Multi-level Shared State for Distributed Systems*

DeQing Chen, Chungiang Tang, Xiangchuan Chen,
Sandhya Dwarkadas, and Michael L. Scott

Computer Science Department, University of Rochester
{lukechen,sarrmor,chenxc,sandhya,sp@its.rochester.edu

Abstract
. HW coherent
As a result of advances in processor and network speeds, SMP node
more and more applications can productively be spread (level 1)

across geographically distributed machines. In this paper
we present a transparent system for memory sharing, In-
terWeave, developed with such applications in mind. In-
terWeave can accommodate hardware coherence and con-
sistency within multiprocessorteyel-1 sharing), software
distributed shared memory (S-DSM) within tightly cou-
pled clusters level-2 sharing), and version-based coher-
ence and consistency across the Intertetdl-3 sharing).
InterWeave allows processes written in multiple languages
running on heterogeneous machines, to share arbitrary
typed data structures as if they resided in local memory. Remote Satellites
Application-specific knowledge of minimal coherence re-
quirements is used to minimize communication. Consis-
tency information is maintained in a manner that allows
scaling to large amounts of shared data. In C, operations .) o
on shared data, including pointers, take precisely the sameSymmetric multiprocessors (SMPs). The more distributed
form as operations on non-shared data. We demonstrate thee0mponents may need to span the Internet.

ease of use and efficiency of the system through an evalua- Conceptually, many of these applications seem easi-
tion of several applications. In particular, we demonstrat €St to describe in terms of some sort sfiared state
that InterWeave’s support for sharing at higher (more dis- Many programmers—particularly those who are connect-

tributed) levels does not reduce the performance of sharinging together components developed for small and mid-size
at lower (more tightly coupled) levels. multiprocessors—would like to capture shared state with

a shared-memory programming model. In order to meet
this demand, we are developing a system, known as Inter-
Weave [8], that allows the programmer to map shared data

Advances in processing speed and network bandwidthinto program components regardless of location or machine
are creating new interest in such ambitious distributed ap-type, and to transparently access that data once mapped.
plications as interactive data mining, remote scientifguvi InterWeave represents a merger and extension of our
alization, computer-supported collaborative work, and in previous Cashmere [19, 20] and InterAct [15] projects.
telligent environments. These applications are character Once shared data has been mapped, InterWeave can support
ized both by the need for high-end parallel computing and hardware coherence and consistency within multiproces-
by the need to coordinate widely distributed users, deyices Sors (evel-1sharing), Cashmere-style software distributed
and data repositories. Increasingly, the parallel comuti Shared memory (S-DSM) within tightly coupled clusters
part can make productive use of the parallelism afforded by (level-2 sharing), and InterAct-style version-based coher-
comparatively inexpensive and widely available clustérs o ence and consistency across the Interteate{-3sharing).

“This work was supported in part by NSF grants CCR_9702466, Figure 1 provides a pictorial representation of the target e

CCR-9705594, EIA-9972881, CCR-9988361, EIA-0080124c0R- VIronment. _ o
0204344, InterWeave has been designed to maximize the lever-

Tightly coupled
cluster (level 2)

. InterWeave seg-
ment (level 3)

Figure 1. InterWeave's target environment.

1 Introduction

age of available hardware support, and to minimize the ex-at which the data is believed to reside. When choosing
tent to which sharing at the higher (more distributed) Isvel the latter option, the presence of the InterWeave library
might impact the performance of sharing at the lower (more allows a program to use genuine reference parameters as an
tightly coupled) levels. At levels 1 and 2, InterWeave in- alternative to deep-copy value parameters.
herits Cashmere’s integration of intra-SMP hardware cache We describe the design of InterWeave in more detail in
coherence with cluster-level VM-based lazy release censis Section 2. We then describe our implementation in Sec-
tency. In particular, it employsvo-way diffingto avoid tion 3, with an emphasis on the coherence, consistency, and
the need for TLB shootdown when processes synchronizecommunication mechanisms. Performance results for ap-
across nodes [19], and relies on low-latency user-level mes plications in iterative, interactive data mining; remoté s
sages for efficient synchronization, directory management entific visualization; and multi-user collaboration appiea
and write-notice propagation [20]. In a similar vein, ceasi Section 4. We compare our design to related work in Sec-
tency at level 3 employs the twins, diffs, write notices, and tion 5 and conclude with a discussion of status and plans in
home-node copies already maintained at level 2. Section 6.

At the third level, data in InterWeave evolves through a
series of consistent versions. Application-specific knowl 2
edge of minimal coherence requirements is used to mini-

mize communication. When beginning a read-only criti- The InterWeave programming model assumes a dis-

cal section on a logical grouping of datagegmen In- tributed collection of servers and clients. Servers main-

te_rWeave uses a programmer-spemﬂe_d pr_ed|cat_e to deterain persistent copies of shared data, and coordinateghari
mine whether the currently cached version, if any, is “récen

b S l eoh gel ! £ among clients. Clients in turn must be linked with a special
enough” to u"se. everal conerence modeis (notlon.s O T8 nterweave library, which arranges to map a cached copy
cent enough) are bunt_lntq the InterWeave system; others ¢ o qad data into local memory, and to update that copy
can be defined by application programmers. When the aP-yhen appropriate.

plication desires consistency across segment boundtries,
avoid causality loops, we invalidate mutually-incongiste .
versions using a novel hashing mechanism that captures thg'l Data Allocation
history of a segment in a bounded amount of space. S-
DSM-like twins and diffs allow us to update stale segments
economically.

InterWeave Design

The unit of sharing in InterWeave is a self-descriptive
data segment(a heap) within which programs allo-

. . . L cate strongly typedblocks of memory?> Every seg-
In keeping with wide-area distribution, InterWeave al- ment is specified by an Internet URL. The blocks

lows processes at level 3 to be written in multiple IanguagesWithin a segment are numbered and optionally named.

and to run on heterogeneous machine architectures, Whilq3y concatenating the segment URL with a block name
sharing arbitrary typed data structures as if they resided i or number and optional offset (delimited by pound

Ioca! memory [21]. InC, operations on shared data, in- signs), we obtain anachine-independent pointer (MIP)
c_Iudlng pointers, take preC|s_er the same form as opera-us o’ or g/ pat h#bl ock#of f set”. To accommodate
tions on non-shared data. Like CORBA and many older heterogeneous data formats, offsets are measured in prim-
RPC systgms, InterWeave e_mploys a tyPe system bas.e%ve data units—characters, integers, floats, etc.—rathe
on a machine- and language-independent interface desc:npt-han in bytes

tion language (IDL)}: When transmitting data between ma- Every segment is managed by an InterWeave server at

ch_mes, we convert between th? local dgta format (as deter—the IP address corresponding to the segment’'s URL. Differ-
mined by language and machine architecture) and a stan

. : . ent segments may be managed by different servers. Assum-
dardinterWeave wire formafWe alsoswizzlepointers [23] 9 y g y

) i ing appropriate access rights, th&Wopen_segnent ()
so_that they can be represented locally using ordinary ma'Iibrary call communicates with the appropriate server to
chine addresses.

O open an existing segment or to create a new one if the seg-
Recognizing that the performance tradeoffs be-

) el L) ment does not yet exi$t.The call returns an opaquen-
tween function shipping and data migration/caching are
application-dependent, we have designed InterWeave to Z2Like distributed file systems and databases, and unlikeesyssuch
complement existing RPC and RMI systems. programmersas PerDiS [11], InterWeave requires manual deletion of;dhtxe is no

. h . automatic garbage collection. A web-based perusal toohpesable to a
can choose on a functlon-by-functlon basis whether to file-system browser, will allow a user or system adminisiréd search for

access data directly or to invoke an operation on a machin€rphaned data.

SAuthentication and access control in InterWeave are ctiyrérased
linterWeave’s IDL is currently based on Sun XDR, but this i$ a0 on a simple public key mechanism. Access keys can be spealifigeg-

essential design choice. InterWeave could easily be mddifievork with ment creation time or changed later by any client that sisfalyg acquires

other IDLs. write access.

dle that can be passed as the initial argument in calls to mechanisms ensure that such pointers will be valid local

| Wmal | oc(): machine addresses. It remains the programmer’s responsi-
bility to ensure that segments are accessed only under the
Whandl e_t h = 1Wopen_segnent (url); protection of reader-writer locks.
IWw _acquire(h); /* wite lock */
ny_type* p = (nmy_type*) 2.2 Coherence
IWnmalloc(h, my_type_desc);
p=o InterWeave's goal is to support seamless sharing of data
IWw _rel ease(h); using ordinary reads and writes, regardless of location. Un

fortunately, given the comparatively high and variable la-
tencies of even local-area networks, traditional hardware
inspired coherence and consistency models are unlikely to
admit good performance in a distributed environment. Even

As in multi-language RPC systems, the types of shared
data in InterWeave must be declared in IDL. The Inter-
Weave IDL compiler translates these declarations into the
appropriate programming I_anguage(s) (,C' C++, Java, FOrihe mogt relaxed of these models guarantees a consistent
Fran). It also creates initializegype desc.r.|ptorshat SPEC- yiew of all shared data amorall processes at synchroniza-
ify the layout of the types on the specified machine. The o hoints, resulting in significant amounts of communica-
descriptors must be registered with the InterWeave library o, " 14 reduce this overhead, Interweave exploits the fact
prior to being used, and are passed as the_ second argumeg processes in a distributed application can often aecep
In calls tol Wmal | oc() . These_ conventions allqw the significantly more relaxed—and hence less communication-
library to trapslate to and from wire forma_t, ensuring that intensive—notion of coherence. Depending on the applica-
each type will have the appropriate machine-specific byte i, it may suffice to update a cached copy of a segment at
order, alignment, etc. in locally cached copies of segments ojar (temporal) intervals, or whenever the contentghav

Level-3 synchronization takes the form of reader-writer changed “enough to make a difference,” rather than after ev-
locks. A process must hold a writer lock on a segme_nt in ery change. When updating data, we require that a process
order to allocate, free, or modify blocks. '!'h(_e IOCK routines 1 ve exclusive write access to the most recent version of the
take a segment handle as parameter. Within a tightly COU-gegment. When reading, however, we require only that the

pled cluster or a hardware-coherent node, a segment that,,rently cached version be “recent enough” to satisfy the
is locked at level 3 may be shared using data-race-free [1]needs of the application

memory sema_mtlcs.) InterWeave currently supports six different definitions of
Given a pointer to a block in an Inter\Weave segment, Or «.ocant enough’”. It is also designed in such a way that ad-
to data within such a block, a process can create a COMeyjitionga| definitions (coherence models) can be added eas-
sponding MIP: ily. Among the current modelgull coherence always ob-
tains the most recent version of the segm@&itict coher-
ence obtains the most recent verséomd excludes any con-

This MIP can then be passed to another process througtfurrent writer;Null coherence always accepts the currently
a message, a file, or an argument of a remote procedur&aChed version, if any (the process must explicitly overrid
in RPC-style systems. Given appropriate access rights € moedelon anindividual lock acquire in order to obtain an

the other process can convert back to a machine-specifi¢/Pdate);Delta coherence [17] guarantees that the segment
pointer: is no more than: versions out-of-datefemporalcoherence

guarantees that it is no more thartime units out of date;
ny_type *p = (ny_type*) IWnip_to ptr(m; andDiff-basedcoherence guarantees that no more tf#n
of the primitive data elements in the segment are out of date.
Thel Wni p_t o_ptr call reserves space for the speci- In all casesg can be specified dynamically by the process.
fied segment if it is not already locally cached (communi- All coherence models other than Strict allow a process to
cating with the server if necessary to obtain layout infor- hold a read lock on a segment even when a writer is in the
mation for the specified block), and returns a local machine process of creating a new version.
address. Actual data for the segment will not be copied into When a process first locks a shared segment, the Inter-
the local machine until the segment is locked. Weave library obtains a copy from the segment’s server. At
It should be emphasized tha¥Nm p_t o_ptr () is pri- each subsequent read-lock acquisition, the library checks
marily a bootstrapping mechanism. Once a process has onéo see whether the local copy of the segment is “recent
pointer into a data structure, any data reachable from thatenough”. If not, it obtains a version update from the server.
pointer can be directly accessed in the same way as localAn adaptive polling/notification protocol, described ircSe
data, even if embedded pointers refer to data in other seg+tion 3.3, often allows the implementation to avoid com-
ments. InterWeave’s pointer-swizzling and data-coneersi munication with the server when updates are not required.

IWmp_t m=I1Wptr_to_nip(p);

Twin and diff operations [6], extended to accommodate het- like to tag each segment version, automatically, with the
erogeneous data formats, allow the implementation to per-names of all segment versions on which it depends. Then
form an update in time proportional to the fraction of the whenever a process acquired a lock on a segment the library
data that has changed. would check to see whether that segment depends on newer
Unless otherwise specified, lock acquisitions default to versions of any other segments currently locally cached. If
Full coherence. The creator of a segment can specify anso, the library would invalidate those segments. The prob-
alternative coherence model if desired, to be used by de-lem with this scheme, of course, is that the number of seg-
fault whenever any process locks that particular segment.ments in the system—and hence the size of tags—is un-
An individual process may also establish its own default for bounded. In Section 3.2 we describe a mechanism based on
a given segment, and may override this default for individ- hashing that achieves the same effect in bounded space, at
ual critical sections. Different processes (and diffefead- modest additional cost.
ments of code within a given process) may therefore use To support operations on groups of segments, we allow
different coherence models for the same segment. Theseheir locks to be acquired and released together. Locks that
models are entirely compatible: the server for a segment al-are acquired together are acquired in a predefined total or-
ways has the most recent version; the model used by a giverder to avoid deadlock. Write locks released together make
process at a given time simply determines how it decides if each new segment version appear to be in the logical past
its own cached copy is recent enough. of the other, ensuring that a process that acquires the locks
The server for a segment need only maintain a copy together will never obtain the new version of one without
of the segment’s most recent version. The API specifiesthe other. To enhance the performance of the most relaxed
that the current version of a segment is always acceptableapplications, we allow an individual process to “opt out” of
as an update to a client, and since processes cache wholeausality on a segment-by-segment basis. For sharing lev-
segments, they never need an “extra piece” of an old ver-els 1 and 2 (hardware coherence within SMPs, and software
sion. To minimize the cost of segment updates, the serverDSM within clusters), consistency is guaranteed for data-
maintains a timestamp on each block of each segment, sadace-free programs.
that it can avoid transmitting copies of blocks that have not
changed. As partial protection against server failureerint 3 |mplementation
Weave periodically checkpoints segments and their meta-

data to persistent storage. The implementation of reaf faul The underlyingimplementation of InterWeave can be di-
tolerance is a subject of future work. vided into four relatively independent modules:

As noted in Section 1, an SDSM-style “level-2” shar- o the memory management module, which provides

ing system such as Cashmere can play the role of a single address-independent storage for segments and their as-
node at level 3. Any process in a level-2 system that ob- sociated metadata:

tains a level-3 lock does so on behalf of its entire level-2 o i))
system, and may share access to the segment with its level- ® the modification detection module, which creates wire-
2 peers. If level-3 lock operations occur in more than one format diffs designed to accommodate heterogenelty
level-2 process, the processes must coordinate theiri-activ and minimize communication bandwidth;

ties (using ordinary level-2 synchronization) so that @per 4 the coherence and consistency module, which obtains

tions are seen by the server in an appropriate order. Working pdates from the server when the cached copy of a seg-

are propagated consistently, and that protocol overhead re the local copies of other segments; and

quired to maintain coherence is not replicated at levels2 an o _ o
3. Further details appear in Section 3. e the communication module, which handles efficient

communication of data between servers and clients.

2.3 Consistency The memory management and modification detection mod-
ules are described in detail in a companion paper [21].
We describe them briefly in the first subsection below,
and then focus in the remaining subsections on the coher-
ence/consistency and communication modules.

Without additional mechanisms, in the face of multi-
version relaxed coherence, the versions of segments cur
rently visible to a process might not be mutually consistent
Specifically, let4; refer to versiory of segmentd. If By,
was created using information found iy, then previous
versions of4 are causally incompatible witBy; a process
that wants to usé3;, (and that wants to respect causality)
should invalidate any cached segment versign < j. As described in Section 2, InterWeave presents the pro-

To support this invalidation process, we would ideally grammer with two granularities of shared datsegments

3.1 Memory Management and Modification
Detection

and blocks Each block must have a well-defined type, segment, and for each subblock of a larger block, the server
but this type can be a recursively defined structure of ar- remembers the version number of the segment in which the
bitrary complexity, so blocks can be of arbitrary size. Bver content of the block or subblock was most recently modi-
block has a serial number within its segment, assigned byfied. This convention strikes a compromise between the size
| Wmal | oc() . It may also have a symbolic name, speci- of server-to-client diffs and the size of server-maintdine
fied as an additional parameter. There is no a priori limit on metadata.
the number of blocks in a segment, and blocks within the At the time of a lock acquire, a client must decide
same segment can be of different types and sizes. whether its local copy of the segment needs to be updated.
When a process acquires a write lock on a given segment(This decision may or may not require communication with
the InterWeave client library asks the operating system tothe server; see Section 3.3.) If an update is required, the
write protect the pages that comprise the local copy of the client sends the server the (out-of-date) version number of
segment. When a page fault occurs, 8ieGSEGV signal the local copy. The server then identifies the blocks and sub-
handler, installed by the library at program startup time, blocks that have changed since the last update to this client
creates a pristine copy, twin [6], of the page in which the constructs a wire-format diff, and returns it to the client.
write fault occurred. It saves a pointer to that twin for figtu
reference, and then asks the operating system to re-enablglash-Based Consistency. To ensure inter-segment con-
write access to the page. sistency, we use a simple hash function to compress the
When a process releases a write lock, the library per-dependence history of segments. Specifically, we tag each
forms a word-by-word diff of modified pages and their Segment versiorb; with an n-slot vector timestamp, and
twins. It then converts this diff to a machine-independent choose a global hash functignthat maps segment identi-
wire format that expresses changes in terms of segmentsfiers into the rangéd..n — 1]. Slotj in the vector indicates
blocks, and primitive data unit offsets, rather than pagesthe maximum, over all segmentswhose identifiers hash
and bytes, and that compensates for byte order, word sizet0 j, of the most recent version @t on whichS; depends.
and alignment. When a client acquires a lock and deter-When acquiring a lock o5, a process checks each of its
mines that its copy of the segment is not recent enough, thecached segment versiof; to see whethet is less than
server builds a similar diff that describes the data thachav the value in slot(Q) of S;'s vector timestamp. If so, the
changed between the client’s outdated copy and the masteProcess invalidate .. Hash collisions may result in un-
copy at the server. necessary invalidations, but these affect performancg onl
Both translations between local and wire format—for NOt correctness.
updates to the server at write lock release and for updates To0 support the creation of segment timestamps, each
to the client at lock acquisition_are driven by type des.crip client maintains a local master timestamp. When the client
tors, generated by the InterWeave IDL compiler, and pro- acquires a lock on any segment (read or write) that forces
vided to the InterWeave library via the second argument to it to obtain a new version of a segment from a server, the
| Wmal | oc() calls. The content of each descriptor speci- library updates the master timestamp with any newer val-
fies the substructure and machine-specific layout of its.type Ues found in corresponding slots of the timestamp on the
To accommodate reference types, InterWeave relies onnewly obtained segment version. When releasing a write
pointer swizzling [23]. Briefly, swizzling uses type de- lock (thereby creating a new segment version), the process
scriptors to find all (machine-independent) pointers withi increments the version number of the segment itself, up-
a newly-cached or updated segment, and converts thenflates its local timestamp to reflect that number, and attache
to pointers that work on the local machine. Pointers to this new timestamp to the newly-created segment version.
segments that are not (yet) locally cached point into re- . . .
se?ved but unmapped p%e)s Wherg data will I?ie once prop_Integratlon with 2-Level System. When a tightly cou-

erly locked. The set of segments currently cached on agiver(;\lled cluster, such as a Cashmere-2\. system, uses an Inter-

machine thus displays an “expanding frontier” reminiscent eave segment, the cIu;ter, appears as a single client to Fhe
of lazy dynamic linking. segment server. The client’s local copy of the segment is

kept in cluster-wide shared memory.

Figure 2 pictorially represents a sequence of actions per-
formed by a level-2 system. (Details on our level-2 coher-

Each server maintains an up-to-date copy of each of theence protocol can be found in previous work [19].) The
segments for which it is responsible, and controls access tdimelines in the figure flow from left to right, and represent
those segments. For each segment, the InterWeave servehree processors within a tightly coupled cluster. In the cu
keeps track of blocks anslibblocks Each subblock com- rent implementation, we designate a single node within the
prises a small contiguous group of primitive data elements cluster to be the segmentisanagemode (in this case pro-
from the same block. For each modest-sized block in eachcessor P0). All interactions between the level-2 system and

3.2 Coherence and Consistency

twin(a) twin(b) twin(c) collect diffs; conver the number of messages exchanged (and thereby avoid ex-

manager node; to wire format; senc
home of page ¢ toserver tra per-message overhead).
PO write a twin(c) " Servers use a heartbeat mechanism to identify dead
dif(c) clients. If a client dies while holding a write lock or a read
b1) 2 > lock with Strict coherence, the server reverts to the previo
/ / o release / version of the segment. If the client was not really dead (its
° write notice(b) > heartbeat was simply delayed), its subsequent release will
P2 L3 witeb L2 L3 fail
acquire release release all.
Several protocol optimizations minimize communication
Figure 2. Coherence actions at levels 2 and 3. between clients and servers in important common cases.

(Additional optimizations, not described here, minimikze t

, cost of modification detection and conversion to and from
the segment’s InterWeave server go through the manager

node. During the period between a level-3 (InterWeave) wire format [21]) First, when only one client has a copy of

:) a given segment, the client will entexclusivamode, allow-
write lock acquire and release, the manager node ENSUTER,g it to acquire and release locks (both read and write) an
that modifications made within the level-2 system can be 9 q

identified through the use of twins and diffs. arbitrary number of times, with no communication with the

. . T . server whatsoever. This optimization is particularly impo
InterWeave achieves its goal of minimizing additional P b yImp

h " by pigavbacki ¢ ol tant for high-performance clients such as Cashmere clus-
conerence actions by piggybacking as far as possible on €Xg g - |t other clients appear, the server sends a message
isting level-2 operations. Three different scenarios lus-i

) " . ; L requesting a summary diff, and the client leaves exclusive
trated in the figure. First, as illustrated on the PO timegline q 9 y

ode.
the manager node creates a twin for a page if it experiences . . .
a write fault. If the manager is not the level-2 home node for Second, a client that finds that its local copy of a seg

. S ment is usually recent enough will enter a mode in which
the page, then this twin is used for both level-2 and level- it stons asking the server for undates. Specifically. ever
3 maodification detection purposes. If the manager node is P g P - 9B Y, y

the level-2 home node, then this twin is needed for level 3 locally cached segment beginspoliing mode: the client

. will check with the server on every read lock acquire to see
only. Second, as illustrated by palyethe manager creates ...)
A . : . if it needs an update (temporal coherence provides an ex-
a level-3 twin if it receives a write notice from another node

in the cluster (P2) and must invalidate the page. Third, ascepnon to this rule: no p0||.IS needed .'f the window has yet
: X to close). If three successive polls fail to uncover the need
illustrated by page, the manager creates a twin for level-

D . : for an update, the client and server will switchrtotifica-
3 purposes (only) if it receives a level-2 diff from another . o) - .
i tion mode. Now it is the server’s responsibility to inform
node in the cluster (P1).

On a level-3 release. the manager node compares an the client when an update is required (it need only inform it
. ' 9 P . ¥)nce, not after every new version is created). If three suc-
level-3 twins to the current content of the corresponding

: . cessive lock acquisition operations find notificationsad
pages in order to create diffs for the InterWeave server. d P '

)) waiting, the client and server will revert to polling mode.
Overhead is thus incurred only for those pages that are mod- Third, the server maintains a cache of diffs that it has

ified and, in practice, the number of additional twins crdate . .
received recently from clients, or collected recentlylftse

is fairly low. . 4)

y in response to client requests. These cached diffs can often
be used to respond to future requests, avoiding redundant
collection overhead.

In our current implementation each InterWeave server Finally, as in the TreadMarks SDSM system [4], a client
takes the form of a daemon process listening on a well- that repeatedly modifies most of the data in a segment will
known port at a well-known Internet address for connection SWitch to amode in which it simply transmits the whole seg-
requests from clients. The server keeps metadata for eacfient to the server at every write lock release. Tosdiff

active client of each segment it manages, as well as a mastef’0de eliminates the overheadrmgir ot ect s, page faults,
copy of the segment's data. and the creation of twins and diffs.

Each InterWeave client maintains a pair of TCP connec-
tions to each server for which it has locally cached copies4 Performance Results
of segments. One connection is used for client requests and
server responses. The other is used for server notifications InterWeave currently runs on Alpha, Sparc, x86, and
Separation of these two categories of communication allowsMIPS processors, under Windows NT, Linux, Solaris,
them to be handled independently. All communication be- Tru64 Unix, and IRIX. Together, the server and client li-
tween clients and servers is aggregated so as to minimizeébrary comprise approximately 31,000 lines of heavily com-

3.3 Communication

mented C++ code. Our uniprocessor results were collected
on Sun Ultra 5 workstations with 400 MHz Sparc v9 pro- 259 ___
cessors and 128 MB of memory, running SunOS 5.7, and
on 333 MHz Celeron PCs with 256 MB of memory, run-
ning Linux 6.2. Our Cashmere cluster is a collection of
AlphaServer 4100 5/600 nodes, each with four 600 MHz 11

21164A processors, an 8 MB direct-mapped board-level 05

cache with a 64-byte line size, and 2 GBytes of memory, m ﬂ
running Tru64 Unix 4.0F. The nodes are connected by a ‘ ‘ ‘ ‘
Memory Channel 2 system area network, which is used for
tightly-coupled sharing. Connection to the local area net-
work is via TCP/IP over 100Mb Ethernet. Figure 3. Sequence mining: bandwidth required

under different coherence models.

MB Transmitted
=
(6]

Full Diff-10 Diff-20 Delta-2 Delta-4
Coherence Models

4.1 Coherence Model Evaluation

We use a data mining application [16] to demonstrate the
impact of InterWeave's relaxed coherence models on net-
work bandwidth and synchronization latency. Specifically,
the application performs incremental sequence mining on
a remotely located databasetrdinsactionge.g. retail pur- quences. : .
chases). Each transaction in the database (not to be con- . Figure 3 shows the total bandwidth requirement as the
fused with transactionsn the database) comprises a set of client relaxes its coherence model. The leftmost bar repre-

items such as goods that were purchased together. TransSeNts the bandwidth requirement if the client uses the Full

actions are ordered with respect to each other in time. Thetcf? hgrer:jce_ért]r(]) del (_Secuorl 2f2tl)'1 Tlhe ct)ther fngfrf ba;st hl?w
goal is to find sequences of items that are commonly pur- € bandwidth requirements It the client uses Uit and Lefta

chased by a single customer in order over time coherence with different thresholds. Using Diff coherence

. : with a threshold of 20% (i.e., consider a cached copy to be
In our experimental setup, the database server (itself an‘recent enough” if no more than 20% of its primitive data

InterWeave client) reads from an active database whoseelements are out of date), we see a savings of almost 75%
content continues to grow. As updates arrive the server in- ' 9 o

_crementally maintains a summary o_la_ta structure (alatfice 0 4.2 3-Level System for Parallel Applications
item sequences) that is used by mining queries. Each node

in the lattice represents a sequence that has been found with To illustrate the interaction between InterWeave shared
a frequency above a specified threshold. The lattice is rep-state, managed across the Internet, and software digdbut
resented by a single InterWeave segment; each node is ghared memory, running on a tightly coupled cluster, we
block in that segment. Each data mining client, represent-collected performance measurements for remote visual-
ing a distributed, interactive interface to the mining syst ization and steering of two pre-existing scientific simula-
is also an InterWeave client. It executes a loop containing ations: the Splash-2 Barnes-Hut N-body benchmark, and a
reader critical section in which it performs a simple query. CFD stellar dynamics application known as Astroflow [10].
Our sample database is generated by tools from IBM re-Barnes-Hut is written in C. Astroflow is written in For-
search [18]. It includes 100,000 customers and 1000 dif- tran. Both simulations run on four nodes of our AlphaServer
ferent items, with an average of 1.25 transactions per cus-cluster. Barnes-Hut repeatedly computes new positions for
tomers and a total of 5000 item sequence patterns of averagé6,384 bodies. Astroflow computes ora6 x 256 dis-
length 4. The database size is 20MB. cretized grid. In both cases, the progress of the simula-
The summary structure is initially generated using half tion can be observed and modified using a visualization and
the database. The server then repeatedly updates the strusteering “satellite” that runs on a remote workstation. The
ture using an additional 1% of the database each time. Be-Astroflow satellite is a pre-existing Java program, origiina
cause the summary structure is large, and changes slowlyesigned to read from a checkpoint file, but modified for our
over time, it makes sense for each client to keep a local purposes to share data with the simulator via InterWeave.
cached copy of the structure and to update only the modi-The Barnes-Hut satellite was written from scratch (in C) for
fied data as the database evolves. Moreover, since the datthis experiment.
in the summary are statistical in nature, theitueschange In both applications, the simulator uses a write lock to
slowly over time, and clients do not need to see each incre-update the segment that it shares with the satellite. The
mental change. Delta or diff coherence will suffice, and can Barnes-Hut satellite uses a relaxed read lock with Tempo-
dramatically reduce communication overhead. To illustrat ral coherence to obtain an effective frame rate of 15 frames

these effects, we measure the network bandwidth required
by each client for summary data structure updates as the
database grows and the database server finds additional se-

per second. In Astroflow the simulation proceeds slowly 14
enough that Full coherence requires negligible bandwidth. 1.2
To assess the baseline overhead of InterWeave we linked, 1 1|
both simulators with the InterWeave library, but ran them ¢
without connecting to a satellite. Though the cluster must% ’
communicate with the InterWeave server to create its initia £ 9-6
copy of the simulation data, thexclusive modeptimiza- 0.4
tion (Section 3.3) eliminates the need for further inteécact 0.2 -
and the overall impact on performance is negligible.
To assess the overhead of InterWeave in the presence of
a satellite, we constructed, by hand, versions of the simula
tors that use explicit messaging over TCP/IP to communi-
cate with the satellite (directly, without a server). Werthe Nodes:Processes
ran these versions on the standard Cashmere system, and
compared their performance to that of Cashmere working Figure 4. Overhead of InterWeave library and com-
with InterWeave. Results for Barnes-Hut appear in Fig- munication during Barnes-Hut remote visualiza-
ure 4. (For Astroflow, both the messaging and InterWeave tion.
versions have such low communication rates that the impact
on performance is negligible.) In all cases the satellite wa
running on another Alpha node, communicating with the velop, from scratch, a distributed calendar program. The
cluster and server, if any, via TCP/IP over 100Mb Ethernet. program was originally written with about two weeks of
Each bar gives aggregate wall-clock time for ten iteration part-time effort by a first-year graduate student. Subsegue
steps. The labels on pairs of bars indicate the number ofminor modifications served primarily to cope with changes
nodes and the total number of processors involved in eachin the API as InterWeave evolved.
experiment. In the first three pairs a single processor was The program maintains appointment calendars for a dy-
active in each node. In the final pair, four processors pernamically changing group of individuals. Users can create
node were active. The “C" bars are for explicit messaging or delete a personal calendar; view appointments in a per-
code running on standard Cashmere; the “IW" bars are for sonal calendar or, with permission, the calendars of others
Cashmere working with InterWeave. The C bars are sub-create or delete individual appointments; propose a group
divided to show the overhead of communication; the IW meeting, to be placed in the calendars of a specified group
bars also show the (comparatively small) overhead of datagf ysers; or accept or reject a meeting proposal.
translation and the coherence protocol. For this particula A single global segment, accessed by all clients,
sharing scenario, much of the shared data is modified in eV-contains a directory of users. For each user, there is an

ery interval. InterWeave therefore switches, automaical 5 qgitional segment that contains the user’s calendar.iith
to no-diff mode to minimize the cost of tracking modifica- ;-1 user calendar there is a named block for each day

B Translation ||
@ Communication

[Protocol B
@ Cashmere

=1

£
|_

4:16(W) [T

2:2(C) [

2:2(1IW)
4:4(C) [
4:4(0W) L

1(C)
1(IW)

4:16(C) I

tions. on which appointments (firm or proposed) exist. The
name of the block is a character string date. To obtain
4.3 APl Ease-of-Use a pointer to Jane Doe’s calendar for April 1, we say

The changes required to adapt Barnes-Hut and Astroflow! Wni p_toptr ("iw. sonewhere. edu/ cal /j ane
to work with InterWeave were small and isolated. No spe- #04-01-2001").
cial code is required to control the frequency of updates The calendar program comprises 1250 lines of C++
(one can adjust this in the satellite simply by specifying source, approximately 570 of which are devoted to a sim-
a temporal bound on relaxed coherence). No assumption§)|e command-line user interface. There are 68 calls to
need to be embedded regarding the number of satellites (onénterWeave library routines, spread among about a dozen
can launch an arbitrary number of them, on multiple work- user-level functions. These calls include 3 reader and 10
stations, and each will connect to the server and monitorwriter lock acquire/release pairs, 17 additional lock astes
the simulation). No knowledge of networking or connec- in error-checking code, and a dozewni p_t o_ptr calls
tion details is required, beyond the character-string namethat return references to segments.
of the segment shared between the simulator and the satel- In comparison to messaging code, the InterWeave calen-
lite. While the matter is clearly subjective, we find the mte dar program has no message buffers, no marshaling and un-
Weave code to be significantly simpler, easier to understand marshaling of parameters, and no management of TCP con-
and faster to write than the message-passing version. nections. (These are all present in the InterWeave libcdry,

In a separate experiment, we used InterWeave to de-course, but the library is entirely general, and can be tuse

by other programs.) Instead of an application-specific pro- mantics for writer locks. To the best of our knowledge, In-
tocol for client-server interactions, the InterWeave chde terWeave is the first system to provide a general framework
reader-writer locks, which programmers, in our experience in which the user can define application-specific coherence
find significantly more straightforward and intuitive. models.

5 Related Work 6 Conclusions and Future Work

InterWeave finds context in an enormous body of related
work—far too much to document in this paper. We focus We have described a run-time system, InterWeave, that
here on some of the most relevant systems in the literature;allows processes to access shared data transparently using
additional discussion can be found in the TR version of this ordinary reads and writes. InterWeave is, to the best of
paper [9]. our knowledge, the first such system to seamlessly and effi-

Dozens of object-based systems attempt to provide aciently span the spectrum from hardware cache coherence
uniform programming model for distributed applications. within SMP nodes, through software distributed shared
Many are language specific; many of the more recentmemory on tightly-coupled clusters, to relaxed, version-
of these are based on Java. Language-independent dissased coherence across the Internet. It is also, we believe,
tributed object systems include PerDiS [11], Legion [13], the first to fully support shared memory across heteroge-
Globe [22], Microsoft's DCOM, and various CORBA- neous machine types and languages.

compliant systems. Globe replicates objects for avalabil \ye have demonstrated the efficiency and ease of use of
ity and fault tolerance. PerDiS and a few CORBA sys- {na system through an evaluation on both real applications
tems (e.g. Fresco [14]) cache objects for locality of refer- 4, artificial benchmarks. Experience to date indicatets tha
ence. Unfortunately, object-oriented update propagation sers find the API conceptually appealing, and that it allows
typically supported either by invalidate and resend on ac-hem to build new programs significantly more easily than
cess or by RMI-style mechanisms, tends to be inefficient they can with RPC or other message passing paradigms.
(re-sending a large object or a log of operations). Equally g4 applications in which RPC-style function shipping is
significant from our point of view, there are important ap- required for good performance, InterWeave provides en-
plications (e.g. compute intensive parallel applicafjdhat panced functionality via genuine reference parameters.

do not employ an object-oriented programming style. o - .
At least two early S-DSM systems provided support Quantitative measurements indicate that InterWeave is
able to provide sharing in a distributed environment with

for heterogeneous machine types. Toronto’s Mermaid Sys_minimal impact on the performance of more tightly-coupled
tem [25] allowed data to be shared across more than one P P gnhtly P

. haring. InterWeave facilitates the use of relaxed coloeren
type of machine, but only among processes created as par : o
) ! and consistency models that take advantage of application-
of a single run-to-completion parallel program. All data

in the same VM page was required to have the same type,SpeC'f'C knowledge to greatly reduce communication costs,

. . and that are much more difficult to implement in hand-
and only one memory model—sequential consistency—was

supported. CMU’s Agora system [5] supported sharing yvntten message-passing code. We are actively collaborat-

) ..~ ing with colleagues in our own and other departments to
among more loosely-coupled processes, but in a Slgnlfl_em loy InterWeave in three principal application domains:
cantly more restricted fashion than in InterWeave. Pointer ploy P pal app)

. remote visualization and steering of high-end simulations

and recursive types were not supported, all shared data ha . ; 2 : .
S . enhancing the Astroflow visualization described in Sec-
to be accessed indirectly through a local mapping table, and.

. L . tion 4.2), incremental interactive data mining (Sectiah) 4.
only a single memory model (similar to processor consis- o \
and human-computer collaboration in richly instrumented
tency) was supported.

Friedman [12] and Agrawal et al. [2] have shown how physical environments.
to combine certain pairs of consistency models in a non-
version-based system. Alonso et al. [3] present a general
system for relaxed, user-controlled coherence. Khazgna [7 Acknowledgments
also proposes the use of multiple consistency models. The
TACT system of Yu et al. [24] allows coherence and consis- Srinivasan Parthasarathy developed the InterAct system,
tency requirements to vary continuously in three orthogo- and participated in many of the early design discussions
nal dimensions. Several of InterWeave’s built-in coheeenc for InterWeave. Eduardo Pinheiro wrote an earlier version
models are similarly continuous, but because our goal is toof InterWeave’s heterogeneity management code. We are
reduce read bandwidth and latency, rather than to increasgrateful to Amy Murphy and Chen Ding for their insightful
availability (concurrency) for writes, we insist on strosey suggestions on the content of this paper.

References

(1]

(2]

(3]

[4]

[5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

S. V. Adve and M. D. Hill. A Unified Formulation of Four
Shared-Memory ModelslEEE Trans. on Parallel and Dis-
tributed Systems}(6):613-624, June 1993.

D. Agrawal, M. Choy, H. V. Leong, and A. K. Singh. Mixed
Consistency: A Model for Parallel Programming.Rroc. of
the 13th ACM Symp. on Principles of Distributed Comput-
ing, Los Angeles, CA, Aug. 1994.

R. Alonso, D. Barbara, and H. Garcia-Molina. Data Caghin
Issues in an Information Retrieval Syste®CM Trans. on
Database System$5(3):359-384, Sept. 1990.

C. Amza, A. Cox, S. Dwarkadas, and W. Zwaenepoel. Soft-
ware DSM Protocols that Adapt between Single Writer and
Multiple Writer. In Proc. of the 3rd Intl. Symp. on High
Performance Computer Architectui®an Antonio, TX, Feb.
1997.

R. Bisiani and A. Forin. Multilanguage Parallel Program
ming of Heterogeneous Machind&EE Trans. on Comput-
ers 37(8):930-945, Aug. 1988.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implemen-
tation and Performance of Munin. Proc. of the 13th ACM
Symp. on Operating Systems Principleages 152-164, Pa-
cific Grove, CA, Oct. 1991.

J. Carter, A. Ranganathan, and S. Susarla. Khazana: An In
frastructure for Building Distributed Services. lintl. Conf.

on Distributed Computing Systempages 562-571, May
1998.

D. Chen, S. Dwarkadas, S. Parthasarathy, E. Pinheim, an
M. L. Scott. InterWeave: A Middleware System for Dis-
tributed Shared State. Froc. of the 5th Workshop on Lan-
guages, Compilers, and Run-time Systems for Scalable Com-
puters Rochester, NY, May 2000.

D. Chen, C. Tang, X. Chen, S. Dwarkadas, and M. L.

Scott. Beyond S-DSM: Shared State for Distributed Sys- [22]

tems. TR 744, Computer Science Dept., Univ. of Rochester,
Mar. 2001.

G. Delamarter, S. Dwarkadas, A. Frank, and R. Stets. [23]

Portable Parallel Programming on Emerging Platfor@s-
rent Science Journal78(7), Indian Academy of Sciences,
Apr. 2000.

P. Ferreira, M. Shapiro, X. Blondel, O. Fambon, J. Gar-
cia, S. Kloosterman, N. Richer, M. Roberts, F. Sandakly,
G. Coulouris, J. Dollimore, P. Guedes, D. Hagimont, and
S. Krakowiak. PerDiS: Design, Implementaiton, and Use
of a PERsistent Dlstributed Store. Research Report 3525,
INRIA, Rocquencourt, France, Oct. 1998.

R. Friedman. Implementing Hybrid Consistency with klg
Level Synchronization Operations. Boc. of the 12th ACM
Symp. on Principles of Distributed Computjrthaca, NY,
Aug. 1993.

A. S. Grimshaw and W. A. Wulf. Legion—A View from
50,000 Feet. IrProc. of the 5th Intl. Symp. on High Perfor-
mance Distributed Computingug. 1996.

[14] R. Kordale, M. Ahamad, and M. Devarakonda.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[24]

[25]

Object
Caching in a CORBA Compliant SystenComputing Sys-
tems 9(4):377-404, Fall 1996.

S. Parthasarathy and S. Dwarkadas. InterAct: VirtuedrS

ing for Interactive Client-Server Applications. #th Work-
shop on Languages, Compilers, and Run-time Systems for
Scalable Computerd/ay 1998.

S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwaakad
Incremental and Interactive Sequence Mininglnth. Conf.
on Information and Knowledge ManagemgeNbv. 1999.

A. Singla, U. Ramachandran, and J. Hodgins. Temporal No
tions of Synchronization and Consistency in Beehive. In
Proc. of the 9th Annual ACM Symp. on Parallel Algorithms
and ArchitecturesNewport, RI, June 1997.

R. Srikant and R. Agrawal. Mining Sequential PattetBa/
Research Report RJ9910, IBM Almaden Research Center,
Oct. 1994. Expanded version of paper presented at the Intl.
Conf. on Data Engineering, Taipei, Taiwan, Mar. 1995.

R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kon-
tothanassis, S. Parthasarathy, and M. Scott. Cashmere-2L:
Software Coherent Shared Memory on a Clustered Remote-
Write Network. InProc. of the 16th ACM Symp. on Operat-
ing Systems Principle$t. Malo, France, Oct. 1997.

R. Stets, S. Dwarkadas, L. I. Kontothanassis, U. Rencu-
zogullari, and M. L. Scott. The Effect of Network Total Or-
der, Broadcast, and Remote-Write Capability on Network-
Based Shared Memory Computing. Rroc. of the 6th
Intl. Symp. on High Performance Computer Architecture
Toulouse, France, Jan. 2000.

C. Tang, D. Chen, S. Dwarkadas, and M. L. Scott. Support
for Machine and Language Heterogeneity in a Distributed
Shared State System. Submitted for publication, May 2002.
Expanded version available as TR 783, Computer Science
Dept., Univ. of Rochester.

M. van Steen, P. Homburg, and A. S. Tanenbaum. Globe: A
Wide-Area Distributed System. IEEE Concurrencypages
70-78, Jan.-Mar. 1999.

P. R. Wilson. Pointer Swizzling at Page Fault Time: Effi-
ciently and Compatibly Supporting Huge Address Spaces on
Standard Hardware. lmnternational Workshop on Object
Orientation in Operating Systemgage 244ff, Paris, France,
Sept. 1992.

H. Yu and A. Vahdat. Design and Evaluation of a Continu-
ous Consistency Model for Replicated ServicesPtac. of

the 4th Symp. on Operating Systems Design and Implemen-
tation, San Diego, CA, Oct. 2000.

S. Zhou, M. Stumm, K. Li, and D. Wortman. Heterogeneous
Distributed Shared Memory. IfEEE Trans. on Parallel and
Distributed Systempages 540-554, 1992.

