
A Technique for Adaptation to Available Resources on Clusters Independent of
Synchronization Methods Used�

Umit Rencuzogullari and Sandhya Dwarkadas

Department of Computer Science
University of Rochester

Rochester, NY 14627–0226
umit,sandhya@cs.rochester.edu

Abstract

Clusters of Workstations (COW) offer high performance
relative to their cost. Generally these clusters operate as
autonomous systems running independent copies of the op-
erating system, where access to machines is not controlled
and all users enjoy the same access privileges. While these
features are desirable and reduce operating costs, they cre-
ate adverse effects on parallel applications running on these
clusters. Load imbalances are common for parallel appli-
cations on COWs due to: 1) variable amount of load on
nodes caused by an inherent lack of parallelism, 2) variable
resource availability on nodes, and 3) independent schedul-
ing decisions made by the independent schedulers on each
node. Our earlier study has shown that an approach com-
bining static program analysis, dynamic load balancing,
and scheduler cooperation is effective in countering the ad-
verse effects mentioned above. In our current study, we in-
vestigate the scalability of our approach as the number of
processors is increased. We further relax the requirement
of global synchronization, avoiding the need to use barriers
and allowing the use of any other synchronization primi-
tives while still achieving dynamic load balancing. The use
of alternative synchronization primitives avoids the inherent
vulnerability of barriers to load imbalance. It also allows
load balancing to take place at any point in the course of
execution, rather than only at a synchronization point, po-
tentially reducing the time the application runs imbalanced.
Moreover, load readjustment decisions are made in a dis-
tributed fashion, thus preventing any need for processes to
globally synchronize in order to redistribute load.

�This work was supported in part by NSF grants EIA-9972881, EIA-
0080124, CCR–9702466, CCR-9988361, and CCR–9705594; by anex-
ternal research grant from DEC/Compaq; and by the U.S. Department of
Energy Office of Inertial Confinement Fusion under Cooperative Agree-
ment No. DE-FC03-92SF19460.

1. Introduction

Clusters of Workstations (COWs) are attractive since
they provide high compute power at low cost. COWs pro-
vide lower maintenance cost by allowing heterogeneous
hardware to be put together, enabling partial upgrades and
providing the opportunity to spread an upgrade over a pe-
riod of time. COWs also have lower operating cost as they
use readily available hardware and software. Each machine
is generally autonomous and runs an independent copy of
the operating system, allowing all users equal and uncon-
trolled access privileges.

Unfortunately, the advantages we enumerated above turn
into disadvantages when COWs are used as a parallel com-
puting platform. Since COWs are mostly operated as au-
tonomous systems, scheduling decisions are made indepen-
dently. Furthermore, since access to individual machines is
not regulated, it is likely that some of the nodes running a
parallel program will have other programs running on them.
Heterogeneous clusters imply variance in resources among
nodes. Each of these reasons contribute to the likelihood
that some nodes will be overloaded while others are under-
utilized. Combining these factors with program character-
istics, such as inherent lack of parallelism or unpredictable
processing requirements, makes running parallel programs
in such an environment much less efficient than expected.

In the past, each of these problems has been addressed in
isolation. Load balancing has been studied for both COWs
and parallel machines [8, 12, 22, 17, 10, 4]. Lowenthal
et. al. [12] and Morris et. al. [7] use a global strategy for
optimizing the execution path through the data distribution
graph of a program, which is executed at runtime and di-
rected by the number of incurred page faults and computa-
tion time of each parallel region.

Coscheduling has also been studied extensively, in the
form of explicit coscheduling [16, 23] for parallel machines,
and in the form of implicit coscheduling [20, 3, 15], for

1



COWs.
Coscheduling works best when the amount of work and

the available resources are equal across all nodes. On an au-
tonomous COW it is highly likely that nodes have different
numbers of processes running, which reduces the effective-
ness of the coscheduling approach. If implicit coschedul-
ing is used, the resulting schedule might also no longer be
fair. On the other hand, load balancing takes its motivation
from the assumption that each of the nodes has a different
load/resource ratio, and tries to make that ratio equal across
nodes. Even when load balancing is perfect across nodes,
delays caused by multiprogramming will not be addressed,
since communicating or synchronizing processes would
have to wait for their communication/synchronization part-
ner to be scheduled before they are able to finish their oper-
ation.

An obvious solution would seem to be to combine load
balancing with a coscheduling scheme. Unfortunately, a
trivial combination does not work since it still suffers from
message delays, or possible unfairness. For example, con-
sider a parallel application running on two nodes, where one
of the nodes, say A, is dedicated, and the other, B, is run-
ning another application along with the parallel application.
Assume the load is balanced, i.e. the parallel process on
node A is getting twice as much work to do as its peer on
node B. A coscheduler cannot do anything, since the par-
allel application is naturally coscheduled. However, in this
case it is possible for the process running on A to send a
message and wait for its partner to be rescheduled, should
the partner process on B be de-scheduled. The wait time
could be as high as one quantum.

Our solution to the above problems has been devel-
oped in the context of software distributed shared memory
(SDSM). An SDSM protocol provides the illusion of shared
memory to the programmer. The benefit in our case is that
the complexity of the load balancing middleware is reduced
since data is automatically moved to where it is accessed
rather than having to be explicitly coded. Our earlier study
[18] has shown an effective way of coping with load imbal-
ances and scheduling discrepancies for applications using
barriers to synchronize. A “barrier” requires all involved
processes to arrive at the barrier before anyone may depart
from it.

Our new system extends our previous work by being
oblivious to the synchronization method used. This permits
the exclusive use of locks and flags, which are much more
relaxed methods of synchronization. A lock requires an ac-
quirer to wait only if the lock to be acquired is being held by
another party. Flags, on the other hand, are an event-based
synchronization mechanism that can be used to signal the
completion of an event. Further, we explore the scalability
of our system and show that our combination of coopera-
tive scheduling and load balancing scales up to 32 proces-

int sh_dat1[N], sh_dat2[N],a,b,c,d;

for (i=lowerbound;i<upperbound;i+=stride)
sh_dat1[a*i + b] += sh_dat2[c*i + d];

Figure 1. Initial parallel loop. Shared data is
indicated by the prefix sh .

sors and provides excellent performance benefits. Our new
extensions benefit even barrier-based applications by pro-
viding them with ways of balancing load without waiting
for a barrier, in cases where the time between barriers is
large.

The rest of the paper is organized as follows: Section 2
provides information about our former system and how our
new system differs and what capabilities are added. Sec-
tion 3 evaluates the system separating the effects of each
component. Finally, Section 4 concludes and outlines our
plans for future work.

2. Design And Implementation

Our programming environment is software distributed
shared memory (DSM). DSM hides the details of commu-
nication from the user by providing a layer below the appli-
cation that implicitly manages data movement. Data move-
ment due to load reassignment, which would otherwise be
needed to be somehow explicitly added to the program, is
handled implicitly. Even though it is relatively easy to ex-
plicitly code data movement when the data to be moved
is known statically, it is much harder when the decision is
made dynamically, since the source and destination are hard
to determine. We use Cashmere-2L (CSM) [21], as our base
DSM system.

Due to relaxing the requirements of the use of barriers,
the monitoring and redistribution methods we used in our
earlier work must be modified. We elaborate on each of the
components and their modifications in the following sec-
tions.

2.1. Baseline Load Balancing System

Our baseline system consists of three separate subsys-
tems: static program analysis, runtime system, and operat-
ing system scheduling support. Our earlier work [18] pre-
sented a scheme to balance load and increase the throughput
of COWs for “barrier-based” parallel applications. In that
implementation, all synchronizations were pushed into the
runtime system, and load was balanced only at synchroniza-
tion points, which were barriers. Our current extensions, in
addition to supporting other classes of applications, alsoal-
low barrier-based applications to balance at arbitrary points,

2



Initialize
sharing types /*STENCIL/INDEPENDENT*/
load types /*FIXED/VARIABLE*/
list of arrays, /*sh_dat1,sh_dat2*/
list of access types, /*read/write*/
list of upper/lower bounds and strides
coefficients and constants /*a,b,c,d*/

taskSet = partition_tasks();

get a task while there are Tasks in the taskSet
set lowbound, highbound, stride for that Task

for (i=lowbound;i<highbound;i+=stride)
sh_dat1[a*i + b] += sh_dat2[c*i + d]

Figure 2. Parallel loop with pseudocode that
serves as an interface to the runtime sys-
tem. The runtime system can then change
the amount of work assigned to a process.

hence making it possible to balance load between barriers
when the time between successive barriers is large. This in
turn reduces the amount of time an application runs unbal-
anced.

The following sections describe each of the three com-
ponents separately and explains what had to be changed in
order to extend our system to work with a larger class of
applications.

2.2. Static Program Analysis

We use static program analysis to identify the access pat-
tern of our parallel program as well as to insert the runtime-
system hooks that monitor the process activity. Once a par-
allel region is identified, there are two dimensions along
which load distribution decisions can be made. The first
is the amount of work per subtask (where a subtask is iden-
tified as the smallest independent unit of work that can be
performed in parallel, e.g., a single iteration of a parallel
loop). The second is the data accessed by each subtask. For
many regular access patterns, the compiler can identify the
data accessed by each parallel loop. In addition, the com-
piler can also attempt to predict whether each parallel loop
performs the same or different amounts of work. Our static
analysis [9] provides information on the above two dimen-
sions wherever possible.

We illustrate the interface between the compiler and
the runtime, as well as the information extracted by the
compiler, through a sample parallel loop. Figure 1 shows
pseudo-code for the original loop. There are several pieces
of information that the compiler supplies to the runtime sys-
tem. For every shared data structure, the compiler initializes
data structures indicating its size and the number and size
of each dimension. In addition, for each parallel region,

the compiler supplies information regarding the shared data
accessed (in the form of a regular section [6]) per loop (or
subtask) in the parallel region. The loop is then transformed
as shown in the pseudo-code in Figure 2. In reality, much
of the information passed to the runtime task partitioner is
initialized only once, with only those variables that change
are updated on each invocation.

Once the information on the loop bounds and array di-
mensions is available, the amount of computation and the
locality of access can be deduced (heuristically) for several
important classes of applications. For instance, detecting
that the amount of work per parallel loop is a function of
the parallel loop index implies that in order to achieve a bal-
anced distribution of load while preserving access locality,
a cyclic distribution of the parallel loops would be useful1.
Similarly, detecting a non-empty intersection between the
regular sections of adjacent parallel loops implies a stencil-
type computation with nearest-neighbor sharing, while de-
tecting an empty or loop-independent intersection among
loops implies loop-independent sharing.

Two variables in the data structure for each parallel re-
gion encode this information —load andaccess. load is
currently defined to be one ofFIXED or VARIABLE, the
default beingFIXED. A VARIABLEload type is currently
used as an indication to use a cyclic load distribution, while
a FIXED load type is used as an indication to use a block
load distribution.Accessis currently defined to be one of
STENCILor INDEPENDENT. Accessis intended to influ-
ence the type of load distribution used, and to determine
the type of redistribution used.Accesscan potentially be
updated by the runtime system based on information about
data currently cached by the process. An access type of
STENCILis treated as a signal to use a blocked load distri-
bution as well as a blocked re-assignment of load (i.e., load
is re-assigned by shifting loop boundaries in proportion to
the processing power of the individual processors). Using
this type of load re-assignment minimizes steady-state com-
munication due to nearest-neighbor sharing. However, the
redistribution results in data being communicated among all
neighboring processors during each redistribution. An ac-
cess type ofINDEPENDENTsignals the ability to minimize
this communication by assigning a heavily loaded proces-
sor’s tasks directly to the lightly loaded processors. Since
data sharing among loops is iteration-independent, there is
no resulting increase in steady-state communication.

For source-to-source translation from a sequential pro-
gram to a parallel program that is compatible with our run-
time system, we use the Stanford University Intermediate
Format (SUIF) [1] compiler. The SUIF system is organized
as a set of compiler passes built on top of a kernel that de-

1In the presence of conditional statements, changing load within a par-
allel loop cannot always be detected at compile-time. Application-specific
knowledge could also be easily encoded by the user.

3



fines the intermediate format. Each of these passes is im-
plemented as a separate program that reads its input from a
file and writes its output to another file. SUIF files always
use the same format.

We added two passes to the SUIF system for our pur-
poses. The first pass works before the parallel code gen-
eration and inserts code that provides the runtime system
with information about each parallel region’s access pat-
terns. The second pass works on parallelized programs and
modifies the loop structure by inserting the required run-
time system hooks and modifying the loop structure to use
runtime-system provided execution parameters.

The standard SUIF distribution can generate a single-
program, multiple-data (SPMD) program from sequential
code for many simple loops but lacks the more complex
transformations essential to extract parallelism from less
easily analyzable loops. While our SUIF passes provide
an easy translation mechanism for many programs, it is
straightforward to insert the required data structures by
hand into an already parallelized program.

2.3. Runtime System

The runtime system is the main component that uses the
information provided by the static analysis to partition, dis-
tribute and redistribute the work among all cooperating pro-
cesses. Also, it is the component that using the provided in-
terface, cooperates with the scheduler and other processes.
Load distribution is based on the concept ofRelative-
Power, and guided by the statically provided information
and runtime feedback.

2.3.1. Relative Processing Power

As described in [9, 18], in order to partition the load accord-
ing to available resources we try to estimate available com-
putational resources and communication overhead. In gen-
eral it is reasonable to assume a node with more resources
is capable of doing more work in a given amount of time.
We base our load distribution decisions on our estimation
of the computing capability of a node, which we callRel-
ativePower. Intuitively, RelativePower is propor-
tional tow=t, wherew is theamount of work done
andt is the elapsed time. For applications that em-
ploy barriers, all processes work in the same parallel region,
on their appointed work, until they are done and reach the
next barrier. In this scheme, it is trivial to know the amount
of work done, since all assigned iterations of all parallel re-
gions have to be executed before a barrier is reached and
RelativePower is recomputed. The other component,
time, can also be measured easily as well, hence, making
the estimation ofRelativePower fairly straightforward.

However, we do not rely on existence of barriers in ap-
plications in our new runtime system. When no barriers

are employed, it is likely that multiple parallel regions are
spanned and different number of iterations are executed in
each of these parallel regions by each of the processes. In
most cases, not all processes have finished their assigned
work. This makes estimation of the amount of completed
work, harder to obtain. For the purposes of computing the
RelativePower, we use the minimum execution time
for an iteration as the basis for determining the amount of
work for that iteration. Prior to computation of theRela-
tivePower, all processes exchange their number of exe-
cuted iterations, and the time it took to execute these itera-
tions, for each of the parallel regions. Figure 3 shows the
pseudocode of how to computeRelativePower.

static float RelativePower[NumProcs]
//Initialized to 1/NumProcs

float IterTime[NumParRegs][NumProcs]
//Execution time of parallel region

float NumIters[NumParRegs][NumProcs]
//Executed Tasks in Each Region

float WorkPerProc[NumProcs]
float PerProcExecTime[NumProcs]
float Power,SumOfPowers=0

//Calculate the amount of work done by each
//process and the time it took to do so.
for all Parallel Regions i

float AvgTime,WorkDone
float MinIterTime = LARGENUMBER

for all Processes j
PerProcExecTime[j] += IterTime[i][j]
AvgTime = IterTime[i][j]/NumIters[i][j]
if (AvgTime < MinIterTime)

MinIterTime = AvgTime
for all Processes j
WorkDone = NumIters[i][j] * MinIterTime
WorkPerProc[j] += WorkDone

//Calculate RelativePower
for all Processes i

Power = WorkPerProc[i]/PerProcExecTime[i]
RelativePower[i] = Power
SumOfPowers += Power

//Normalize The RelativePower
for all Processes i

RelativePowers[i] /= SumOfPowers

Figure 3. Computing “RelativePower”.

2.3.2. Task Distribution Strategy

Upon entrance for the first time to a parallel region, the run-
time system partitions the parallel region into tasks based
on the access pattern, the load per parallel loop, and the size
of the coherence unit. The size of the data elements along
with the size of the coherence unit are used to determine the
partitioning in an attempt to reduce false sharing. Work is
partitioned so that accesses by each individual process are
in multiples of the coherence unit in order to avoid false

4



sharing across processors. Consecutive loop iterations are
blocked together until their size is a multiple of the coher-
ence unit. This defines the minimum task size. Once the
minimum task size has been determined, a fixed number of
tasks per parallel region are created and assigned to pro-
cessors using either a block or cyclic distribution based on
whether the load is defined to beFIXED or VARIABLE, re-
spectively, or whether the access pattern isSTENCIL. The
size of each task is an integral multiple of the minimum task
size and enough tasks are created to allow later redistribu-
tion when relative processing powers change.

At any time the runtime system has a notion of perceived
RelativePower. Program execution starts by assuming
all processors have equal amount of work to do and they are
all equally powerful, i.e. theirRelativePower is equal.
TheRelativePower is updated regularly as explained in
Section 2.3.1. Load reassignment occurs when a significant
change in theRelativePower is detected2.

While tasks are being created, if the access pattern is
STENCIL, then a single task per process, sized propor-
tional to the perceivedRelativePower of that process
is created. If the access pattern is notSTENCIL, how-
ever, many equal-sized fixed tasks are created and they are
distributed among processes with numbers proportional to
their perceivedRelativePower. For STENCILregions,
load is balanced by changing the size of the task via shuf-
fling its boundaries. Otherwise, load is balanced by moving
tasks from processors with decreasedRelativePower to
those with increasedRelativePower. Even though bal-
ancing itself might involve more communication when the
access pattern isSTENCIL, the steady-state communication
is reduced by making sure all assignments have the least
number of boundaries possible.

Task assignment and execution take the topology of the
processors into account. For a cluster of SMPs, work is
partitioned in a hierarchical manner in order to account
for the fact that intra-node communication is cheaper than
inter-node communication. Task redistribution is performed
across SMPs. Task stealing is allowed within each SMP.
Locality has been shown to be more important than load
balancing [14]. Given the continuously increasing speed
gap between processors and memory and the use of deeper
memory hierarchies, locality management is an even big-
ger issue in today’s processors. In order to preserve locality
within an SMP, each processor maintains task affinity — it
must finish its own task assignment prior to stealing a task
from another processor (similar to [11]). This is done by
using a per-processor task queue, and having a processor
retrieve tasks from the head of its queue but steal from the
tail of another processor’s queue. Once a task is stolen from
another processor’s task queue, it is moved and owned by

2At least one of theRelativePowersmust change enough to make
sure some load movement would actually happen

the stealing processor.
When any of the processes is not able to proceed due

to not finding anything in its task queue, the first attempt
is to steal tasks from processes running on the same SMP
node. If asuitabletask is not found there either, a balanc-
ing request message is issued. Upon this request, all pro-
cesses exchange their execution statistics and compute the
newRelativePower. Exchanged statistics also include
the number of times a process iterated over a parallel region.
For the purposes of reducing the number of messages and
message assembly time, statistics are written directly into
network mapped memory.

To accommodate applications without barriers, it is re-
quired to decide when a new load reassignment should take
effect. Since some processes might be lagging behind, ev-
ery reassignment of tasks does not take effect immediately
for all processes. A process may move a task from another
process only when the source and destination processes are
at the same phase with respect to the region being pro-
cessed. If the old owner is lagging behind (the most likely
scenario) and a task is moved, a naive approach might skip
some computation stages (parallel regions or iterations),re-
sulting in incorrect computation. It is also possible for the
old owner to be ahead, for example, when the parallel re-
gion’s access type isSTENCIL, in which case work might
erroneously be replicated. In order to simplify the imple-
mentation and reduce the need for synchronization, for each
of the parallel regions we determine the current computa-
tion state of the fastest process in terms of the current paral-
lel region and the number of times each parallel region has
been executed. Old owners of tasks that are moved use this
information to stop processing them when this computation
state is reached. The new owners take over at that time.

Guaranteeing the coherence of a task to be moved re-
quires the old and new owner of a task to synchronize after
the old owner operates on the data for the last time, if they
have not done so already. To guarantee coherence, consis-
tency operations and task modifications are timestamped.
The movement of a task is legal if the timestamp of the con-
sistency operation is larger than the modification timestamp
of the task being moved. Otherwise, the old owner and the
new owner of the task need to exchange updates to bring the
copy of the new owner up-to-date.

2.4. Cooperative Scheduling Support

Multiprogramming adds an additional dimension to the
problem of imbalanced load. Communication among co-
operating processes can result in significant delay if one
of the cooperating processes is de-scheduled and unable
to respond. Coscheduling [16, 20, 3, 23, 15] approaches
have been used in the past, where cooperating processes are
scheduled to execute simultaneously on all processors. This

5



approach is good when the load on all processors is equal.
However, in the presence of autonomous nodes with un-
equal levels of multiprogramming at each processor, a more
distributed and cooperative approach is required in order to
improve efficiency while retaining autonomy.

Our goal is to reduce the wait time experienced by
parallel applications in the presence of multiprogramming
through the use of a cooperative scheduler. We modified a
priority-based scheduler to achieve this goal while retain-
ing the fairness and autonomy of the individual schedulers
on each node. Our implementation is on Compaq’s Tru64
(formerly known as DEC Unix) version 4.0F.

2.4.1. Scheduler Modifications

In order to improve response times, the scheduler must be
willing to schedule an application’s process on demand.
However, this cannot be accomplished in traditional sched-
ulers without compromising fairness. To provide the sched-
uler with the flexibility to handle these conflicting require-
ments, each process, upon declaration of its interest in co-
operating with remote processes, is charged a scheduling
quantum of time. This time is held in a “piggy-bank” for
future use by the process. The “piggy-bank” is replenished
any time the process voluntarily yields the processor prior
to the expiration of its scheduling quantum (by adding an
amount less than or equal to the remainder of the quantum,
and charging that amount to the process), but is guaranteed
not to grow larger than one quantum. This prevents a pro-
cess from taking over the processor for long periods of time
by yielding often. When a scheduling request is received,
the scheduler uses the time in the piggy-bank, if any, to
schedule the intended process.

2.4.2. OS-Runtime Interface

For a process of a parallel application to be scheduled on
demand, the desire to schedule it needs to be communi-
cated to its scheduler. For many networks, receiving a mes-
sage involves executing some code on the recipient end, in
the driver. This code could be modified to implicitly com-
municate with the scheduler, to express desire for immedi-
ate scheduling. Our network, Compaq’s Memory Channel,
however, is a low latency remote write network, and it does
not execute any code on the recipient host CPU, upon re-
ceipt of a message. Hence the desire for scheduling a peer
need to be communicated explicitly. For that purpose we
send a signal. However, sending a signal after each mes-
sage or at every synchronization point is expensive, and in
some cases, where the peer is already scheduled or the mes-
sage is asynchronous, it is not needed. For the purposes
of eliminating excessive signals, we employ other features
provided by our network to communicate among cooperat-
ing processes.

We provide a system call that allows each process to reg-
ister a signal and a memory location. The registered signal
is used by a cooperating process as a wakeup signal. Upon
receiving that signal, rather than delivering it to the appli-
cation, if the scheduler can schedule the process using the
equity in the piggy-bank, while continuing to guarantee fair-
ness, it does so.

The registered memory location has two boolean words.
The first (“scheduling status”) is written by the scheduler
and gives hint to other processes regarding the scheduling
status of the registering process. It is set by the scheduler
when the process is de-scheduled. The second word (“sig-
naled”) is set by signal-sending processes to inform oth-
ers that a scheduling request has been sent to a particular
process, preventing them from sending yet another signal.
When the process is scheduled, both words of the registered
memory are reset, indicating that the process is scheduled
and no scheduling request is pending. These memory loca-
tions are placed in network mapped memory, and modifica-
tions to these locations are broadcast to all other processes.
The additional communication overhead resulting from this
sharing is minimal in comparison to the rest of the proto-
col and data communication overhead for the application.
This is especially true for the medium-scale clusters used
for such parallel applications.

2.4.3. Runtime Cooperation

In order to give the scheduler the flexibility to respond to on-
demand scheduling requests, an application must voluntar-
ily yield the processor in order to build up its piggy-bank. A
yield system call3 is used to free up resources preemptively
in order to build up this future “equity”. The yield call is
made by a process whenever the process would otherwise
spin waiting for an external event such as communication
or synchronization with a remote process. The yield call
takes one argument to indicate the lowest priority that the
caller is willing to yield to. The argument specifies a prior-
ity relative to the priority of the caller. If no other process
within the given priority is available, the call returns imme-
diately with no effect. Otherwise, a runnable process with
the highest priority is picked and scheduled. A spin-block
strategy [15] is used to avoid unnecessary yields. The spin
time is set to be at least twice the round-trip communication
time and is doubled each time the yield is unsuccessful.

A complication in implementing this system call is ac-
counting for resource usage. In many operating systems,
processes are charged at the granularity of a clock-tick,
which is about 1 msec on our platform. If a process yields
frequently enough, it might either not be charged at all for
its use, or it could be over-charged depending on the rela-

3While some operating systems already provide this ability,we had to
add this system call to Tru64.

6



tive timing of a clock-tick and the yield call. In order to
fix this, we used hardware cycle counters as the basis for
accounting.

3. Evaluation

3.1. Experimental Platform

Our experimental environment is a cluster of Com-
paq AlphaServer 4100 workstations. Each workstation is
equipped with four 21164A processors operating at 600
MHz, 2 GB of shared memory, and a Memory Channel net-
work interface. The Memory Channel [5] is a PCI-based
crossbar network, with a peak point-to-point bandwidth of
approximately 83 MBytes/sec. The network is capable of
remotely writing to memory mapped areas, but does not
have remote read capability. The one-way latency for a 64-
bit remote-write operation is 3.3�secs.

All the programs, the runtime library, and Cashmere
were compiled withgcc version 2.8.1 using the-O2 opti-
mization flag. On our platform, a scheduling quantum is
approximately 10ms and a process runs until the quantum
expires, unless there is a higher priority process. A null sys-
tem call takes approximately 0.5�s and a context switch
takes approximately 6�s.

3.2. Experimental Results

In order to evaluate our system, we used a set of eight ap-
plications as our benchmarks. These benchmarks exhibit a
range of sharing patterns and types of parallel regions. Fig-
ure 4 shows the execution results of our applications. We
ran our applications using 32 processors, under 4 different
load schemes as shown in Table 1. For the purposes of load-
ing a processor, we use a program that executes in a tight
loop incrementing a variable (a pure computational load).
For each load scheme, we present execution times with no
support (None), with support for task stealing within a node
enabled (Steal), and with task stealing within a node as
well as load balancing across nodes enabled (Balance). The
case labeled “No Load” is the base case. It is intended to
show baseline execution time and the runtime system over-
head, and in some cases how the runtime system might help
offsetting the anomalies due to the application algorithm,
even in the absence of any other load. The “Load-4” case
is intended to show the adaptation of the system by shift-
ing the parallel program tasks from an overloaded node and
distributing these tasks among other nodes. The “Load-8”
case is intended to show the effectiveness of intra node load
balancing, by task stealing. Finally, the “Load-16” case
shows the effectiveness and scalability of load balancing
schemes as well as how scalable the cooperative schedul-
ing is. Note that cooperative scheduling is enabled in all the

experiments. Hence these performance improvements are
on top of what cooperative scheduling could achieve. Sec-
tion 3.2.1 evaluates the effect of cooperative scheduling on
performance. Following is a description of our benchmarks
and discussion of our results.

LabelnNodes 0 1 2 3 4 5 6 7
No-Load 0 0 0 0 0 0 0 0
Load-4 0 4 0 0 0 0 0 0
Load-8 1 1 1 1 1 1 1 1
Load-16 0 0 0 0 4 4 4 4

Table 1. Number of processors running a se-
quential program along the parallel program
for each of the configurations.

Transitive Closure: A graph algorithm that checks
reachability from one vertex to others. The main intuition in
the implementation is that if vertex A is reachable by vertex
B, then every vertex reachable by vertex A is also reach-
able by vertex B. We used a random input with any pair
of vertices having 60% likelihood of having an edge. The
amount of computation depends on whether the pair of ver-
tices picked up could reach each other. Hence, even though
the loop structure is regular, the computation within the loop
is conditional, creating an application induced (short-term)
load imbalance.

Gaussian Elimination: A parallel gaussian elimination
algorithm. The solution is computed by using partial pivot-
ing and back substitution, and the row elimination is paral-
lelized. The dataset size in our experiments is a matrix of
8Kx8K floating point numbers. Flags are used for synchro-
nization purposes. A processor sets a flag upon computing
the pivot, which in turn signals availability of the pivot to
other processors. This implementation has more relaxed
synchronization than a barrier implementation, because it
allows two processes to be working with different pivots at
any time of the computation. Furthermore, flags are known
to be less affected by multiprogramming than barriers [13].

Jacobi: An iterative method for solving partial differen-
tial equations with nearest neighbor averaging as the main
computation. We used a matrix of 8Kx8K floating point
numbers. At each iteration, neighboring processors need to
exchange their boundary rows of data. Two arrays are em-
ployed, where one is used as a scratch pad. Two barriers
are required at each iteration, one after doing the averaging
and the other after copying the data from the scratch pad to
the main array. Since it exhibits nearest neighbor sharing,
a single task is created per process to reduce steady state
communication. Load balancing is achieved by resizing as-
signed task rather than changing the number of fixed tasks
assigned to each processor.

7



Transitive Closure (4Kx4K)

0
20
40
60
80

100
120
140
160
180
200

No-Load Load-4 Load-8 Load-16

None
Steal
Balance

Gaussian Elimination (8Kx8K)

0

20

40

60

80

100

120

No-Load Load-4 Load-8 Load-16

None
Steal
Balance

Jacobi (8Kx8K)

0

20

40

60

80

100

120

140

No-Load Load-4 Load-8 Load-16

None
Steal
Balance

Matrix Multiply (2Kx2K)

0

50

100

150

200

250

300

350

No-Load Load-4 Load-8 Load-16

None
Steal
Balance

MGS (4Kx4K)

0
50

100
150
200
250
300
350
400
450

No-Load Load-4 Load-8 Load-16

None
Steal
Balance

Shallow Water (2Kx2K)

0
20
40
60
80

100
120
140
160
180
200

No-Load Load-4 Load-8 Load-16

None
Steal
Balance

SOR (8Kx8K)

0

20

40

60

80

100

120

140

160

No-Load Load-4 Load-8 Load-16

None
Steal
Balance

Water-NSquared (32K Molecules, 3 Iters)

0
50

100
150
200
250
300
350
400
450

No-Load Load-4 Load-8 Load-16

None
Steal
Balance

Figure 4. Effectiveness of load balancing. The Y-axis is the execution times in seconds. X-axis labels
indicate the load as explained in Table 1. “None” indicates n o balancing was done, “Steal” indicates
only intra-node task stealing was allowed, and finally “Bala nce” indicates both intra-node stealing
and inter-node balancing were allowed. In all cases schedul ing support was on.

Matrix Multiply: A simple matrix multiplication algo-
rithm parallelized by forming tasks with groups of rows and
distributing these tasks among processes. The dataset con-
sists of three 2048x2048 matrices of integers — one each
for the multiplier, multiplicand, and result. This application
has very long periods of computation and very little com-
munication or synchronization. As a result, it is oblivious
to lack of coordination.

Modified Gramm Schmidt (MGS): This application
computes an orthonormal basis for a set of N-dimensional
vectors. At each iterationi, the algorithm first sequentially
normalizes theith vector, then makes all vectorsj > i or-
thogonal to vectori, in parallel. Since the application leaves
out a row at each iteration, the created distribution is cyclic.

Shallow: The shallow water benchmark from the Na-
tional Center for Atmospheric Research. This code is used
in weather prediction and solves differential equations ona
two dimensional grid. During the execution, 11 parallel re-
gions are spanned, with some of the regions taking only a
few milliseconds, involving a single row of the matrix.

SOR: Successive-over-relaxation is a nearest neighbor
averaging algorithm from the TreadMarks [2] distribution,
that is also used to solve partial differential equations. A
matrix of 8Kx8K floating point numbers is used in our ex-
periments.

Water-NSquared: A molecular dynamics simulation
from the SPLASH-1 [19] benchmark suite. It is run for 3
steps. The bulk of the interprocessor communication oc-
curs during a phase that updates intermolecular forces us-
ing locks, resulting in a migratory sharing pattern. Between
each update phase, a barrier operation is performed. We use
an input set of 32K molecules. The application acquires a
lock to update each of the molecules. Our SDSM system
has a maximum number of 4K locks, causing 8 molecules
share one lock. Even though contention for a lock is likely,
the critical region is very short. Furthermore, if any process
holding a lock happened to be de-scheduled, the cooper-
ative scheduling mechanism would reschedule it, reducing
the wait time. Despite the high number of locks, the number
of barriers executed in the course of the run is small.

As Figure 4 demonstrates, having both intra-node task
stealing and inter-node load balancing enabled (i.e. “Bal-
ance”) reduces the execution time across all application
when there is any load, and the overhead in the absence
of load is minimal. The reduction in execution time is no
less than 26% and it is as high as 44%. Several results are
worth noting. First of all, for all the applications with the
exception of jacobi and SOR, intra-node task stealing alone
achieves slightly better runtime reduction for the “Load-8”
(no inter-node imbalance) case. This is mainly due to the

8



fact that task stealing alone has less overhead than inter-
node load balancing, and in some cases, load balancing
might cause one piece of work to move from one node to
another causing slightly more communication in the sys-
tem. Fortransitive closure, even in the absence of load the
execution time is reduced 3% when intra-node task steal-
ing is used. This is due to smoothing the short-term load
imbalance induced by application characteristics, by steal-
ing tasks from processes lagging behind.Gaussian elimi-
nation uses the most relaxed form of synchronization, and
the results show that our system handles this type of syn-
chronization correctly and effectively.Jacobi and SOR
are applications with loops marked as beingSTENCIL. This
causes creation of a single task per process, and makes task-
stealing impossible. However, load balancing is very ef-
fective for both applications.Matrix multiply has been
shown, in our earlier study [18], to exhibit a reduction of
33% at most when all features were turned on. In this set
of experiments the reduction is as high as 44%. This im-
provement is mainly the result of the ability to balance load
before reaching a barrier (there are roughly 20 secs between
barriers), and hence reducing the time the application runs
imbalanced.Shallowbenefits from the runtime system even
in the absence of any other load, by cutting the execution
time by about 1%, despite the overhead of the runtime sys-
tem. This improvement is the result of localizing compu-
tation for loops which involve very little work over a small
amount of data. This cuts the cost of communication by
having the nodes that currently cache the data perform all
the computation.

Slowdown Percentage Due to Lack of Coordination

0

5

10

15

20

25

30

35

40

45

Closure

Gauss

Jacobi

Matrix
MGS

Shallo
w

SOR
W

ater

With OS Cooperation Without OS Cooperation

Figure 5. Effectiveness of cooperation. The
left bar shows the percentage of overhead
due to multiprogramming when the runtime
system cooperates with the OS as described
in Section 2.4. The right bar is when there is
no coordination among parallel processes.

3.2.1. Effectiveness of Cooperative Scheduling

In order to determine how effective our cooperative
scheduling is, we conducted experiments with and without
cooperation. Results are shown in Figure 5. In all cases, ap-
plications were run with “Load-16” configuration as shown
in Table 1. None of the load balancing or locality man-
agement features were used. Ideally the execution time of
each application should be exactly twice as much as the case
when all the nodes are dedicated. Any amount above this
is a slowdown due to multiprogramming. Not cooperating
with the OS leaves the scheduling uncoordinated and hence
adds a slowdown of up to 39%. Just turning the coopera-
tion on, which in effect causes interacting processes to be
scheduled on demand, reduces this overhead by 50% on av-
erage, and in some cases as much as 72%. 72% reduction
is achieved in Gaussian Elimination, where it is important
to have the process producing the pivot be scheduled while
others are fetching the pivot from it. Even though we re-
duce the effects of lack of coordination in all cases, there
are several reasons for not achieving the ideal: 1) There is a
delay of several microseconds between sending a signal and
actually the signal reaching its destination. 2) Since events
are polled by the OS at each hardware clock tick, which is
about 833�s, a signal waits on average half of this time to be
processed, after being received by the target node. 3) The
context switch adds cost. 4) In some cases, it is possible
for a scheduling request to be ignored if the recipient pro-
cess has already used its fair share, and granting that request
would be unfair to other processes on the same node. This
is an indication that load balancing is needed, and in most
cases the runtime system, when enabled, would redistribute
the load moving some of the work to other processes.

4. Conclusions

We have presented a system that combines compile-
time analysis, runtime load balancing and locality consid-
erations, and cooperative scheduling support for improved
performance of parallel applications running on an au-
tonomous COW. The system works regardless of the syn-
chronization method used by the parallel application and at
the same time is fair to all processes. Reducing the execu-
tion time of the parallel program while being fair to other
applications improves the throughput of the COW. Our pre-
vious work addressed similar issues for applications that
used barrier synchronization. The extensions described in
this paper are important not only because of extending the
application base we address, but also due to providing op-
portunities for applications using barriers to be able to adapt
to available resources before a barrier is reached. Further-
more, since barriers are known to be more vulnerable to re-
source mismatches, it provides applications with the oppor-

9



tunity to be implemented using synchronization primitives
other than barriers.

For parallel applications that use our system, we have
shown that using all the features helps to reduce the ex-
ecution time by as much as 44% on top of the reduction
achieved by cooperative scheduling and on up to 32 proces-
sors. Features such as the ability to reshuffle work on the
fly without the need to be at a synchronization point ben-
efit applications with long periods of computation between
two synchronization points (e.g. matrix multiply). Our run-
time system’s awareness of the underlying topology of the
cluster reduces the amount of communicated data consider-
ably by moving the data within the SMP node first. Data
is moved across nodes only when the aggregate load of the
collection of processors within the node exceeds the pool of
resources within that node.

References

[1] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng.
The SUIF compiler for scalable parallel machines. InProceedings of
the 7th SIAM Conference on Parallel Processing for Scientific Com-
puting, February 1995.

[2] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,
and W. Zwaenepoel. TreadMarks: Shared memory computing on
networks of workstations.IEEE Computer, 29(2):18–28, February
1996.

[3] Andrea D. Dusseau, Remzi H. Arpaci, and David H. Culler. Effec-
tive distributed scheduling of parallel workloads. InProceedings of
SIGMETRICS 1996, pages 25–36, PA, USA, May 1996. ACM.

[4] D. L. Eager and J. Zahorjan. Adaptive guided self-scheduling. Tech-
nical Report 92-01-01, Department of Computer Science, University
of Washington, January 1992.

[5] Richard B. Gillett. Memory channel network for PCI.IEEE Micro,
16(1):12–18, Feb 1996.

[6] P. Havlak and K. Kennedy. An implementation of interprocedural
bounded regular section analysis.IEEE Transactions on Parallel and
Distributed Systems, 2(3):350–360, July 1991.

[7] D. G. Morris III and D. K. Lowenthal. Accurate data redistribution
cost estimation in software distributed shared memory systems. In
Proceedings of the 8th Symposium on the Principles and Practice of
Parallel Programming, June 2001.

[8] Sotiris Ioannidis and Sandhya Dwarkadas. Compiler and run-time
support for adaptive load balancing in software distributed shared
memory system. InLanguages, Compilers, and Run-Time Systems
for Scalable Computers, pages 107–122, May 1998.

[9] Sotiris Ioannidis, Umit Rencuzogullari, Robert Stets,and Sandhya
Dwarkadas. Craul: Compiler and run-time integration for adaptation
under load.Journal of Scientific Programming, August 1999.

[10] C. Kruskal and A. Weiss. Allocating independent subtasks on
parallel processors.IEEE Transactions on Software Engineering,
11(10):1001–1016, Oct 1985.

[11] Hui Li, Sudarsan Tandri, Michael Stumm, and Kenneth C. Sevcik.
Locality and loop scheduling on NUMA multiprocessors. In1993 In-
ternational Conference on Parallel Processing, pages 140–147, Au-
gust 1993.

[12] D. K. Lowenthal and G. R. Andrews. An adaptive approach to data
placement. In10th International Parallel Processing Symposium,
April 1996.

[13] E. Markatos, M. Crovella, P. Das, C. Dubnicki, and T. LeBlanc. The
effects of multiprogramming on barrier synchronization. In Proceed-
ings of the Third IEEE Symposium on Parallel and DistributedPro-
cessing, pages 662–669, December 1991.

[14] E. P. Markatos and T. J. LeBlanc. Load balancing versus locality
management in shared-memory multiprocessors.1992 International
Conference on Parallel Processing, pages 258–267, August 1992.

[15] Shailabh Nagar, Ajit Banerjee, Anand Sivasubramaniam, and
Chita R. Das. A closer look at coscheduling approaches for a net-
work of workstations. InProceedings of 11th ACM Symposium on
Parallel Algorithms and Architectures, pages 96–105, June 1999.

[16] John K. Ousterhout. Scheduling techniques for concurrent systems.
In Proceedings of the 3rd International Conference on Distributed
Computing Systems, pages 22–30. IEEE, October 1982.

[17] C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: a
practical scheduling scheme for parallel supercomputers.In IEEE
Transactions on Computers, December 1987.

[18] U. Rencuzogullari and S. Dwarkadas. Dynamic adaptation to avail-
able resources for parallel computing in an autonomous network of
workstations. InProceedings of the 8th Symposium on the Principles
and Practice of Parallel Programming. ACM, June 2001.

[19] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanfordparal-
lel applications for shared-memory.Computer Architecture News,
20(1):2–12, March 1992.

[20] Patrick Gregory Sobalvarro.Demand-based Coscheduling of Paral-
lel Jobs on Multiprogrammed Machines. PhD thesis, M.I.T., January
1997.

[21] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis,
S. Parthasarathy, and M.L. Scott. Cashmere-2L: Software coherent
shared memory on a clustered remote-write network. InProceedings
of the 16th ACM Symposium on Operating Systems Principles, pages
170–183, October 1997.

[22] P. Tang and P. C. Yew. Processor self-scheduling for multiple nested
parallel loops. In1986 International Conference on Parallel Pro-
cessing, August 1986.

[23] Andrew Tucker and Anoop Gupta. Process control and scheduling is-
sues for multiprogrammed shared-memory multiprocessors.In Pro-
ceedings of the 12th ACM SIGOPS Symposium on Operating Systems
Principles, pages 159–166. ACM, December 1989.

10


