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Abstract. As an alternative to message passing, Rochester’s Inte\&es-
tem allows the programmer to map shared segments into pnsggpread across
heterogeneous, distributed machines. InterWeave rapieaenerger and exten-
sion of our previous Cashmere and InterAct projects, coimgihardware co-
herence within small multiprocessors, Cashmere-stylg talease consistency
within tightly coupled clusters, and InterAct-style vensibased consistency for
distributed shared segments.

In InterWeave, each shared segment evolves through a sérgemsistent ver-
sions. When beginning a read-only critical section on armgigegment, Inter-
Weave uses a programmer-specified predicate to determigth@rtthe currently
cached version, if any, is “recent enough” to use. Intersag consistency is
maintained by means of hashed vector timestamps. Autorati conversions
allow each program to employ its own natural data formate loytler, and align-
ment, with full support for intra- and inter-segment poisteTimestamping is
used to determine and communicate only those pieces of aestdhat are dif-
ferent from the cached copy.

A preliminary implementation of InterWeave is currentlynning on our Al-
phaServer cluster. Driving applications include data ngnintelligent distributed
environments, and scientific visualization.

1 Introduction

Advances in processing speed and network bandwidth arérayeeew interest in such
ambitious distributed applications as interactive dataingj, remote scientific visual-
ization, computer-supported collaborative work, andliigient environments. Most of
these applications rely, at least in the abstract, on sorti@maf distributed shared state.
When one of their processes must access data that are tytoeated elsewhere, one
has the option of moving the process to the data or movingateetd the process. Either
option may make sense from a performance point of view, ddipgron the amounts of
data and computation involved, the feasibility of migratiand the frequency of data
updates.

The first option—move the process to the data—correspondsnote procedure
call or remote method invocation, and is supported by widelgilable production-
quality systems. The second option—move the data to theepseeis not so well
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understood. It still tends to be achieved through speciapqse, application-specific
message-passing protocols. The creation of these prstigal time-consuming, te-
dious, and error-prone activity. It is complicated by thedfor performance reasons,
to cache copies of data at multiple locations, and to keegetisopies consistent in the
face of distributed updates.

At Rochester we have been discussing these issues wittagalls in data mining,
scientific visualization, and distributed intelligent @mnments, all of whom have very
large distributed data sets. To support their applicatioresare developing a system,
known as InterWeave, that allows the programmer to map dis@gments into program
components regardless of location or machine type. Intavd/eepresents a merger and
extension of our previous Cashmere [39] and InterAct [3@]guts. Once shared seg-
ments have been mapped, InterWeave can support hardwaneock and consistency
within multiprocessorslével-1 sharing), Cashmere-style software distributed shared
memory within tightly coupled clusterde{el-2 sharing), and InterAct-style version-
based consistency across the Intertestd]l-3sharing) for these segments (see Figure 1).

. SMP Node (HSM)

» ‘Tightly coupled cluster
T (SDSM)

- e InterWeave Segment

(3rd level)

= ==

Remote Satellites
Fig. 1. InterWeave’s target environment.

At the third level, each segmentin InterWeave evolves thhauseries of consistent
versions. When beginning a read-only critical section otivargsegment, InterWeave
uses a programmer-specified predicate to determine whigstheurrently cached ver-
sion, if any, is “recent enough” to use. Several coherencdetsanotions of “recent
enough”) are built into the InterWeave system; others candfaned by application
programmers. When the application desires causality arsegigents, to avoid causal-
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ity loops, we invalidate mutually-inconsistent versiofiether segments, using a novel
hashing mechanism that captures the history of each seamattounded amount of
space.

Like CORBA [29] and many older RPC systems, InterWeave eygaddype system
based on a machine- and language-independent interfacepdies language, in our
case Sun XDR [40]. We do not require that programmers adbeaa tbject-oriented
programming style. We simply ensure that the version of anggq cached by a given
program component is appropriate to the component’s laggyaad machine archi-
tecture. When transmitting data between machines, we cotovand from a standard
wire format. We also swizzle pointers [45], so that refeenio data currently cached
on the local machine are represented as machine addresseseWallow programs
to organize dynamically-allocated data within a segmeudifierent ways on different
machines, for the sake of spatial locality.

We describe the design of InterWeave in more detail in Se@jaovering synchro-
nization, coherence, consistency, heterogeneity, aredjiation with existing shared
memory. Our initial implementation and preliminary perfance results are described
in Section 3. We compare our design to related work in Seetiand conclude with a
discussion of status and plans in Section 5.

2 InterWeave Design

The unit of sharing in InterWeave is a self-descriptive datgment within which pro-
grams allocate strongly typed blocks of memory. Every segras an Internet URL.
The blocks within a segment are numbered and optionally daByeconcatenating the
segment URL with a block humber/name and offset (delimiteddund signs), we ob-
tain a machine-independentpointdnt‘t p: / / f 00. or g/ pat h#bl ock#of f set ".
To accommodate heterogeneous data formats, offsets armuredan primitive data
units—characters, integers, floats, etc.—rather than ieshyfo create and initialize a
segmentin C, we execute the following calls:

IWhandle t h = IWcreate_segnent (url);

IWW _acquire (h);

my_type* p = (my_type *) IWmalloc (h, my_type_desc);
P o= oo

IWW release (h);

Every segmentis managed by an InterWeave server at the tBssdddicated in the
segment’s URL. Assuming appropriate access rights| Ner eat e_segnent call
communicates with the server to create an uninitializeansed, and allocates space
to hold (the initial portion of) a local cached copy of thags®nt in the caller's ad-
dress space. The handle returned W/cr eat e_segnent is an opaque, machine-
dependent type that may be passed Yénal | oc, along with a type descriptor gen-
erated by our XDR compiler. Copies of a segment cached byemgivocess need not
necessarily be contiguous in the application’s virtualradd space, so long as individ-
ually el | oced blocks are contiguous; the InterWeave library can expasggment
as needed using unrelated address ranges.
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Once a segment has been initialized, a process can createhinexéndependent
pointer to an arbitrary location within one of its allocatddcks:

IWnmip_t m=I1Wptr_to nmp (p);

This machine-independent pointer can then be passed theamqbcess through a mes-
sage, a file, or even console 1/0. Given appropriate accgistsrithe other process can
convert back to a machine-specific pointer:

my_type *p = (my_type *) IWmp_to_ptr (m;

Thel Wni p_t o_pt r call reserves space for the specified segment if it is noadjre
locally cached (communicating with the server if necestapptain layout information
for the specified block), and returns a local machine addfetsal data for the segment
will not be copied into the local machine until the segmenrbeked. The mechanism
used to specify and verify access rights is still under dgwelent.

Any given segmentl may contain pointers to data in some other segnigrthe
pointer-swizzling and data-conversion mechanisms dasdiin Section 2.3 below en-
sure that such pointers will be valid local machine addiesmed may freely be deref-
erenced. It remains the programmer’s responsibility, Mango ensure that segments
are accessed only under the protection of reader-writdssIOo assist in this task, In-
terWeave allows the programmer to identify the segment iickvthe datum referenced
by a pointer resides:

IWhandle t h = IWget_handle (p);

2.1 Coherence

Given the comparatively high and variable latencies ofllacaa networks, traditional
hardware-inspired consistency models are unlikely to &doud performance in a dis-
tributed environment. Even the most relaxed of these modsisase consistency [16],
guarantees a coherent viewaf shared data amorgl processes at synchronization
points, resulting in significant amounts of communication.

Fortunately, processes in distributed applications caenofccept a significantly
more relaxed—and hence less costly—notion of consistddepending on the ap-
plication, it may suffice to update a cached copy of a segmerdgalar (temporal)
intervals, or whenever the contents have changed “enouglake a difference”, rather
than after every change.

The server for a given segment in InterWeave is respongiiltheé segment’s co-
herence. This coherence is based on the notion that segmewmsover time through a
series of internally consistent states, under the pratecf reader-writer locks.

When writing a segment, a process must have exclusive atz#ss most recent
version (we do not support branching histories). When readisegment, however, the
most recent version may not be required. InterWeave irdéré different definitions of
“recent enough” from its predecessor system, InterAcs. #$o designed in such a way
that additional definitions (coherence models) can be addsilly. Among the current
models,Full coherencealways obtains the most recent version of the segnidul;
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coherencalways accepts the currently cached version, if any (thegg®must employ
additional, explicit library calls to obtain an updat®glta coherenc§38] guarantees
that the segment is no more thamersions out-of-dat&demporal coherenoguarantees
that it is no more tham: time units out of date; anBiff-based coherencguarantees
that no more than% of the segment is out of date. In all casegan be specified by
the process.

When a process first locks a shared segment, the InterWdameyliobtains a copy
from the segment’s server. At each subsequent read-loakisatgn, the InterWeave
library checks to see whether the local copy of the segmén¢égnt enough”. If not,
it obtains a version update from the server. Twin and diffrafiens [8], extended to
accommodate heterogeneous data formats (Section 2@}, laterWeave to perform
an update in time proportional to the fraction of the data ltes changed.

The relaxed semantics of read locks imply that a process rold dnwrite lock
(with exclusive access to the current version of the segneeeh when other processes
are reading older versions. To support concurrent accessalolers that need to exclude
any writer, InterWeave also supports a strict read lock.

Unless otherwise specified, newly-created segments entpltycoherence. The
creator of a segment can specify an alternative defaultsfred. An individual pro-
cess may then override this default for its own lock operai®ifferent processes may
therefore use different coherence models for the same sdgiiteese are entirely com-
patible: the server for a segment always has the most reeesion; the model used
by a given process simply determines when it decides whéthewn cached copy is
recent enough.

The server for a segment need only maintain a copy of the setgmeost recent
version. Older versions are not required, because the AdRlifegs that the current ver-
sion of a segment is always acceptable, and since procesdeswhole segments, they
never need an “extra piece” of an old version. To minimizecth&t of segment updates,
the server maintains a timestamp on each block of each segstethat it can avoid
transmitting copies of blocks that haven’t changed.

As noted in Section 1, a Cashmere-style “level-2” sharirgjesy plays the role of
a single node at level 3. A process in a level-2 system thatinba level-3 lock does
so on behalf of its entire level-2 system, and may share adogbe segment with its
level-2 peers. The runtime system guarantees that upda&t@sapagated consistently,
and that protocol overhead required to maintain coherennetireplicated at levels 2
and 3. Further details appear in Section 3.

2.2 Consistency

While InterWeave’s predecessor, InterAct, has provenuigef many applications (in
particular, we have used it successfully for interactiveaganing [30]), it does not
respect causality: in the face of multi-version relaxedsistency, the versions of seg-
ments currently visible to a process may not be consistetht wihat Lamport called
the “happens-before” relationship [26]. Specifically,dgtrefer to version of segment
A. If B; was created using information found ity, then previous versions of are
causally incompatible witl3;; a process that wants to uBg (and that wants to respect
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causality) should invalidate any cached segment vershatspredate the versions on
which B; depends.

To support this invalidation process, we would ideally liketag each segment
version with the names of all segment versions on which ieddp. Then any process
that acquired a lock on a segment would check to see whetldepi#nds on newer
versions of any segments currently locally cached. If se,ptocess would invalidate
those segments.

The problem with this scheme is that the number of segmeriteisystem—and
hence the size of tags—is unbounded. One simple solutianhagh the information.
We let every segment versidh carry ann-slot vector timestamp, and choose a global
hash functiom: that maps segment identifiers into the raf@e: — 1]. Slotj in the
vector indicates the maximum, over all segmeRtahose identifiers hash tf of the
most recent version d? on whichS; depends. When acquiring a lock 8, a process
checks each of its cached segment versigpdo see whethek is less than the value
in sloth(Q) of S;’s vector timestamp. If so, the process invalidaigs

To support the creation of segment timestamps, each procasdains a local
timestamp that indicates (in hashed form) the most recgmeet versions it has read.
When releasing a write lock (thereby creating a new segmensian), the process in-
crements the version number of the segment itself, updatiescal timestamp to reflect
that number, and attaches this new timestamp to the newbted segment version.
We have developed refinements to this scheme to accommadladeer of the values
within timestamps, and to reduce the chance that hashioollisvill cause repeated
extraneous invalidations of a segment that seldom changes.

To support operations on groups of segments, we allow theksl to be acquired
and released together. Write locks released together nadtereew segment version
appear to be in the logical past of the other, ensuring thabeegss that acquires the
locks together will never obtain the new version of one withihe other. To enhance
the performance of the most relaxed applications, we alloimdividual process to “opt
out” of causality on a segment-by-segment basis. For shéguels 1 and 2, consistency
is guaranteed for data-race-free [1] programs.

2.3 Heterogeneity

The Internetis highly heterogeneous. Even our local-agéaark includes Suns, Linux
and Windows 2000 PCs, SGI machines, Macintoshes, Alphdsa aariety of special-
purpose peripherals. To accommodate such a variety oftacthies, remote procedure
call systems usually incorporate a language- and machiiependent notation to de-
scribe the types of parameters, together with a stub contpiée automatically trans-
lates to and from a universal “wire format”. Any system fostdbuted shared state
must provide a similar level of support for heterogeneity.

Segments in InterWeave are currently similar to those iarkutt, and are derived
from a C++ base class with special constructor, destruatat,synchronization meth-
ods. InterWeave uses the C++ reflection mechanism to ohtpaihformation and to
identify intra- and inter-segment pointers, so that datalmatranslated appropriately
when sent from one machine to another. Other systems sucitag4pprovide similar
representations for address-independent segments.
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We are in the process of eliminating our dependence on C+-singBun’s XDR
language to define the types of data within segments. Pawigerling [45] will be used
to accommodate reference types. Briefly, swizzling uses tgformation to find all
(machine-independent) pointers within a newly-acquimghsent, and converts them
to pointers that work on the local machine. Pointers to segsihat are not (yet) lo-
cally cached point into reserved but unmapped pages wheaendalie once properly
locked. The set of segments currently cached on a given madthis displays an “ex-
panding frontier” reminiscent of lazy dynamic linking. Asted at the beginning of
this section, each segment is structured as a heap in whicksimay be allocated dy-
namically. Further detail can be found in our paper at WSDSM®[33]. In keeping
with our work on InterAct, we will allow compilers and smagications to control
the relative placement of blocks within the heap, to maxégache performance under
different traversal orders. The code that transfers setpfierm one machine to another
will automatically re-order items in the heap accordingdodl preference, as part of
the swizzling process.

3 Implementation and Performance

In this section, we describe the current version of our irm@etation prototype, and
present preliminary performance data for remote visutdinaof an N-body simulation.

3.1 Implementation

Our current implementation (see Figure 2) employs a semgargss for each segment.
The server keeps metadata for each active client of the segee well as a master
copy of the segment’s data. Communication with each clentanaged by a separate
thread.

Each segment client can be either a single process or atighipled cluster. When
a client obtains a write lock, it uses virtual memory mechars to identify pages of
the segment’s local copy that are about to be modified. Fdr sach page it creates a
pristine copy (called &win) before allowing modification. At the time of the write lock
release, the runtime library uses the twins and other loedhrdata (specifically, type
descriptors) to construct machine-independent dithat describes changes in terms
of field offsets within blocks. Blocks above a certain minimsize are logically sub-
divided into “chunks” so that a small change to a very largecbhlneed not create a
large diff. The machine-independent diff is sent back tostbgment server to update its
master copy.

When a tightly coupled cluster, such as a Cashmere-2L systsgs an InterWeave
segment, the cluster appears as a single client to the ségemer. The InterWeave
system uses cluster-wide shared memory for the segmeritdopg. Our goal is to
minimize any additional overhead due to incorporating thedtlevel into the system.
In the current implementation, we designate a node insideclinster as the cluster’s
manager node. All of the third level interactions with thgreent server go through the
manager node. During the period between a write lock acquitkrelease, the same
twins are used by both the second and third level systemq3S¢éor details on the
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Fig. 2. Current InterWeave implementation.

Cashmere-2L implementation). At a second level releass]dtition to sending diffs to
the second level home node, the runtime system sends adkeldiff to the manager
node. The manager node merges all of these diffs and sendgdhtbe segment server
at the time of the third level write-lock release. One optiation would be to have the
second level home nodes maintain the cumulative third ldiffd. This would elimi-
nate communication with a possibly separate manager nddelgnwe are currently
incorporating this optimization into our system.

3.2 Experiments

To evaluate our prototype implementation of InterWeave,haee collected perfor-
mance measurements on a remote visualization of the SRIEEI-Barnes-Hut simu-
lation. The simulation runs on a 4-node, 16-processor Caslsystem. Each node is
an AlphaServer 4100 5/600, with four 600 MHz 21164A processan 8 MB direct-
mapped board-level cache with a 64-byte line size, and 2 &Bytmemory. The nodes
are connected by a Memory Channel 2 [13] system area netWhesimulation re-
peatedly computes new positions for 16,000 bodies. Thesiigrzs may be shared with
a remote visualization satellite via an InterWeave segnmiére simulator uses a write
lock to update the shared segment, while the satellite ussaxed read lock with tem-
poral coherence to obtain an effective frame rate of 15 fegpee second. Under human
direction, the visualization satellite can also steer thgliaation by acquiring a write
lock and changing a body’s data.

When we combine the high performance second level sharebmygi@ashmere)
with the third level shared memory (InterWeave), it woulditieal if there were no
degradation in the performance of the second level systense€& how closely we
approach this ideal, we linked the application with the iWeave library, but ran it
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without connecting to a visualization satellite. Commuatign with the server running
on another Alpha node was via TCP/IP over Fast EthernettiRalalittle communi-
cation occurs in the absence of a satellite, duedola-shareioptimization that avoids
the transmission of diffs when there is only a single knowpycof the data.

Execution times for the no-satellite experiment appearigufe 3. Each bar gives
aggregate wall-clock time for ten iteration steps. In eaahqf bars, the one on the right
is for the standard Cashmere system; the one on the left &dsihmere linked with the
InterWeave library and communicating with a server. Thelaihd bars are subdivided
to identify the overhead due to running the third-level poail code. This overhead is
negligible for small configurations, but increases to aldi for 16 processors on
4 nodes. This non-scalability can be explained by our use sihgle manager node
within the Cashmere cluster. As the number of processesases, the manager has to
spend more time collecting diffs, which makes the systenalartzed. As described in
Section 3.1, we are working to eliminate this bottleneck.
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Fig. 3. Overhead of InterWeave library without a satellite.

We also measured the simulator’s performance when commtimicwith a single
satellite. Specifically, we compared execution times ubiter\Weave to those obtained
by augmenting user-level code with explicit TCP/IP messagecommunicate with
the satellite (directly, without a server), and then rugnihe result on the standard
Cashmere system. Preliminary results appear in Figure dll bases the satellite was
running on another Alpha node, communicating with the eluahd server, if any, via
TCP/IP over Fast Ethernet. We have again subdivided exattithe, this time to sepa-
rate out both communication and (for the left-hand bar®rieave protocol overhead.
The overhead of the InterWeave protocol itself remaingikelly small, but communi-
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Fig. 4. Overhead of InterWeave library and communication duringot visualization.

cation overhead is significant, due to InterWeave’s unagtithand unaggregated com-
munication with the server. We believe we can eliminate mafthis overhead through
implementation improvements; such improvements will beasgomfocus of ongoing
work.

A key advantage of the InterWeave version of the visualiratirogram is that the
simulation need not be aware of the number of satellitesefrdguency of sharing. In
the version of the application that uses hand-written ngesgassing, this knowledge
is embedded in application source code.

4 Related Work

InterWeave finds context in an enormous body of related wddtteo much to docu-
ment thoroughly here.

Most systems for distributed shared state enforce a styastgject-oriented pro-
gramming model. Some, such as Emerald [23], Argus [27], &% Jand ORCA [42],
take the form of an explicitly distributed programming laage. Some, notably Am-
ber [10] and its successor, VDOM [11], are C++-specific. Manyecent years have
been built on top of Java; examples include Aleph [20], Gittel[5], Java/DSM [48],
Javelin [7], JavaParty [31], JavaSpaces [41], and ShadsH {l8].

Language-independentdistributed object systems ind¢hedBiS [12], Legion [17],
Globe [44], DCOM [35], and various CORBA-compliant systg2®)]. Globe replicates
objects for availability and fault tolerance. PerDiS ancew CORBA systems (e.g.,
Fresco [25]) cache objects for locality of reference. Ti2&]fenforces type-safe object-
oriented access to records in a heterogeneous distribatatase.
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At least two early software distributed shared memory (34pSystems provided
support for heterogeneous machine types. Toronto’s Mersyatem [49] allowed data
to be shared across more than one type of machine, but onlp@mpcesses cre-
ated as part of a single run-to-completion parallel progralihdata in the same VM
page was required to have the same type, and only one memaigl+eequential
consistency—was supported. CMU’s Agora system [6] sugolsharing among more
loosely-coupled processes, but in a significantly morericéstl fashion than in In-
terWeave. Pointers and recursive types were not suppatieshared data had to be
accessed indirectly through a local mapping table, and argingle memory model
(similar to processor consistency) was supported.

Perhaps the two projects most closely related to InterWeavéKhazana [9] and
Active Harmony [21]. Both are outgrowths of previous worksaftware distributed
shared memory. Both support distributed sharing withofbreing an object-oriented
programming style. Khazana proposes a global, 128-biesddspace for all the world’s
shared data. It does not impose any structure on that dattteompt to translate it
into locally-appropriate form. Active Harmony is more egfily oriented toward high-
performance parallel execution. Early work appears to femessed primarily on load
balancing and process management. Various Linda systé&n3qBalso provide a non-
object-oriented distributed shared store.

Interface description languages date from Xerox Couri@f fhd related systems
of the early 1980s. Precedents for the automatic managesheninters include Her-
lihy’s thesis work [19], LOOM [24], and the more recent “piitlg” (serialization) of
Java [34]. Friedman [15] and Agrawal et al. [2] have shown howombine certain
pairs of consistency models in a non-version-based sy#é&mso et al. [3] present a
general system for relaxed, user-controlled coherencyexj#ore a real implementa-
tion of a dynamically adjustable coherence mechanism innair@ament that allows
tightly-coupled sharing in addition to the relaxed coheereim a more distributed envi-
ronment. Several projects, including ShareHolder, Gldhd$ and WebOS [43], use
URL-like names for distributed objects or files. Khazanapmses the use of multiple
consistency models.

5 Statusand Plans

A preliminary version of InterWeave is up and running on Rextbr's AlphaServer
cluster. It provides full support for user-specified colmerepredicates, but does not
yet implement inter-segment coherence. The type systemarisrdly based on C++,
rather than XDR, and though we support user-specified dgtauta (rearrangement
of blocks in the heap), we have not yet implemented data ¢eiores for heteroge-
neous machine architectures. The current system supporksng demonstrations of
remote interactive parallel association mining and viga#ibn of a parallel N-body
simulation, demonstrating the utility of the system in camiig distributed sharing
with tightly-coupled coherence.

Once the basic features of InterWeave are in place, we expdatn to several
additional issues, including security, fault tolerange] &ansactions. We hope to lever-
age the protection and security work of others, most likaiypg a group-based system
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reminiscent of AFS [36]. Toleration of client failures isrgilified by the version-based
programming model: a segment simply reverts to its previaision if a client dies

in the middle of an update. Server faults might be tolerategushing new versions
through to stable storage. Ultimately, a true transactipr@agramming model (as op-
posed to simple reader-writer locks) would allow us to rexxdvom failed operations
that update multiple segments, and to implement two-phaddng to recover from

deadlock or causality violations when using nested locks.
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