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Abstract

Modern superscalar processors use wide instruction is-
sue widths and out-of-order execution in order to increase
instruction-level parallelism (ILP). Because instructions
must be committed in order so as to guarantee precise
exceptions, increasing ILP implies increasing the sizes of
structures such as the register file, issue queue, and reorder
buffer. Simultaneously, cycle time constraints limit the sizes
of these structures, resulting in conflicting design require-
ments.

In this paper, we present a novel microarchitecture de-
signed to overcome the limitations of a register file size dic-
tated by cycle time constraints. Available registers are dy-
namically allocated between theprimary program thread
and afuturethread. Thefuturethread executes instructions
when theprimarythread is limited by resource availability.
Thefuturethread is not constrained by in-order commit re-
quirements. It is therefore able to examine a much larger
instruction window and jump far ahead to execute ready in-
structions. Results are communicated back to theprimary
thread by warming up the register file, instruction cache,
data cache, and instruction reuse buffer, and by resolving
branch mispredicts early. The proposed microarchitecture
is able to get an overall speedup of 1.17 over the base pro-
cessor for our benchmark set, with speedups of up to 1.64.

1 Introduction

Dynamic superscalar processors perform register renam-
ing and out of order issue in hardware to extract greater
instruction-level parallelism (ILP) from existing programs.
A significant performance limitation in such processors is
the lack of forward progress in the midst of long latency
operations (e.g., cache misses). When this happens, it
would ideally be most beneficial to execute other inde-
pendent performance degrading instructions (long-latency
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loads, branch mispredicts). However, to find such indepen-
dent instructions, the processor would have to examine a
sufficiently large instruction window.

This problem cannot be solved by simply increasing the
number of in-flight instructions, as it would require larger
register files and reorder buffers that may impact critical
timing paths. The register file, in particular, can often de-
termine the cycle time and several approaches that attempt
to balance latency and IPC have been proposed. The Alpha
21264 implements a clustered register file [14] in an attempt
to reduce average latency. Similarly, register file caches
have also been proposed [7] in order to access a smaller
subset of registers in a single cycle. Both of these tech-
niques, however, cause IPC degradation when compared to
a single monolithic register file of the same size. A multi-
cycle register file has its own problems - design complexity
in pipelining a RAM structure, having two levels of bypass
(which is one of the critical factors in determining cycle
time [7, 21]), and reduced IPC because of longer branch
mispredict penalties and increased register lifetimes. These
problems are only exacerbated in an SMT processor, where
the register file resources have to be shared by multiple
threads. Further, as we move to smaller process technolo-
gies, the dominating effect of long wire delays will make
it even more prohibitive to implement large register files in
wide-issue machines [12, 21].

The fundamental reason why the register file size has
such a large impact on the size of the instruction window,
and hence performance, is that instructions can be renamed
and dispatched only when there are free registers available.
Registers are freed only when instructions commit, and in-
structions are committed in order. A single instruction that
takes a long time to complete could stall the commit stage,
thereby holding up all the registers and not allowing subse-
quent instructions to dispatch. During this period, the out-
of-order execution core can only look at a restricted win-
dow of instructions to extract ILP. As the processor-memory
gap increases, there will be an increasing number of long-
latency loads, causing dispatch to frequently stall as it runs
out of physical registers. Thus, there is a need for new ap-
proaches that allow for forward progress to be made without
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increasing the complexity of critical hardware structures.

In this paper, we present a novel architecture that uses the
limited number of physical registers to dynamically trade
nearby with distant ILP, while still maintaining precise ex-
ceptions and program correctness. The front-end can sup-
port fetch from two threads, the second of which is dynam-
ically spawned by the hardware rather than being statically
created by the program. Initially, the only thread to run is
the main (primary) program. The secondary (future) thread
consists only of a program counter and register state. Out
of the available rename registers, we dynamically reserve a
certain number for thefuture thread, according to the pro-
gram’s current needs to exploit far-flung ILP. Once thepri-
mary thread runs out of its allocated registers, it stalls, and
the future thread gets triggered and starts off from where
the primary left off. This future thread cannot change the
program state,i.e., it cannot write to memory or update the
primary thread’s registers. It uses the remaining registers to
rename and dispatch its instructions.

In order to allow thefuture thread to make progress be-
yond the instructions to which these registers are allocated,
we relax the constraints on when its registers are released
back into the free list. First, a register is released as soon
as all its consumers have read its value,i.e., we make the
optimistic assumption that there will be no branch mispre-
dicts or exceptions raised. Thefuture thread cannot change
the state of theprimary thread — it serves the purpose of
potentially warming up the register file, data and instruction
caches, and resolving mispredicted branches early. Second,
in order to avoid consumingfuturethread resources that pre-
vent other independent instructions from executing, we also
add a timeout mechanism to remove instructions that wait
for operands in the issue queue for too long. This frees up
registers and issue queue slots so that other productive de-
pendence chains can make progress, thereby allowing the
futurethread to get far ahead of theprimary. When thepri-
marythread ceases to be stalled, it dispatches its subsequent
instructions all over again, but makes speedier progress as
its loads have been prefetched and its branches have been
correctly predicted. The use of an Instruction Reuse Buffer
(IRB) [29] could speed up the execution even more as some
of these instructions would not have to be re-executed.

Thus, we rob the main program thread of some of its
resources and allocate them to this opportunistic ‘helper’
thread that seeks independent instructions that are more dis-
tant. The benefit of such an approach would depend on the
nature of the program, and we present a mechanism that
dynamically performs this allocation of resources between
the primary and future threads. As a result, in situations
where thefuture thread degrades performance, the proces-
sor can always revert back to an organization like the base
case, where all resources belong to theprimary thread. Our
simulation results indicate that relative to the base simu-

lated architecture, performance is improved by an average
of 17% with the dynamic helper thread.

The rest of this paper is organized as follows. We start by
describing the proposed architecture in Section 2. In Sec-
tion 3, we quantitatively evaluate its performance. Section 4
discusses related work, and we conclude in Section 5.

2 Proposed Microarchitecture

2.1 The Base Processor

In a typical processor (outlined in Figure 1), the proces-
sor front-end performs branch prediction, fetches instruc-
tions from the instruction or trace cache, and deposits them
in the instruction fetch queue (IFQ). The IFQ holds the
fetched instructions until they get renamed and dispatched
into the issue queue. In the dispatch stage, the logical reg-
isters are mapped to the processor’s pool of physical reg-
isters. The rename table keeps track of logical to physical
register mappings and is used to rename instructions before
putting them into the issue queue. The destination register
is mapped to a new physical register that is picked out of the
free list (the list of registers not presently in use). The map-
ping is also entered into the re-order buffer (ROB), which
keeps track of register mappings for all instructions that
have been dispatched, but not committed. The issue queue
checks for register dependences and also has a store queue
that ensures that loads are issued only when there can be no
conflict from an earlier store. As instructions become ready
and issue, they free up their issue queue entry. A branch
stack within the rename table checkpoints the mappings at
every branch, so they can be reinstated in the event of a
branch misprediction. The structure just described closely
resembles the R10000 [35] and the Alpha 21264 [14].

Instructions are issued from the issue queue when their
register and memory dependences are satisfied, and they are
committed from the ROB in program order as they com-
plete. Consider the following example:

Original code Renamed code
lr7 <- ... pr15 <- ...
... <- lr7 ... <- pr15
branch to x branch to x
lr9 <- lr3 pr31 <- pr19
lr7 <- ... pr43 <- ...
... ...
x: x:
... <- lr7 ... <- pr15

At dispatch, the first write to logical register 7 (lr7) causes
it to get mapped to physical register 15 (pr15). This is fol-
lowed by an instruction that reads lr7. The branch is then
predicted to be not taken and the next instructions to be dis-
patched are a write to lr9 and a write to lr7. At this point,
lr7 gets mapped to pr43 and subsequent users of lr7 will
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Figure 1. The base processor structure

now read from pr43. Even if the instruction that reads pr15
has completed, pr15 cannot be released back into the free
list unless the write to pr43 has committed. There are two
reasons for this: (i) if the write to pr31 raises an exception,
to reflect an accurate register file state, lr7 should show the
value held in pr15, (ii) if the branch was mispredicted, we
would need to jump to x, where the read from lr7 would
actually refer to pr15. Hence, pr15 remains live until all in-
structions prior to the write to pr43 are known to not raise
an exception and have all their branches resolved.

In the example shown above, if the write to pr31 was
a load that missed in the L2, it could occupy the head of
the ROB for potentially a hundred cycles. If the processor
has 24 rename registers, only up to 23 more instructions
that write to registers can be dispatched in this period. This
severely limits the ability of the processor to extract ILP.

2.2 Adding the Future Thread

The goal of the proposed architecture is to circumvent
the in-order commit process in order to exploit any potential
far-flung ILP in addition to nearby ILP. We begin with an
overview of the proposed microarchitecture, followed by a
more detailed description of the various operations.

As an illustrative example, we begin with a base proces-
sor that has 32 int and 32 fp logical registers, and 72 int
and 72 fp physical registers (i.e., there are 40 int and 40
fp rename registers). In thefuture thread architecture, the
front-end, comprising the IFQ and the register rename ta-
ble, is replicated (Figure 2). While theprimary thread is
not stalled, thefuture thread does not dispatch instructions,
but it updates its rename table to reflect the new mappings
in the primary thread. Of the 40 integer rename registers,
12 (for example) are reserved for thefuture instructions.
When the primary thread runs out of registers and stalls,
the future thread continues to make progress. It uses its
allocated physical registers to dispatch subsequent instruc-
tions. These registers are then freed according to two cri-
teria. Registers are reused as soon as there is no use for
them (assuming no mispredicts and exceptions). In addi-
tion, if an instruction waits too long in the issue queue, it
gets timed out and its register is reused. Instructions wait-

ing in the issue queue for this register are also removed.
Application of these two criteria is possible because the
primary thread will re-execute these instructions in order
to ensure in-order commit and program correctness. Thus,
registers reserved for thefuture thread can be reused much
more quickly, potentially allowing the thread to execute far
ahead of theprimary, enabling prefetching of data into the
cache, early branch prediction, and value reuse. Thefuture
thread does not engage in any speculation apart from spec-
ulating across branches. It respects register and memory
dependences while issuing instructions.

2.2.1 Additional hardware structures

The three main additional structures are thefuture IFQ, the
futurerename table, and the Preg Status Table.

There are two program counters, one for theprimary
thread, and one for thefuture. These are identical at first,
and fetched instructions are placed in each IFQ. Every cy-
cle, instructions can potentially be renamed by both threads
and dispatched into the issue queue. If the same instruction
is being handled by both threads, thefuture thread will not
dispatch it. The mapping corresponding to that instruction
in theprimary rename table is copied into thefuturerename
table.

Each dynamic instruction is assigned a sequence num-
ber (this is a counter that wraps around when full and is
large enough to ensure that all in-flight sequence numbers
are unique — possibly 10 bits long). Sequence numbers are
rolled back on a branch mispredict. These sequence num-
bers make it possible to relate theprimary instructions to
their futurecounterparts.

When theprimary thread runs out of physical registers,
it stalls. Thefuture thread continues, using the remaining
physical registers to map subsequent instructions. For each
instruction that is dispatched by thefuture thread, an entry
is added to the Preg Status Table. This is a small CAM
structure, the size of the number of registers reserved for
the future thread (12 entries, in this example, for int and fp
each), that keeps track of the current physical registers in
use within thefuture thread. The other fields in this struc-
ture are: (i)Seqnum, the sequence number corresponding to
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Figure 2. The architecture supporting the futurethread (components belonging to the futurethread are shaded).

the instruction that has the physical register as destination,
(ii) Users, indicating how many more consumers of that reg-
ister still remain in the pipeline, (iii)Overwrite, indicating
that the corresponding logical register has been remapped
by a subsequent instruction, (iv)Timeout, set to a particular
value (30 in our case) at the time of dispatch, and decre-
mented every cycle if the instruction has still not been is-
sued. TheUsersfield is incremented every time an instruc-
tion is dispatched that sources that physical register. It is
correspondingly decremented when that instruction issues.

While it has been logically described as one structure,
the Preg Status Table can be broken up into a number of
small CAM structures. The most complex of these would be
the users field which would need as many as 16 ports (corre-
sponding to two operands for each of four instructions being
renamed and four instructions being issued). This structure
would be smaller than a rename table that has as many ports,
much larger fields per entry, and more entries.

2.2.2 Timeout and register reuse

To help thefuturethread use its register resources more effi-
ciently, we eagerly free up registers using the timeout mech-
anism and the register reuse criteria.

The rationale for the timeout can be illustrated by Fig-
ure 3. It shows a histogram of the number of instructions
that wait in the issue queue for a given period of time. The
particular example is that of a 20 million instruction win-
dow from the programperimeter, and is typical of most
memory-intensive programs. It can be seen that instructions
are made ready within the first few cycles of their dispatch,
or after about 20 cycles, or after about 100 cycles. These
correspond roughly to the L1, L2, and memory latencies.
The timeout heuristic models the fact that the non-readiness

of an instruction in the first 30 cycles implies that it is wait-
ing on a memory access and is likely to not be woken up for
another 70 cycles. Hence, we time it out and allow its reg-
ister and issue queue entry to be used by other instructions.

Registers get put back into the free list as soon as their
overwrite bit is set and the number of users becomes zero.
Likewise, when the timeout counter becomes zero, the reg-
ister is put back in the free list, its mappings in the rename
table (if still active) and the Preg Status Table are removed,
and the instruction is removed from the issue queue. In or-
der to ensure the correct execution of instructions, in the
next cycle, the tag of this timed out register is broadcast
through the issue queue and all instructions that source it,
time themselves out. This not only frees up the issue queue
slot but also ensures that the instructions do not wake them-
selves up when the same register tag (corresponding to the
completion of a later instruction) is broadcast as ready. The
process is repeated for the newly timed out instructions.Fu-
ture instructions dependent on this value will not be dis-
patched due to the invalid entry in the rename table. This
operation could take a few cycles depending on the length
of the dependence chain in the issue queue. To reduce hard-
ware overhead, we could impose the restriction thatfuture
instructions only occupy certain issue queue slots, thereby
having this associative logic for a subset of the issue queue.
While dispatching aprimary instruction, if the issue queue
is full, one of thefuture instructions is explicitly timed out
to make room for it. This ‘stealing’ of issue queue slots
ensures that priority is always given to theprimary thread.

2.2.3 Redispatching an instruction in the primary

When the instruction at the head of the ROB completes, the
primary thread can start making progress again as registers
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Figure 3. Histogram showing waiting time in the
issue queue for a portion of the program perimeter.
The X axis shows the time spent waiting in the
issue queue, and the Y axis shows the number of
instructions that waited for that period.

get put in the free list. Instructions are fetched again from
the I-cache into the IFQ and then dispatched. While dis-
patching an instruction, the Preg Status Table andfuturere-
name table are looked up. Thefuture rename table keeps
track of the sequence number for the last instruction that
mapped the logical register within thefuture thread, while
the Preg Status Table includes the sequence number of the
instruction writing the physical register. The current in-
struction’s sequence number is used to associatively look up
the Preg Status Table. If a physical register mapping still ex-
ists for that instruction in thefuture thread, the same physi-
cal register is used to map the instruction in theprimary as
well. The corresponding physical register entry is removed
from the Preg Status Table, as the register is no longer sub-
ject to the rules of thefuturethread. Thefuture instructions
that source this register need not update their operand tags.
Also, the instruction need not be dispatched again into the
issue queue, as the earlier dispatch will suffice to produce
a result in that physical register. If a result already exists
in the physical register, thefuturethread helps speed up the
primary thread even more. This phenomenon is referred
to asnatural reuse. If a physical register mapping for that
instruction does not exist in the Preg Status Table (the reg-
ister has already been timed out or reused) and if there is a
match with the sequence number associated with thefuture
rename table’s logical register entry, thefuturerename table
is updated to reflect the mapping in theprimary table.

2.2.4 Recovery after a branch mispredict

Once triggered, only thefuture thread accesses the branch
predictor. It conveys its predictions to theprimary thread

through a FIFO queue. These predictions in the queue are
updated when resolved by thefuturethread, so that thepri-
marythread need not go along the mispredicted path.

When thefuture thread detects a mispredict, it check-
points back to the state at the mispredict. However, some
values may be lost (as the register might have been reused),
thereby disallowing dispatch of instructions along some de-
pendence chains.

As mentioned, thefuture rename table tracks the se-
quence number corresponding to the logical register map-
ping. A conventional rename table checkpoints its mapping
at every branch. For thefuture thread, the mappings that
might have been true at the time of checkpointing need not
be true when the checkpoint is reinstated – instructions prior
to the branch may have timed out, had their registers reused,
or been re-dispatched as part of theprimary thread. Hence,
instead of checkpointing the mapping, we checkpoint the
sequence number for the mapping. In addition, the Preg
Status Table also checkpoints its overwrite bit. While rein-
stating the checkpoint, the sequence number is inspected to
figure out where the correct mapping can be found. If the
sequence number is less than the last sequence number en-
countered by theprimary thread, then it means that thepri-
maryrename table has the correct mapping for that register.
If the sequence number is greater, it means that the register,
if still valid, should be part of thefuture thread and have a
mapping in the Preg Status Table. In the subsequent cycles,
these mappings are copied back into thefuturerename table
so that it reflects an accurate state, and the overwrite bit is
recovered. If theprimary thread detects a mispredict, the
future thread starts from scratch after copying the contents
of theprimary rename table.

A conventional rename table checkpoints 7-bit values
(the physical register tag), while thefuture rename table
checkpoints the sequence number (a 9-10 bit value). While
this implies a longer access time for the rename table, the
results in [21] indicate that the rename table is not on the
critical path for the technology parameters examined.

Given that the rename tables have a limited number of
read and write ports, copying as many as 64 mappings
could take a number of cycles. To reduce these copies,
we could checkpoint the actual mapping instead of the se-
quence number when it is known that the mapping cannot
change1. Hence, in this case, by checkpointing the map-
ping, a copy need not be made at the time of mispredict
recovery. Even with this change, it is still possible that the
recovery could add a few cycles to the mispredict penalty
for the future thread. We simulated the effect of an extra
four cycle penalty and noticed only marginal slowdowns for

1For example, if the sequence number indicates that the instruction
that set this mapping has been dispatched in theprimary thread, then it
is known that this mapping will still be true when the branch mispredict is
discovered.



the programs with high mispredict rates. Given the oppor-
tunistic nature of thefuture thread, its mispredict penalty
does not play a major role in affecting performance.

2.2.5 Exploiting the IRB

In the microarchitecture described thus far, instructionsmay
get executed by both theprimary and future threads. An
instruction reuse buffer (IRB) could be used to minimize
this redundancy2. An implementation scheme likeS

n

or
S

n+d

[29] could be easily used with minimal modification.
In our simulations, we use theS

n

scheme because of its
simplicity. In this scheme, the reuse buffer keeps track of
the program counter, the operand names (register addresses)
for an instruction, and the result value it produced when it
was last invoked. During dispatch, if a program counter
match is found in the IRB and the result value is valid, an
instruction can bypass the issue and execute stages of the
pipeline. Each instruction creates an entry in the IRB at the
time of dispatch, and updates the result value at the time of
completion. When an instruction dispatches, it also invali-
dates all the entries in the IRB that source the same logical
register as its destination. Similarly, a store invalidates all
loads in the IRB that have the same source address.

To support thefuture thread, two modifications need to
be made to the IRB.Primary instructions cannot create IRB
entries once thefuturethread is triggered (these entries may
be invalid because thefuture thread may have dispatched
instructions that have modified the operands, which thepri-
mary has no way of knowing). In addition, the entries in
the IRB also keep track of the sequence number for thefu-
ture instruction that produced them. Theprimary thread can
reuse valid results in the IRB as long as these results were
produced by instructions with sequence numbers less than
or equal to that of the instruction being dispatched. This
ensures that the contents of the logical registers that are the
operands is the same as that used to generate the result.

2.2.6 Dynamic partitioning of registers

The allocation of physical registers between theprimary
andfuture threads need not be set at design time. In fact, a
number of programs that do not have distant ILP would be
better off using their registers to exploit nearby ILP rather
than have thefuture thread throw those results away to ad-
vance further. We include a mechanism that dynamically
accomplishes this partitioning on the fly. The number of
registers allocated to each thread is controlled by stalling
the thread’s dispatch as soon as it has consumed its allotted
registers. A counter keeps track of the registers allotted to
and freed by each thread. A register, set at run-time, speci-
fies the maximum allowed counter value.

We use a simple interval-based mechanism [2] that mon-
itors the program over regular intervals to decide what con-

2An IRB in a conventional microarchitecture exploits value locality by
not re-executing instructions if they have the same operandvalues.

Fetch queue size 16
Branch predictor comb. of bimodal and 2-level gshare;

bimodal size 2048;
Level1 1024 entries, history 10;

Level2 4096 entries (global);
Combining predictor size 1024;

RAS size 32; BTB 2048 sets, 2-way
Branch mispredict penalty 9 cycles

Fetch, dispatch, issue, 4
and commit width
Issue queue size 20 (int), 15 (fp)
L1 I and D-cache 64KB 2-way, 2 cycles
L2 unified cache 1.5MB 6-way, 15 cycles

TLB 128 entries, 8KB page size
Memory latency 70 cycles for the first chunk
Memory ports 2 (interleaved)

Integer ALUs/mult-div 4/2
FP ALUs/mult-div 2/1

Table 1. Simplescalar simulator parameters

figuration to use in the next interval. After every 100K in-
struction interval, we examine a set of hardware counters
that track the number of branches and the number of L1
cache misses. If there is a significant change in either of
these compared to those in the last interval, we assume a
change in program phase. Every new program phase is ac-
companied by an exploration process. For the subsequent
intervals, the program is run with various register partitions,
and the IPC for each interval is recorded. At the end of this
short exploration process, the partition that worked best is
used until the next phase change is detected. This process
of recording IPCs and picking the best configuration is eas-
ily done in hardware with simple logic, or in software by
low-overhead interrupt handlers (like that used for software
TLB refill). Some programs do not show consistent behav-
ior across 100K instruction intervals and spend most of their
time in the exploration phase. If such a scenario is detected,
we shut off the exploration process and resort to the register
partitioning that was picked most frequently. More details
about the interval-based mechanism can be found in [3].

3 Results

3.1 Methodology

We used Simplescalar-3.0 [4] for the Alpha AXP instruc-
tion set to simulate a dynamically scheduled 4-wide super-
scalar. The simulation parameters are listed in Table 1.

The simulator has been modified to model the memory
hierarchy in great detail (including interleaved access, bus
and port contention, writeback buffers). We also model a
physical register file and an issue queue that is smaller than
the ROB size. (In Simplescalar, the issue queues and the
ROB constitute one single unified structure called the Reg-
ister Update Unit (RUU).) These are further divided into
separate integer and floating-point structures.

Our base processor has parameters resembling the Alpha



Benchmark Input Simulation IPC of the
dataset window (instrs) base case

em3d (Olden) 20000 nodes, 500M-525M 0.51
arity 20

mst (Olden) 256 nodes 9M-14M 0.44
perimeter (Olden) 32Kx32K 1515-1540M 0.39

art (SPEC2k) ref 500M-550M 0.96
swim (SPEC2k) ref 1000M-1025M 0.73
lucas (SPEC2k) ref 2000M-2050M 1.03

sp (NAS) A 2500M-2550M 0.98
bt (NAS) A 3200M-3250M 0.71

go (SPEC95) ref 1000M-1025M 1.29
compress (SPEC95) ref 2000M-2025M 1.53

Table 2. Benchmark description

21264 [14]. We use 72 integer3 (int) and 72 floating-point
(fp) physical registers (corresponding to 40 rename regis-
ters, int and fp, each) and integer and fp issue queues of
20 and 15 entries, respectively. We use a sufficiently large
ROB as it is a relatively simple structure and is likely to not
be on the critical path. Dispatch gets stalled as soon as ei-
ther the registers or the issue queue entries get used up, so
the ROB occupancy rarely exceeds 80 entries, which is the
ROB size in the 21264. Our goal is to demonstrate potential
improvements on an existing processor model. In addition,
we present results with and without a small 16-entry fully-
associative IRB with theS

n

implementation scheme.
We ran our simulations on 10 programs from SPEC2000,

SPEC95, the NAS Parallel Benchmark [8], and the Olden
suite [23]. Eight of these are memory-intensive and suffer
the most from the problem of a single long latency instruc-
tion holding up the commit stage. We have also included
two non-memory-intensive programs (go, compress) from
SPEC95 INT, to illustrate the effect of thefuture thread on
this class of applications. To reduce simulation time, we
studied cache miss rate traces to identify program warm-
up phases and smaller instruction windows that were rep-
resentative of the program behavior4. The programs were
also run for 1M instructions in detail to warm up the var-
ious structures before measuring performance. Details on
the benchmark are listed in Table 2. The programs were
compiled with Compaq’s cc, f77, and f90 compilers for the
Alpha 21164 at the highest optimization level.

3.2 Analysis

We first show the performance with afuturethread when
there is a fixed allocation of registers between theprimary
andfuture threads. This motivates the use of dynamic allo-
cation, which we then use throughout the rest of the paper.
The improvement is attributed to the various features of the
future thread and we then look at the effect of various pa-
rameters like the IRB, issue queue, and register file size.

3The Alpha has 80 integer registers. We use 72 for uniformity.
4Since each iteration inbt is very long, we used a smaller window than

was representative of the whole program. However, the results were selec-
tively verified to be indicative of the performance over longer windows.

3.2.1 Dynamic partitioning of registers

Figure 4 shows speedups with thefuture thread for vari-
ous fixed allocations of registers between theprimary and
future threads. For all figures, the IPCs have been normal-
ized with respect to an identical base case that has nofuture
thread (i.e., all rename registers are allocated to theprimary
thread). Of these various static organizations, the 28::12
allocation that reserves 28 registers for theprimary thread
has the best overall speedup (when comparing the harmonic
mean (HM) of IPCs). However, we see that different allo-
cations do well for different programs. This depends on
whether the program has distant or nearby ILP and whether
the number of registers reserved for thefuture thread are
enough to allow it to advance far enough to exploit this dis-
tant ILP. The highest speedups forlucasandmstare seen
by reserving only eight registers for theprimary thread, but
this is the worst allocation for a number of programs that
also have nearby ILP. This motivates the need for a dynamic
scheme that picks the right allocation on the fly, depending
on program requirements. The last bar in Figure 4 shows
that the overall speedup of 1.17 with the interval-based dy-
namic scheme far exceeds the speedup of 1.11 possible with
the best static organization. The only program that experi-
ences a large number of phase changes isart as it does not
have consistent behavior across 100K instruction intervals.
Hence, after a number of initial exploration phases, it re-
mains fixed at the organization that was picked most often.
All subsequent results assume the use of the dynamic allo-
cation of registers between theprimaryandfuturethreads.

3.2.2 Effects of prefetch, branch resolution, and reuse

Table 3 shows various statistics that help us explain the be-
havior of thefuture thread. In Figures 5 and 6, we attempt
to isolate the contributions of the various components to the
performance of thefuture thread. In Figure 5, the first bar
(prefetch only) shows afuture thread implementation that
just runs ahead along predicted paths to warm up the data
and instruction caches, while ignoring the outcome of all
branch instructions. In this scenario, branch mispredictsare
discovered only when theprimary thread re-executes the
branch instruction. The second bar shows an implementa-
tion where thefuture thread also resolves branch mispre-
dicts early and initiates recovery. The third bar represents a
model that adds an IRB. We see that a significant portion of
the improvement is due to the prefetch effect, with the over-
all speedup being 1.12. Table 3 shows that there is a sharp
drop in the number of long latency loads seen by thepri-
mary thread. The number of loads per committed instruc-
tion that see a latency of more than 40 cycles falls by almost
a factor of two and is even reduced to zero in the case oflu-
cas. For lucas, the dynamic scheme allocates most rename
registers to thefuture thread and this enables it to advance
as far as the next loop iteration, thereby fetching the data
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Figure 4. Performance of the future thread for various fixed register allocations between the primary and future
thread. For example, ‘8::32’ represents an allocation wher e 8 rename registers are reserved for the primary
thread and the remaining 32 are reserved for the future. The last bar shows performance with the interval-based
scheme that dynamically picks the best allocation. IPCs hav e been normalized with respect to a base case that
has no futurethread and uses all 40 rename registers for the primary.

em3d mst peri art swim lucas sp bt go comp
Num timeouts 0.29 1.12 0.56 0.31 0.42 0.59 0.37 0.16 0.00 0.03
Num eager reg 0.45 0.03 0.65 0.30 0.11 0.06 0.13 0.28 0.01 0.06

release
Num natural reuse 0.14 0.13 0.20 0.23 0.37 0.25 0.22 0.26 0.10 0.16
Avg dist between 71, 136 25, 115 51, 114 63, 131 67, 123 31, 183 75, 128 47, 75 19, 19 39, 49

oldest and youngest
instrs (base,future)

Num loads issued by 0.12, 0.05 0.02, 0.02 0.11, 0.05 0.02, 0.01 0.04, 0.04 0.05, 0 0.03, 0.02 0.05, 0.04 0, 0 0, 0
primary thread that
take more than 40

cycles (base,future)
Num future 0.7 0.2 1.4 0.8 0.8 0.6 0.6 0.9 0.2 0.4
instrs issued

Branch direction 95% 97% 94% 98% 99% 98% 89% 98% 80% 93%
prediction rate
(rounded off)
% of mispreds 88% 0% 59% 42% 74% 99% 73% 68% 4% 3%

detected by
future instrs

IRB hit rate for 20% 5% 10% 35% 8% 0% 5% 14% 22% 16%
primary thread

Table 3. Various statistics pertaining to the future thread (with a dynamic allocation of registers) and the base
case with no futurethread (most numbers are normalized to the number of committ ed instructions, for example,
Num timeouts is the number of timeouts per committed instruc tion).



0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

em3d mst peri art swim lucas sp bt go comp HM

N
or

m
al

iz
ed

 IP
C

s

only prefetch
prefetch+br_recovery 
prefetch+br_rec+IRB 

Figure 5. Future thread performance broken down
as prefetch, early branch recovery, and reuse.

long before theprimary thread starts that iteration.
When thefuturethread is allowed to initiate early branch

recovery, we see significant improvements for the programs
with high branch mispredict rates. This results in an addi-
tional improvement of 5%, 24%, and 13% inem3d, perime-
ter, andsp. On the other hand, we see a big drop in per-
formance forswim. When thefuture thread initiates early
branch recovery, it tries to restore a valid register state.Be-
cause of the eager release of registers, some values remain
lost, disallowing progress along those dependence chains.
This sets off a chain reaction, where thefuture thread runs
much further ahead but is unable to execute any of the in-
structions. It can be productive again only when theprimary
thread catches up, which occurs when theprimarydiscovers
a branch mispredict (for a branch not executed by thefuture)
and squashes all subsequent instructions.Swimis a loop-
based floating-point code and has a low branch mispredict
rate. As a result, thefuture thread may have to wait a very
long time before it has valid register mappings. This effect
is also somewhat seen forbt. This negative effect of early
branch recovery can be easily eliminated by not attempting
it for programs with high branch prediction accuracies. Our
simulations do not assume the use of such a scheme.

Finally, by adding the IRB we see an additional over-
all improvement of 5%. A number of instructions that have
been dispatched by thefuturethread need not be re-executed
when seen by theprimary thread. The last row in Table 3
shows that up to 35% of these instructions can obtain their
result from the IRB. This IRB hit rate improves slightly
when we use larger IRBs. Using a 128-entry IRB, we see
additional improvements of 8% and 7% inmstandbt, re-
sulting in an additional 1% overall improvement.

3.2.3 Breakdown of contributions

Three major design components enable thefuture thread to
advance ahead of theprimary. From Table 3, it can be seen
that the average distance between the oldest and youngest
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Figure 6. Contributions of the features of the future
thread. The left bar has all features turned on. The
other bars show speedups when each is disabled.

instruction within the processor increases greatly because
of the future thread. This number represents the size of the
in-flight instruction window. The largest window seen by
the base processor is only 75 instructions (in the case of
sp), but thefuturethread can look in a much larger window
(as large as 183 in the case oflucas) because of the eager re-
lease of registers and the timeout. Both of these often come
into play as evidenced by the statistics in the first two rows
of Table 3. In addition, Table 3 demonstrates that a sig-
nificant number of instructions need not be re-executed by
theprimary thread if their mapping still exists in thefuture,
which we describe as natural reuse.

Figure 6 quantifies the contributions of these three com-
ponents by disabling them one at a time. It can be seen that
eager register release accounts for most of the speedup in
em3dandperimeter, while timeout helps greatly inperime-
ter andlucas. For lucas, the primary bottleneck is the issue
queue. The use of the timeout makes it possible to reduce
contention for the issue queue, thereby not stalling dispatch.
Similarly, by allowing natural reuse, we prevent the re-
dispatch of instructions into the issue queue, thus alleviating
the bottleneck again. Thus, the combination of the timeout
mechanism and the natural reuse allows thefuturethread to
advance far enough to do an effective job prefetching. Elim-
inating eager register release results in an improvement for
swimbecause an early recovery from a branch mispredict
by the future thread now results in no lost values, thereby
eliminating the problem alluded to earlier. We see almost
no improvements for non-memory-intensive programs like
goandcompress5 as they rarely run out of registers, thereby
not triggering thefuturethread.

3.2.4 Effect of various processor parameters

Mst is a memory-intensive program that does not show
5Compresshas a high L1 miss rate, but a low L2 miss rate, and the

in-flight window in the base processor is large enough to hideL2 latencies.
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Figure 7. Speedups with the future thread for the
Alpha-like model (left), and a model that has iden-
tical parameters except for a larger issue queue.

much improvement as it has little nearby ILP, causing in-
structions to wait in the issue queue, thus stalling dispatch.
For the other programs, by using thefuture thread, the reg-
ister file is removed as the bottleneck to dispatch. Hence,
stalls are often caused by the small size of the issue queue.
We next evaluate thefuture thread for a processor model
that has larger int and fp issue queues of 30 entries each.
The larger issue queues resulted in no improvement for the
base case, but they enabled thefuturethread to advance even
further, resulting in an overall speedup of 1.21 (Figure 7).

Finally, we study the effect of different register file sizes.
Figure 8 shows speedups with thefuture thread for proces-
sor models that have physical register file sizes ranging from
56 to 80 registers (int and fp, each). Each bar uses the corre-
sponding base case to compute speedups. Two effects come
into play here. Using a smaller register file makes it more
of a bottleneck, increasing the potential benefit of thefu-
ture thread. However, with a smaller register file, thefuture
thread will also be limited in its ability to look ahead, reduc-
ing the prefetch effect. Depending on which effect domi-
nates, we see different behaviors for the different programs.
Hence, a clear trend is not seen in the overall speedup num-
bers. It must be pointed out that the raw IPC for a 56-
register base case augmented with thefuture thread (0.72
IPC) is better than the raw IPC for a 72-register base case
without the future thread (0.71 IPC). While the IPCs are
comparable, the former processor model is likely to have a
faster clock speed.

4 Related Work

Dundas and Mudge [10] introduced a scheme for halting
the main instruction stream on a cache miss, and running
ahead to prefetch data. However, this was only applicable
to an in-order machine with no ILP support.

The idea of forming multiple threads that execute distant
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Figure 8. Speedups with the future thread for pro-
cessor models with different register file sizes.

instructions has been exploited in a number of approaches,
such as Multiscalar [30], Trace processors [25], DMT [1],
and TLDS [31]. These are hardware intensive solutions as
they assume the presence of a separate processing unit or a
Simultaneous Multithreaded (SMT [33]) base to execute the
threads. They require significant hardware to store results
and to transfer register values between threads to free up
dependences. They are also highly speculative in nature, as
these threads might lie much further ahead in the program
control flow.

Zilles and Sohi [36] characterize problem instructions
(cache misses, branches) and the instructions that lead to
them. They point out that a smaller subset of the program
code can be pre-executed so that themaininstruction stream
rarely encounters cache misses or branch mispredicts. They
assume an underlying implementation that can pre-execute
these slices. Roth and Sohi [28] talk about such an imple-
mentation that can pre-execute certain dependence chains.
They use profiling to generate these slices and annotate the
code to trigger them at appropriate points. These threads
use physical registers to store their results and they are inte-
grated into the main program thread when it catches up.

There have also been a couple of attempts at improving
branch resolution by pre-execution [11, 27], where the slice
determining the branch is duplicated and made to run in a
separate window. Farcy et al [11] notice regularity in the
branch condition computations and use value prediction to
accelerate the second thread.

Simultaneous Subordinate Microthreading (SSMT) [5]
and Assisted Execution [9] are schemes where custom-
generated threads are invoked within the hardware by cer-
tain events. These threads perform very simple specific
tasks and cannot be automatically generated.

A related concept is AR-SMT [24] and SRT [22], that
run two copies of the same program on an SMT proces-
sor and compare results from both threads. Their goal is



to detect transient faults in a chip, rather than to enhance
performance. An extension of this is the Slipstream proces-
sor [32], where the thread running ahead is a shortened ver-
sion of the original program (dynamically created by detect-
ing and eliminating ineffectual pieces of the program), and
the trailing thread is the full program that verifies the correct
working of the leading thread. The two programs together
can run faster than the single original program because the
leading thread communicates values and branch outcomes
to the trailing thread as (often correct) predictions.

Cruz et al [7] present a multi-banked register file, with
the banks having different speeds. While this degrades IPC,
it enables a faster clock. Other work [17, 34] proposes im-
proving register utilization by allocating registers whenin-
structions complete. The relaxed conditions for releasing
registers into the free list have been proposed before [18] in
the context of processors with imprecise exceptions.

The primary advantage of thefuture thread is its
prefetching effect. A number of hardware [6, 13, 26] and
software prefetching [16, 19] schemes have been proposed.
Most of these schemes can do a better job of prefetching as
they exploit some higher-level program information (reg-
ularity of accesses). This regularity can be determined at
compile time or as strides or load-value dependences in
hardware. This lack of high-level information prevents us
from doing a very effective job of prefetching. We, how-
ever, do a more exact job as we respect dependences and
actually compute load addresses (rather than use heuristics
like most hardware prefetch schemes). We also use dy-
namic branch prediction to follow the probable control-flow
path, instead of greedily prefetching [16] along all possible
paths. This prevents us from fetching useless lines into the
cache (unless we are on the wrong branch path). Hence,
our techniques are also applicable to irregular codes with
unpredictable control flow and unpredictable data accesses.
Luk [15] addresses a similar problem in the context of an
SMT processor by using the compiler to help pre-execute
these codes. Some of the prefetch schemes can also be com-
bined with thefuture thread to yield greater speedups. For
example, adding thefuture thread to a base case that has a
stride prefetcher results in significant speedups [3].

A software approach to tackling the problem of a sin-
gle cache miss holding up the ROB is described by Pai and
Adve [20]. They present a compiler algorithm that restruc-
tures code so that cache misses are clustered, thereby in-
creasing the memory parallelism while the ROB is stalled.

5 Conclusions

We have designed and evaluated a microarchitecture that
dynamically allocates a portion of the processor’s physical
resources to afuture thread in order to exploit distant ILP
in addition to nearby ILP. Long latency instructions tend
to stall the commit phase of a traditional superscalar archi-

tecture on reaching the head of the re-order buffer. Subse-
quent instructions use up the available physical registers, af-
ter which the dispatch stage stalls. In our proposed microar-
chitecture, part of the physical registers are allocated for
the main program and once they are consumed, thefuture
thread gets triggered and makes forward progress. It ea-
gerly releases registers and times out instructions that wait
too long in order to opportunistically advance far beyond
what theprimary thread is capable of. It thus improves per-
formance by resolving branch mispredicts early, by warm-
ing up the data and instruction caches, the instruction reuse
buffer, and by reusing register mappings and values. In ad-
dition, an interval-based scheme is used to allocate the op-
timal number of registers to thefuturethread.

Our evaluation on some of the more memory-intensive
benchmarks show very promising speedups of up to 1.64.
The overall improvement on our benchmark suite is 17%.
The contributions come mainly from prefetching, with sig-
nificant contributions from early branch recovery in the pro-
grams limited by poor branch prediction accuracies. The
use of a small 16-entry IRB accounts for 5% of this im-
provement. The dynamic allocation of registers plays a ma-
jor role in tuning the hardware to the ILP requirements of
each program phase. The use of a larger issue queue allows
thefuturethread to achieve an overall speedup of 1.21.
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