de-
tailed analysis of the shared library access behavior of An-
droid applications. In Section 3, we describe our design and
implementation in Android of a shared address translation
infrastrucutre to deduplicate address translation information
in both page tables and TLB entries. We evaluate our im-
plementation in Section 4. Related work is presented in Sec-
tion 5. Finally, we conclude and discuss future directions in
Section 6.

2. Motivation
As smart phones and tablets have overtaken personal com-
puters in terms of annual units shipped [6], increasing at-
tention has been paid to understanding and managing smart
device utilization [21, 23, 37]. In this section, we investi-
gate the distinctive features of applications on Android smart
devices that provide opportunities for leveraging shared ad-
dress translation capabilities.

2.1 Android Process Creation Model
Android applications start differently from traditional Linux
applications. All Android applications are forked from a sin-
gle process called the zygote. This zygote is itself forked
from the init process at boot time and is responsible for set-
ting up the Android runtime environment, including preload-
ing the shared libraries used by typical applications. In con-
trast to traditional Linux process instantiation, Android ap-
plication processes typically do not execute an execve(2)

system call. Instead, they dynamically load application-
specific code into the pre-existing address space inherited
from the zygote. In this way, the applications inherit the ad-
dress translations for shared libraries from the zygote in a
copy-on-write (COW) fashion, which reduces application
launch time and avoids dynamic loading of the shared li-
braries each time an application process is started. A notable
side effect of this approach is that the virtual-to-physical
address translations for the preloaded shared libraries are
identical across all application processes.

Despite the identical address translations in the zygote
and application processes, in Android’s current Linux-based
memory management system, each process has a separate
copy of the address translation information, in particular, a
private page table and a separate set of TLB entries, as illus-
trated in Figure 1. In addition to duplicated information in



memory and the TLB, the cache hierarchy will also become
polluted with duplicated information, because the hardware
page table walk triggered by a TLB miss will load the pri-
vate PTE for the corresponding process into the L2 cache
(and also the L1 data cache on ARMv7 [7]).
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Figure 1. Current virtual memory management

In the rest of this paper, we refer to the libraries loaded by
the zygote at initialization time as zygote-preloaded shared
code, which fall into the following three categories: (1) tradi-
tional dynamically loaded shared libraries, which are the dy-
namic loader and object files in .so format. (2) Native code
compiled from Java shared libraries. In contrast to the older
Dalvik runtime, the latest application runtime environment,
Android Runtime (ART), replaces interpretation and Just-in-
Time (JIT) compilation with “Ahead-of-Time” compilation
(AOT), which generates native code for the target device at
application installation time [9]. (3) A C++ program binary
called app process, which is used to start an ART runtime
instance and load Java classes for Android applications. It is
also the zygote’s main program.

2.2 Android Inter-Process Communication
Mechanism

In contrast to the majority of traditional Linux applications,
all Android applications make extensive use of inter-process
communication (IPC). Many of the basic services that are
provided to applications by the Android operating system
are implemented using a client-server model. For example,
application launch results in IPC calls to establish the new
application. Moreover, applications interact through IPC:
when a user taps on a hyperlink listed in an Email, the Email
application communicates with the web browsing applica-
tion through IPC to open up the corresponding web page.

2.3 Android Applications’ Instruction Access Pattern
Analysis

In addition to the dynamic shared libraries inherited from the
zygote, there are two other categories of dynamically linked
shared libraries in the address space of an Android appli-
cation: platform-specific dynamic shared libraries (for ex-
ample, the Nvidia graphics drivers), and application-specific
dynamic shared libraries that are private and are not used by

any other applications. These two kinds of shared libraries
are not preloaded by the zygote in Android systems. For sim-
plicity, we refer to platform-specific and application-specific
dynamic shared libraries, together with the zygote-preloaded
shared code, as shared code in the rest of this paper.

We analyze the instruction access patterns of applications
on Android platforms, and show that shared code plays an
important role in their instruction footprint.

2.3.1 The Impact of Shared Code on The Instruction
Footprint

The zygote-preloaded dynamic shared libraries are the ma-
jority of the three categories of the dynamic shared li-
braries linked by an Android application. For example, on
our Nexus 7 evaluation platform, the total number of dy-
namic shared libraries linked by the set of applications we
tested (see Section 4.1.2) ranged from 88 to 107, of which
88 were preloaded by the zygote. Among them, up to 62
zygote-preloaded dynamic shared libraries were invoked by
the individual applications over the course of their execution.

We explore the contribution of shared code access to the
instruction footprint of Android applications in Figures 2
and 3. In contrast to the other applications, the Chrome
browser consists of three processes, so it is represented
by three bars in each figure: Chrome, Chrome Sandbox,
and Chrome Privilege. The results in Figure 2 are derived
from /proc/pid/smaps and page fault traces, while Fig-
ure 3 is based on perf profiling results. (The methodol-
ogy for collecting these results is fully described in Sec-
tion 4.1.1.) We find that more than 80% of the instructions
fetched come from user space for the majority of the applica-
tions, as shown in Table 1, except for Chrome Privilege, MX
Player, and WPS. These three programs perform a signifi-
cant number of I/O operations, which makes them execute
more kernel-space instructions. In Figures 2 and 3, we focus
on analyzing the user-space instruction footprint.

Figure 2 illustrates the breakdown of the accessed instruc-
tion pages for the applications we tested. On average, the ac-
cesses to the shared code contribute to as much as 92.8% of
the whole instruction footprint per application, with 35.4%
coming from the zygote-preloaded dynamic shared libraries,
32.4% from the zygote-preloaded Java shared libraries, 0.1%
from the zygote C++ program binary named app process,
and 24.9% from the other dynamic shared libraries (both
application-specific and platform-specific). In addition, Fig-
ure 3 shows the percentage of the total instructions executed
that access shared code. Shared code makes up as much
as 98% of all the instructions fetched on average over the
course of execution, where the zygote-preloaded dynamic
shared libraries, zygote-preloaded Java shared libraries, and
application-specific and platform-specific dynamic shared
libraries account for 61%, 11%, and 26%, respectively. We
conclude that shared code contributes significantly to the
instruction footprint of Android applications, in which the
zygote-preloaded shared code plays an important role.
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Figure 2. Breakdown of the instruction pages accessed.
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Figure 3. Breakdown of % of instructions fetched. Normal-
ized to the total number of instructions executed.

2.3.2 Shared Code Commonality Across Applications
We explored the degree to which shared code is accessed
in common across Android applications. Table 2 is also de-
rived from page fault traces and /proc/pid/smaps. For
each pair of applications, we calculated the intersection set
of the shared code pages accessed by each application. Ta-
ble 2 presents the percentage of the instruction footprint that
the intersection set represents, where the statistics of four ap-
plications are shown as an example due to space limitations.
Each cell of Table 2 shows the percentage of all the instruc-
tion pages accessed by the application named in the row that
intersects with the application named in the column. The per-
centage outside the brackets is for zygote-preloaded shared
code, while the one inside the brackets includes all shared
code.

On average, across all the applications, the intersection
of the zygote-preloaded shared code accounts for 37.9%
of all the instruction pages accessed by each application.
The intersection including other dynamic shared libraries

Table 1. % of instructions fetched (user space versus kernel
space)

Benchmarks User space (%) Kernel Space (%)

Angrybirds 92.2 7.8
Adobe Reader 93.3 6.7
Android Browser 85.8 14.2
Chrome 85.3 14.7
Chrome Sandbox 88.8 11.2
Chrome Privilege 27.9 72.1
Email 87.1 13.0
Google Calendar 96.2 3.8
MX Player 59.3 40.7
Laya Music Player 82.6 17.4
WPS 47.1 52.9

(application-specific and platform-specific) invoked makes
up as much as 45.7% of the total instruction pages accessed
by each application on average. Based on the statistics
shown above, we conclude that there is considerable overlap
in the shared code accessed by different applications.

Table 2. % of instruction footprint of the application in
each row that intersects with the instruction footprint of the
application in each column: “zygote-preloaded shared code
(all shared code)” for 4 applications. On average, across
all applications in our test suite, the intersection accounts
for 37.9% (45.7%) of each application’s total instruction
footprint.

Adobe Android MX Laya Music
Reader Browser Player Player

Adobe Reader 76.98 73.79 45.13
(82.18) (78.99) (50.32)

Android Browser 80.27 74.86 46.24
(85.69) (80.29) (51.66)

MX Player 67.25 65.42 44.10
(71.99) (70.17) (48.84)

Laya Music Player 76.24 74.92 81.76
(85.02) (83.70) (90.54)

2.3.3 Sparsity Analysis of Zygote-preloaded Shared
Code

Although Linux does not support the use of large pages
for code segments, we have investigated the possible use of
large pages for the zygote-preloaded shared code. Our eval-
uation platform is a 32-bit ARM architecture. ARM sup-
ports 4 page/memory region sizes: 4KB, 64KB, 1MB, and
16MB [7, 8]. For 4KB and 64KB page mappings, the page
table structure has two levels, while for 1MB and 16MB
page mappings there is only one level. Currently, only 4KB
pages are used for code on Android platforms.

We analyzed the feasibility of using 64KB large pages
for the zygote-preloaded shared code (ranging in size from
4KB to around 35MB). In particular, we map each instruc-
tion of the zygote-preloaded shared code captured by the
perf profiling traces (see Section 4.1.1) to the correspond-
ing 4KB and 64KB pages, based on its virtual address. For
each 64KB page, we measured the size of 4KB pages within



its range that are not accessed. Figure 4 presents the cu-
mulative distribution function (CDF) plots for the number
of 4KB pages untouched within each 64KB page that the
zygote-preloaded shared code mapped to. For 60% of the
cases, more than 9 4KB pages are untouched within a 64KB
page. On average, using 4KB pages and 64KB pages for
the zygote-preloaded shared code accessed (the total size
ranging from 2.7MB to 30MB across different benchmarks)
consumes 6MB and 16MB physical memory respectively.
Compared to 4KB pages, 64KB pages consume 2.6x more
physical memory (around 10MB memory wasted) on aver-
age across all the applications we tested.

We also investigated the union set of the zygote-preloaded
shared code accessed by each application. We find that even
for the union set, more than 7 4KB pages of a 64KB page
will be wasted the majority of time, as illustrated in the bot-
tom plot of Figure 4. 36MB physical memory is required
when using 64KB pages for the 30MB zygote-preloaded
shared code accessed, as opposed to 18MB memory con-
sumption when using 4KB pages, which translates to 94%
memory wasted.

We conclude from our analysis that large pages are not
efficient for the zygote-preloaded shared code in most cases.
Large pages reduce the amount of translation information re-
quired at the expense of wasted physical memory. Moreover,
the shared address translation infrastructure we proposed can
complement large pages. Specifically, we can share address
translation information for 64KB large pages in the same
way as 4KB pages on the ARM architecture.
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Figure 4. CDF of the # of 4KB pages that are not accessed
within a 64KB page of the zygote-preloaded shared code

To summarize, our results suggest that the characteristics
of the Android process creation model coupled with Android
applications’ instruction access patterns provide opportuni-
ties to benefit from sharing address translation information
at the page table and TLB levels.

3. Sharing Address Translation Information
To exploit the commonality among Android application ad-
dress spaces, we propose to share PTPs and TLB entries for

the zygote-preloaded shared code among all Android appli-
cations. While our implementation is on a 32-bit ARM sys-
tem, it should be portable to other architectures that use hi-
erarchical page tables. Most of our modifications are based
on the machine-independent code of the Linux kernel, as de-
scribed in the rest of this section.

3.1 Sharing Page Table Pages
The ARM architecture defines a two-level hierarchical page
table [7], which has 4096 32-bit entries in the first (root)
level and 256 entries in the second (leaf) level. 4KB and
64KB page mappings are established using one and sixteen
consecutive, aligned level 2 entries, respectively. 1MB and
16MB page mappings are similarly established but using
only level 1 entries. For these mappings, there is no level
2 table. Virtually all of the bits in a level 2 entry (PTE)
are reserved for use by the hardware memory management
unit (MMU). Most significantly, there is neither a conven-
tional “referenced” nor “dirty” bit. However, the Linux vir-
tual memory (VM) system requires each page mapping to
have a “dirty” bit. Consequently, for each level 2 entry that
is maintained for the MMU’s use, the VM system also main-
tains a parallel software entry that holds required flags such
as the “dirty” bit, as illustrated in Figure 5. Effectively, first-
level entries and second-level tables are managed in pairs, so
that a pair of hardware and a pair of software level 2 tables
occupy a 4KB physical page.

First-level PTP 
PTE 1 
PTE 2 

Second-level PTP 
Linux PTE table 0 
Linux PTE table 1 
HW PTE table 0 
HW PTE table 1 

+ 0 
+ 4 
+ 8 

+ 0 
+ 1024 
+ 2048 
+ 3072 
+ 4096 

Figure 5. Linux/ARM Page Table Structure

3.1.1 Implementation
We perform sharing at the granularity of level 2 PTPs in
Figure 5. Specifically, at fork time, some pairs of level 1
entries in the child process are initialized to point to PTPs
from the parent. These shared PTPs are then managed in
a copy-on-write (COW) manner, using a spare bit in the
level 1 PTE to implement a new NEED COPY flag. This flag
indicates whether the corresponding level 2 PTP is shared.
We also utilize the existing mapcount field of the PTP’s
page structure to maintain the number of processes sharing a
PTP. Whenever a process tries to modify a NEED COPY PTP,
we create a new, private PTP for that process.

At fork time in the stock Android kernel, every mem-
ory region, or vm area struct, in the parent process is ex-
amined to determine if and how it should be included in
the child’s address space: whether virtually copied to (using
copy-on-write), shared with, or excluded from the child’s ad-
dress space. For each memory region that is either virtually



copied or shared, the stock kernel incurs one of the follow-
ing overheads: traverse and copy each first-level PTE and
the corresponding set of second-level PTEs at the time of the
fork; or (as for example, the manner in which code segments
of dynamic shared libraries are handled) incur soft page
faults in the child process to fill the level 2 PTEs on demand.
Instead, our modified kernel determines if the underlying
level 2 PTPs can and should be shared (see Section 3.1.3
for how this determination is made), thereby avoiding page
table copies. When a page fault on a read access occurs for
the first time on any process for a page belonging to a shared
PTP, the corresponding PTE in the shared PTP is populated.
The new PTE is then visible to all sharers, thereby avoiding
additional soft page faults on read access to the same page.

To share a PTP, we first check whether the NEED COPY

bit of the level 1 PTE is set. (1) If NEED COPY is not set,
in order to prevent modification, we must first write-protect
every PTE with write permission in the target PTP before
we can share it. When all memory regions in the range of
the level 1 PTE have been traversed and write protected, we
mark the PTP as shared and increment the sharer count for
the PTP. Finally, we populate the corresponding level 1 PTE
of the child process with a pointer to the shared PTP. (2)
If NEED COPY is set, this means the corresponding PTP is
already shared and its PTEs are still write protected. In this
case, we only need to populate the child’s level 1 PTE with
a pointer to this shared PTP and increment the PTP’s sharer
count.

3.1.2 Unsharing Page Table Pages
An unsharing operation on a PTP is performed in the follow-
ing cases:

1. Page Fault: If a page fault is triggered by a write access
in the address range of a shared PTP, we need to perform
an unsharing operation. After the PTP is unshared, the
page fault will be handled as in the stock kernel.

2. Memory Region Modification: When a process creates,
destroys, or modifies a memory region that falls within
or entirely covers a virtual address range that is backed
by a shared PTP, then that process can no longer use
the shared PTP. Thus, an unsharing operation can also
be triggered by a system call such as mmap, munmap,
or mprotect. However, unlike the unsharing operation
triggered by a page fault, it may be necessary to unshare
more than one PTP if the virtual address range spans
multiple PTPs.

3. A new memory region is allocated in the range of a
shared PTP: When a process creates a new memory re-
gion within the range of a shared PTP, it can no longer
share this PTP with other processes. Otherwise, when the
PTEs for this memory region are created by the allocat-
ing process, they will be visible to the other processes
even though the region is not mapped by those processes.

In principle, we could unshare the PTP lazily, waiting for
the first new PTE to be created. However, if the process
repeatedly forks and creates new memory regions, imple-
menting the lazy approach becomes quite complex. (For
example, we need to maintain information on which sub-
set of child processes share the translation information of
a particular memory region.) For simplicity, we unshare
the PTP immediately when a new memory region is allo-
cated within its range.

4. A memory region in the range of a shared PTP is
freed: When the stock kernel unmaps a memory region
on behalf of a process, it traverses and clears the corre-
sponding set of level 2 PTEs. In contrast, we must first
check if the underlying PTP is shared among multiple
processes and unshare the PTP in the current process be-
fore clearing the level 2 PTEs.

5. Freeing A Shared Page Table Page: We also perform
an unsharing operation when, during process termination,
the process tries to free a shared PTP. If the PTP’s sharer
count indicates that it is shared by multiple processes,
we clear the level 1 PTE for the current process and
decrement the sharer count, but skip reclamation of the
PTP. Otherwise, the PTP is freed as in the stock kernel.

The procedure for unsharing a PTP is shown in Figure 6.
First, we check the PTP’s sharer count. If it is one, the cur-
rent process is the only user of this PTP, and we can sim-
ply clear the NEED COPY bit from the process’s correspond-
ing level 1 PTE. Otherwise, we perform the following op-
erations. First, we clear the current process’s corresponding
level 1 PTE, and flush all TLB entries occupied by the cur-
rent process. Second, a new, empty PTP is allocated and in-
serted into the level 1 PTE. Third, we copy all the valid PTEs
from the shared PTP to the new PTP. Finally, the sharer count
of the shared PTP is decremented.

Sharer count 
= 1 ?

Clear 
NEED_COPY

Yes

No

Clear level 1 
PTE

Flush TLB 
entries

Allocate a 
new PTP

Populate the 
level 1 PTE 

with the new 
PTP

Copy all PTEs 
to the new 

PTP

Decrement 
sharer count

Figure 6. The procedure of unsharing PTP

3.1.3 Design Tradeoffs and Choices
In this section, we discuss some of the design tradeoffs and
the choices we made.

Whether A Memory Region Is Sharable Earlier work on
sharing page tables [31] focused on applications handling



large amounts of data, as, for example, in database sys-
tems. Accordingly, this work placed some restrictions on
PTP sharing: (1) The entire address range of the shared PTP
must be spanned by one memory region. (2) The memory
region needs to be either sharable or read-only.

In contrast, we focus on mobile applications using many
dynamic shared libraries. As most dynamic shared libraries
are smaller than the address range of a PTP, it is possible
that multiple memory regions appear on the same PTP (ei-
ther the code segment and the data segment of the same dy-
namic shared library or the segments of different shared li-
braries). Therefore, we propose a more flexible PTP sharing
technique than previous work, where (1) a shared PTP can
have more than one memory region in its range, and (2) the
memory regions of a shared PTP can be both private and
writable. A private memory region may not be written over
the course of execution even if it has write permission. For
those memory regions, we can also share the PTPs safely.
As a design choice, we choose to share PTPs aggressively
by treating private and writable memory regions as sharable
at fork time. An unsharing operation will be performed if
necessary over the course of execution. Essentially, page ta-
ble copy is postponed from fork time to the time when the
writable memory regions are modified. If they are not mod-
ified over the course of execution, we will save the effort of
copying page table at fork.

If a shared PTP contains multiple memory regions and a
page fault on a write access occurs to one of these memory
regions, or a memory region is modified through a system
call, we have to unshare the entire PTP. For example, the data
segment of a dynamic shared library on ARM is placed right
next to its code segment (which is typically not modified).
Once a page fault for write access occurs to the data segment
(due, for example, to an update on a global variable), we
have to unshare the address translation information for the
code segment as well. In this way, we may lose some sharing
opportunities for read-only and read-and-execute memory
regions.

To address this issue, we explore the effects of recompil-
ing the shared libraries so that the code and data segments
are separated by 2MB of address space and at run-time map-
ping the dynamic shared libraries at 2MB-aligned addresses,
thereby ensuring that the code and data are in different PTPs.
As a result, the number of PTPs allocated for the dynamic
shared library code will be constant regardless of the number
of processes in the system, because these PTPs can always
be shared, although the number of PTPs for the data seg-
ments may be greater than the stock kernel. This approach is
not without precedent. The x86-64 ABI already separates the
code and data segments by 2MB of address space. However,
if the relocation information for the code and data segments
of the dynamically linked shared libraries is available, we
can group data segments and code segments separately, and
in turn avoid introducing per-segment 2MB alignment.

We evaluate the impact of shared library mappings on
the performance of sharing PTPs in Section 4.2. We find
that 2MB-aligned mapping can increase the opportunities
for sharing address translation, thereby further amplifying
the benefits of shared address translation.

Whether Page Table Entries Should Be Copied Upon Un-
sharing When unsharing a PTP, we currently copy all of
the valid PTEs from the shared PTP to the new, private PTP.
However, we could potentially reduce the cost of unsharing
by only copying the PTEs that have their reference bit set
or would have been copied with the stock Android kernel at
fork time.

Hardware Support Unlike the x86 architecture [39], the
ARM architecture does not support write protection in level
1 PTEs. On x86, enabling write protection in the PDE, or
level 1 PTE, disables write access to all virtual pages in the
corresponding address range, regardless of whether the leaf
level PTE allows write access. If ARM had this feature, we
would not need to write protect every level 2 PTE at fork
time in order to implement COW protection on the shared
PTP, thereby reducing the cost of fork.

3.2 Sharing TLB
We leverage the existing features of the ARM architecture,
in particular, the global bit in PTEs and the domain pro-
tection model, to implement shared TLB entries for the zy-
gote-preloaded shared code on Android. The global bit is
supported in many major architectures besides ARM, such
as x86, while the domain protection model is 32-bit-ARM-
specific. In particular, we set the global bit in the level 2
PTEs of the zygote-preloaded shared code so that the TLB
entries can be shared among all Android applications, and
we use the domain register to prevent processes other than
Android applications from using these TLB entries.

3.2.1 Background
Global bit On processors of many major architectures such
as ARM and x86, Linux divides the virtual address space of
a process into a user space and a kernel space. Although the
user space may differ from process to process, the kernel
space is always the same. Thus, the address translations for
kernel pages are always the same regardless of which pro-
cess is running. To exploit this, many architectures, includ-
ing ARM[7], include a global bit in the PTE, which is loaded
into the TLB. This bit asserts that the mapping is the same in
all virtual address spaces. Essentially, setting the global bit
instructs the TLB to ignore an entry’s address space identi-
fier (ASID) when testing whether the entry translates a given
virtual address.

Domain A domain is a collection of memory regions. The
32-bit ARM architecture supports 16 domains [7] for 4KB
and 64KB pages, while 1MB and 16MB pages are always
in domain 0. Each level 1 PTE has a domain field to record



a domain ID, which is inherited by its level 2 PTEs. The
domain access control register (DACR) defines the access
rights of the current process to each of the 16 domains. When
a context switch to a process occurs, its domain access per-
missions are loaded into the DACR from its task control
block. The access permission for each domain is represented
by two bits in the DACR, including no access, client access,
and manager access. With client access permission, an ac-
cess must still be checked against the permission bits in the
PTE, while manager access permission can override the per-
mission bits of the PTE.

Each TLB entry has a domain field. When a processor
accesses a memory location, the MMU performs a lookup
in the TLB for the requested virtual address and current
ASID [17]. If a matching TLB entry is found, the MMU then
checks the access permission bits and the domain field of
the TLB entry to determine whether the access is allowed.
If the matching entry does not pass the permission check,
a memory abort exception is triggered: an instruction fetch
fault generates a prefetch abort exception, while a data mem-
ory access fault generates a data abort exception. The cause
of the exception and the faulting address are stored in the
fault status register (FSR) and fault address register (FAR),
respectively, enabling identification of domain faults.

3.2.2 Data Structures
We added a zygote flag and a zygote-child flag within the task
control block (task struct) to identify the zygote and its
children. The zygote flag is set by exec when the zygote pro-
cess is started, and the zygote-child flag is set by fork for its
children. When the mmap system call is invoked to map the
code segment of a shared library, the kernel checks whether
the current process has the zygote flag set. If it does, the ker-
nel marks the corresponding memory region as global by
setting a global flag that we added to the vm area struct.
All Android applications will inherit these memory regions
marked as global. The only hardware support required is the
global bit, which exists in major architectures such as x86 ar-
chitecture. The remaining modifications are in the machine-
independent code of the Linux-based Android kernel.

3.2.3 Maintaining Shared TLB Entries
As explained in Section 2.1, a side effect of the Android pro-
cess creation model is that the virtual-to-physical address
translations for all zygote-preloaded shared code are iden-
tical across all Android application (zygote-child) processes.
In this subsection, we refer to the zygote and all zygote-child
processes as zygote-like processes. When a global memory
region is accessed for the first time by either the zygote or
a zygote-child, a TLB miss occurs and a page table walk is
triggered. When the kernel detects that the page being re-
quested is in a global memory region, it will set the global
bit when creating the corresponding PTE. Here the global bit
has the same meaning as it does for kernel pages. The PTE

will be loaded into the TLB with the global bit on, so that all
zygote-child processes can share this TLB entry.

However, there are other processes in the system that are
not forked from the zygote, such as system services and
daemons (we will refer to these as non-zygote processes).
They are not guaranteed to have the same virtual-to-physical
address translations for zygote-preloaded shared code as the
zygote-like processes, and they should be prevented from
accessing the global TLB entries.

One approach to solving this problem is to flush the entire
TLB whenever a context switch occurs from a zygote-like
process to a non-zygote process. In this way, the non-zygote
processes are not able to access the global TLB entries
loaded by the zygote-like processes. However, we have to
pay the price of losing all TLB entries on such a context
switch, even if the virtual addresses referenced by the non-
zygote process do not overlap with the virtual addresses of
the global TLB entries.

Instead of flushing the entire TLB, we only flush the
global TLB entries that the non-zygote processes are at-
tempting to use by leveraging the domain protection model.
We place the virtual pages of the zygote-preloaded shared
code into a specific domain, of which only the zygote-like
processes have access permissions.

In the stock Android kernel on ARM, there are only
two domains in use: user and kernel. We add a new zygote
domain, to which we grant the zygote-like processes client
access permission by modifying the DACR value in their
task control blocks, while the non-zygote processes have no
access permission. The domain fields in the user-space level
1 PTEs of the zygote-like processes are set to the domain
ID of the zygote domain. In turn, the level 2 PTEs inherit
the domain field from their parent level 1 PTE, and so the
corresponding global TLB entries are also in the zygote
domain.

A memory abort exception occurs when a memory access
generated by a non-zygote process matches a global TLB
entry, as the non-zygote process has no access rights to
the zygote-domain. The exception handler then checks the
FSR. When it finds that the reason for the exception is
a domain fault, it flushes all TLB entries that match the
faulting address on the processor where the fault occurred.
After returning back to user space, the non-zygote process
will encounter a TLB miss on its memory request, which
triggers a normal page table walk to load the corresponding
TLB entry. This overhead can be avoided if a domain match
is also required for a TLB hit in the hardware in addition to
the virtual page number and ASID/global bit [1, 26–28].

On architectures without 32-bit ARM’s domain protec-
tion model, we can still share TLB entries safely by ap-
propriately flushing the TLB whenever necessary. To reduce
the number of TLB flushes, zygote-like processes and non-
zygote processes may be separated into two different groups,



with the OS scheduler modified to prioritize context switch-
ing within one group.

4. Evaluation
In this section, we evaluate our approach on Android’s zy-
gote process creation model. In particular, we show how
shared memory management infrastructure can improve An-
droid’s application launch, steady-state, and IPC efficiency.

4.1 Methodology
4.1.1 Evaluation Platform
We conducted our experiments on a Nexus 7 tablet (2012)
running the Android KitKat 4.4.4 operating system. This
tablet has a 1.2GHz Nvidia Tegra 3 processor with four
ARM Cortex-A9 cores. Each core has a private 2-level TLB,
which consists of micro-TLBs (I/D) and a unified 128-entry
main TLB. Also, each core has a private 32KB/32KB L1 I/D
cache, and all four cores share a 1MB L2 cache. The L1 In-
struction cache is virtually indexed physically tagged, while
the L1 Data cache is physically indexed physically tagged.
In addition, we replaced the default Dalvik runtime environ-
ment with the newer Android Runtime (ART), which per-
forms “Ahead-of-Time” compilation (AOT) of applications
to native code at installation time [9]. CPU frequency scal-
ing is disabled [18] and the frequency is set to the maximum
of 1.2GHz.

To perform the instruction footprint analysis of Android
applications, we collected page fault traces for the user ad-
dress space from the kernel and interpreted these traces us-
ing the mapping information from /proc/pid/smaps. To
analyze instruction execution, we used perf [34] to collect
program counter (PC) traces using rate-based sampling. In
order to minimize the impact of sampling on the traces col-
lected, we used a low sampling rate of 100Hz to quantify
the breakdown of instruction execution between the kernel
and the user space. We then used a 10,000 Hz sampling rate
to obtain better coverage of the instruction footprint and to
evaluate the feasibility of using large pages for the zygote-
preloaded shared code (where we analyzed the perf traces at
the granularity of 4KB page). The reported results are based
on the aggregation of ten executions for each application.

When measuring performance in Section 4.2, we collect
execution time and cache/TLB stall cycles by reading the
corresponding hardware performance counters in the Per-
formance Monitor Unit (PMU) of the processors. We also
add new software counters into the kernel to gather statistics
for the number of page faults, PTPs allocated, shared PTPs,
PTPs unshared, and PTEs copied. When evaluating the per-
formance of sharing TLB entries, we focus on its impact on
the main TLB, since the micro TLB is flushed whenever a
context switch occurs on Cortex-A9 processors [17].

4.1.2 Application Scenarios
The applications we tested are as follows: (1) Angrybirds,
with which we load and play one level of game [5]; (2)
Adobe Reader, which opens a pdf file [2]; (3) Android
Browser [3] and Chrome Browser [16], where we run an au-
tomatic web-browser benchmark named BBench that loads
a list of web pages stored in local disk under the control
of javascripts [21]; (4) Android Email, which loads cached
Emails from local storage [4]; (5) Google Calendar, where
we tap on the dates to display the schedules [20]; (6) MX
player, which plays a video file stored in local disk [33]; (7)
Laya Music Player, which plays an audio file stored in local
disk [32]; (8) WPS, a text editor that creates Word, Spread-
sheet, and Powerpoint documents in turn by using respective
templates [38].

All of the applications are popular among Android users.
The Android browser and Android Email client are installed
by default, while the others are frequently downloaded ap-
plications from the Google Play Store.

Android Browser, Chrome Browser, MX player, and Laya
Music Player do not need user input during execution. How-
ever, all the other applications are interactive. We operate
these application manually over at least 10 executions while
minimizing variation across different rounds. Similar meth-
ods have been used in previous studies of interactive applica-
tions [12, 21]. We focus on collecting software performance
counters for these applications, such as the number of page
faults, PTPs allocated, and shared PTPs, which, compared to
the hardware performance counters like execution cycles and
cache stall cycles, are less sensitive to the variation across
rounds of execution.

4.2 Results
In the following subsections, we evaluate the performance
impact of sharing address translation information on An-
droid’s application launch (including zygote fork), steady-
state execution, and IPC.

4.2.1 Zygote Fork
In Linux, copying PTEs during fork is both unnecessary
and inefficient in most cases, since the mapping inherited
from the parent is typically invalid for the child after exec
is called. Thus, Linux utilizes an implementation of fork
that skips copying PTEs where page faults can fill them in
correctly. However, fork still needs to copy PTEs for large
pages, nonlinear mappings, anonymous memory, and other
mappings that cannot be resolved by page faults, while the
PTEs of file-based mappings are skipped.

As a Linux-based operating system, Android inherits this
implementation of fork. However, since typical Android zy-
gote-based applications do not call exec after they are forked,
this implementation of fork turns out to be inefficient.

Table 3 shows the number of zygote-preloaded shared
code PTEs accessed by an application that have already been



populated in the zygote’s page table before the application is
forked. As many as 640 to 2,300 instruction PTEs accessed
by each application have been populated in the zygote’s page
table. When applications access these shared code pages in
the stock Android kernel, they encounter soft page faults in
order to populate the corresponding PTEs in their own page
tables. When a soft page fault occurs, the application has to
trap into the kernel space, look for the corresponding mem-
ory region of the faulting page, and populate the PTPs of ev-
ery level where the PTEs are missing. A soft page fault costs
around 2.25 microseconds or 2,700 cycles on our Nexus 7
platform, measured using the lat pagefault workload from
LMbench [29].

Copying the PTEs at fork, however, introduces a different
overhead: that of unnecessary copies, resulting in a slower
fork and additional memory usage for potentially unused
PTPs. Prior to receiving requests from users to spawn new
applications, the zygote has already populated 5,900 instruc-
tion PTEs of shared code. It is unclear at fork time which
PTEs will be accessed by a specific child process.

Sharing PTPs can achieve the best of both worlds by re-
ducing the number of soft page faults while keeping down
the cost of fork. Moreover, in addition to the PTEs populated
by the zygote, all subsequent applications can also benefit
from the PTEs populated by the applications launched ear-
lier. As shown in Table 3, the applications tested populate
an additional 220 to 4,200 instruction PTEs for the zygote-
preloaded shared code over the course of execution.

Table 4 shows the cost of a zygote fork when sharing
PTPs in comparison to the stock Android kernel and when
PTEs of the zygote-preloaded shared code are copied at
the time of fork. The execution cycles presented are the
minimum over 40 rounds. Sharing PTPs can speed up a
zygote fork by a factor of 2.1. By sharing PTPs, the number
of PTPs allocated for the child process is reduced from 38
to 1, where the single PTP allocation is for the stack. As
the stack will be modified right after the child process is
scheduled, as a design choice we do not share PTPs for the
stack. Also, only 7 PTEs of the stack PTP need to be copied,
rather than 3,900. In contrast, if we choose to copy all the
PTEs of the zygote-preloaded shared code at fork, the time
for a fork is increased by 58.6% and 13 additional PTPs need
to be allocated.

In summary, sharing PTPs improves fork performance by
a factor of 2 and reduces the number of soft page faults in
the child process at the same time.

4.2.2 Android Application Launch Performance
We evaluate the performance impact of sharing address
translation on Android’s application launch, as shown in
Figures 7 to 9. On Android, the procedure followed by an
application launch performs several IPCs before the appli-
cation loads its application-specific Java classes. The results
presented here are for the window of time that begins when
the zygote-child application process first starts executing

Table 3. # of instruction PTEs that will be inherited from
the zygote if using shared PTPs: Cold start (application is
the first to run) and Warm start (application is reinvoked after
its first instantiation).

Benchmark Cold start (x102) Warm start (x102)

Angrybirds 13.7 25
Adobe Reader 18.2 55
Android Browser 17.7 59
Chrome 14.8 25
Chrome Sandbox 7.8 10
Chrome Privilege 8.4 11
Email 6.4 13
Google Calendar 15.2 25
MX Player 23.0 58
Laya Music Player 17.4 34
WPS 15.0 24

Table 4. Zygote fork performance. Shared PTPs enables
page table sharing. Compared to the Stock Android ker-
nel, Copied PTEs copies the PTEs of the zygote-preloaded
shared code from the parent process to the child process at
fork time.

Kernel Execution Cycles # of PTPs # of Shared # of PTEs
(x106) allocated PTPs Copied

Shared PTPs 1.4 1 81 7
Stock Android 2.9 38 0 3,900
Copied PTEs 4.6 51 0 9,800

and ends right before the application loads its application-
specific Java classes, the procedure for which is identical
across all Android applications. The benchmark we tested in
this experiment is the example Helloworld application from
the Android open source project web site [22]. In addition,
we also recompiled the zygote-preloaded dynamic shared
libraries so that their code segments are mapped at a 2MB
boundary and reside in different level 2 PTPs than their data
segments. The related statistics are shown in the data items
with “2MB” in their labels.

We present the execution time and L1 instruction cache
(Icache) performance (measured in cycles) from over 100
executions in the form of box and whisker plots in Figures 7
and 8. Sharing the TLB does not have much effect on the
overall performance of application launch, since the instruc-
tion main TLB stall cycles only account for 1.2% of the total
execution time in the stock Android kernel. With the origi-
nal alignment of the dynamic shared libraries, sharing PTPs
can improve the execution time of application launch by 7%,
which mainly comes from a 15% reduction in Icache stall
cycles, and 94% fewer page faults for file-based mappings
(from 1,900 to 110) as illustrated in Figure 9. In this case
the Icache performance is improved because fewer kernel
instructions (10% less total number of instructions) need to
be executed due to the reduction in page faults. Also, shar-
ing PTPs can reduce the number of PTPs allocated by 68%
(from 72 to 23).



The benefits of sharing PTPs are further amplified with
the 2MB alignment of the dynamic shared libraries. As the
code and data segments of the shared libraries are in different
level 2 PTPs, modifying the data segments will not result in
the loss of opportunity to share PTPs for the code segments.
The execution time of application launch is improved by
10%, which can be attributed to the 24% fewer Icache stall
cycles and 95% fewer page faults for file-based mappings
(from 1,900 to 93). The number of PTPs allocated decreases
by 61% (from 72 to 28), which is slightly larger than sharing
PTPs with the original alignment of the shared libraries.
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Figure 7. Box and whisker plot of application launch’s ex-
ecution time.
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Figure 8. Box and whisker plot of application launch’s L1
instruction cache stall cycles.

4.2.3 The Performance Impact Over The Course of
Execution

In this subsection, we explore the impact of sharing PTPs on
page faults and PTP allocation for the applications over the
entire course of their execution. In Figures 10 and 11, we
present the average over 10 executions for each application,
for both the original alignment and 2MB alignment of the zy-
gote-preloaded dynamic shared libraries. On average, shar-
ing PTPs reduces the number of page faults for file-based
mappings by 38% (3,200 to 14,000 page faults are elimi-
nated). In particular, for Angrybirds and Google Calender,
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Figure 9. The # of PTPs allocated and page faults for file-
based mappings during application launch. The baseline is
the stock Android kernel with the original alignment, which
has 72 PTPs and 1,900 page faults for file-based mappings.

the number of page faults for file-based mappings decreases
by more than 70%. In addition, compared to the stock kernel
with the original alignment of the shared libraries, sharing
PTPs decreases the number of PTPs allocated by 35% (40
to 60 PTPs, 160KB to 240KB physical memory) with the
original alignment, and with 2MB alignment it reduces PTP
allocation by 26% (14 to 56 PTPs, 56KB to 224KB physi-
cal memory). The latter reduces fewer PTPs than the former
since 2MB-aligned mapping inserts gaps between the code
and data segments of shared libraries and in turn consumes
more virtual address space.

However, 2MB-aligned mapping increases the opportu-
nities for address translation sharing over the course of ex-
ecution. Figure 12 presents the percentage of the total PTPs
of each application that are shared across multiple address
spaces. With 2MB alignment, shared PTPs account for 60%
of all the PTPs (189 out of 344) on average, while with the
original alignment only 39% of the PTPs (63 out of 205) are
shared.

We evaluate the cost of unsharing by measuring the num-
ber of PTEs copied during the execution of each application.
In the stock kernel, the number of PTEs copied refers to the
number of PTEs copied from the zygote at fork (3,900 as
shown in Table 4), while when sharing PTPs, it also includes
the number of PTEs copied due to unsharing. Sharing PTPs,
both with the original alignment and the 2MB alignment, can
reduce the number of PTEs copied compared to the stock
kernel. With the original alignment, sharing PTPs eliminates
100 to 1,200 PTE copies for 7 out of the 11 benchmarks.
With 2MB alignment, sharing PTPs reduces PTE copying
for all benchmarks, eliminating 900 to 1,900 PTE copies.

4.2.4 Android Inter-process Communication
Performance

To evaluate the impact of sharing TLB entries on Android
IPC performance, we developed a microbenchmark in C++
using the Android IPC binder mechanism [11]. The mi-
crobenchmark consists of a parent process acting as a ser-
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Figure 10. Percent reduction in page faults for file-based
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vice and a child process acting as a client that searches for
the parent’s service, binds to it, and invokes its API 100,000
times. During this process, both the client and the server in-
voke procedures in the zygote-preloaded libbinder.so library
intensively. In order to reduce interference from the other
processes, we use cpuset [19] in the kernel to pin the client
and the server onto one core, while placing the remaining
processes on other coress.

Figure 13 illustrates the impact of sharing TLBs on in-
struction main TLB stall cycles. The results presented are
the average of 40 executions. Compared to the stock kernel,
sharing TLBs can improve the client and the server’s instruc-
tion main TLB performance by as much as 36% and 19%
respectively. By sharing PTPs, for the client, the number of
file-based-mapping page faults is reduced from 54 to 14 and
the number of PTPs allocated decreases by 3. However, as
the size of the L1 instruction cache is sufficient for this mi-
crobenchmark, sharing PTPs does not provide much added
benefit.

Sharing TLB entries can further improve performance for
TLBs with ASID support, since it can reduce the capacity
pressure on the TLB when context switching among several
processes. As Figure 13 shows, by using ASIDs, the instruc-
tion main TLB performance is improved by 34% and 86%
for the client and the server respectively, compared to flush-
ing the TLB at context switches. By sharing TLB entries, we
can further reduce the instruction main TLB stall cycles for
both the client and the server.

In summary, sharing TLB entries can improve Android
IPC performance, especially as future generations of proces-
sors increase TLB sizes to match translation demand. As the
working sets of smart device applications continue to grow,
sharing TLB entries will reduce TLB pressure, allowing a
commensurate reduction in the TLB sizes required to effi-
ciently support these applications.
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Figure 13. Instruction main TLB stall cycles on the client
and server. Normalized to the results on the stock Android
kernel.

5. Related Work
5.1 Android Environment Studies
Previous works have analyzed the behavior of mobile appli-
cations [21, 37]. Gutierrez et al. [21] characterize the mi-
croarchitectural behavior of Android applications and show
that their instruction fetch unit performance is significantly
worse than more conventional compute-intensive applica-
tions. They use execution time breakdowns to hint at the
contribution of shared library utilization on instruction fetch
performance. Huang et al. [23] show that both the number
of shared libraries invoked and the frequency with which



execution switches among them confirm the rationale for
Android applications exhibiting poor code locality. We take
these analyses further and use a detailed study of the address
space of the instruction footprint to design a new memory
management strategy for sharing address translation.

5.2 Sharing Address Translation
On most architectures, including ARM, the operating system
reserves a part of a process’s address space for the kernel.
Page tables for the kernel space are shared across all pro-
cesses, with modifications to the translations reflected across
all processes. These page tables are in essence accessed only
in kernel mode (one domain). However, sharing user-space
page tables across different address spaces requires more
careful handling due to sharing across different protection
domains. In particular, modifications to protection and trans-
lation may require that page tables are no longer shared in
order to enforce access permissions.

Solaris provides Intimate Shared Memory (ISM) that
only applies to System V shared memory segments [30].
Similarly, in Linux, patches were proposed in the early
2000s that sought to share PTPs for shared memory re-
gions [31]. These efforts focused on memory regions with
a large span: in particular, they were applicable only to
sharable or read-only memory regions that span the entire
address range of a PTP. As a result, they were largely over-
shadowed by support for large pages. Android applications
present new challenges in their use of modular functionality
provided by libraries and frequent IPCs resulting in context
switches, which we address by handling regions that require
COW protection. Our shared address translation infrastruc-
ture is able to provide benefits not afforded purely by large
pages on mobile platforms, where shared libraries are ac-
cessed sparsely. Moreover, our design can also complement
large pages in terms of improving address translation effi-
ciency. HugeTLBFS [24, 31, 36] applies shared page tables
to large pages, making the case for improved cache per-
formance. By sharing the page table, cache pollution due
to PTE duplication is minimized. Similarly, our approach
can also improve cache performance for large pages. Shared
address translation can have an impact on the sizing of hard-
ware translation structures such as the TLB and on memory
pressure.

Direct segment [10] proposes to reduce TLB misses by
using a single segment mapping register to map a contigu-
ous region of virtual memory to a contiguous region of phys-
ical memory in order to support big-memory workloads. Re-
dundant Memory Mappings (RMM) [25] addresses the issue
of TLB pressure by introducing additional data structures in
hardware and software for range translation. Ranges are only
required to be base-page-size-aligned, thereby providing a
more flexible alternative to large page sizes. Pham et al. pro-
posed a multi-granular TLB organization that exploits the
spatial locality of PTEs [35]. This design and RMM do not,
however, address the issue of duplicated translation informa-

tion across different address spaces. A single direct segment
would also be insufficient for the large number of shared li-
braries accessed by Android applications.

Single address space architectures [1, 13–15, 27, 28] were
proposed for 64-bit address spaces, where all processes re-
side in the same address space and share a single copy of
translation information but with separate protection infor-
mation. Although a single address space paves the way for
translation sharing, there are some problems associated with
supporting optimizations such as COW, compatibility with
current software, and garbage collection, which would re-
quire significant changes to operating system kernels.

Modern operating systems tightly couple address transla-
tion with protection, where a process only has access to its
private address translation infrastructure. However, to sup-
port efficient address translation for shared memory, we need
a more flexibie memory management mechanism. ARM’s
domain protection model in its 32-bit architecture provides
a step in this direction. Future 64-bit Intel processors will
introduce a feature called “memory protection keys”[39],
which can efficiently manipulate access permissions to an
entire data memory region in user mode. Our analysis makes
a case for future processors to support privileged domain ac-
cess control for both data and instructions in order to enable
shared address translation.

6. Conclusion
In this paper, we propose, implement, and evaluate a shared
address translation infrastructure on Android platforms.
Based on our analysis that shows the significance of shared
code on instruction fetch performance, we focus our initial
efforts on shared code. Some of the key challenges we over-
come include the ability to efficiently share page table pages
in the presence of writable pages requiring copy-on-write.
We also leverage ARM’s domain protection model in order
to maintain shared TLB entries and reduce TLB pressure.

The cost of fork is reduced to less than half that of the
stock kernel when using our shared address translation in-
frastructure. At the same time, steady state performance is
also improved: the number of page faults for file-based map-
pings is reduced by 38% and the number of PTPs allocated
by 35% respectively. Page fault elimination coupled with
better cache performance results in a 10% improvement in
performance for an Android application launch. In addition,
sharing TLB entries improves the TLB performance of An-
droid IPC. While the benefits on overall performance is mod-
est, we anticipate that improved domain protection models
inspired by prior work [1, 26–28] coupled with the larger
TLBs in future implementations, will change this equation.

Our design should be portable to other architectures us-
ing hierarchical page tables: most of our modifications to the
Linux kernel are in the machine-independent code base. In
order to maximize the benefits of shared address translation,
we suggest that future processors invest in protection mech-



anisms such as the domain protection model of 32-bit ARM
in order to support TLB entry sharing across processes.
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