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Abstract loads, branch mispredicts). However, to find such indepen-
dent instructions, the processor would have to examine a
Modern superscalar processors use wide instruction is- sufficiently large instruction window.

sue widths and out-of-order execution in order to increase  Tpis problem cannot be solved by simply increasing the
instruction-level parallelism (ILP). Because instruct®  ymper of in-flight instructions, as it would require larger

must be committed in order so as to guarantee precise ggister files and reorder buffers that may impact critical
exceptions, increasing ILP implies increasing the sizes Oftiming paths. The register file, in particular, can often de-
structures such as the register file, issue queue, and reorde iormine the cycle time and several approaches that attempt
buffer. Simultaneously, cy<_:|e t_ime const_raints Iimit thes. to balance latency and IPC have been proposed. The Alpha
of these structures, resulting in conflicting design reguir 21264 implements a clustered register file [14] in an attempt
ments. to reduce average latency. Similarly, register file caches
In this paper, we present a novel microarchitecture de- haye also been proposed [7] in order to access a smaller
signed to overcome the limitations of a register file size dic g pset of registers in a single cycle. Both of these tech-
tated by cycle time constraints. Available registers are dy niques, however, cause IPC degradation when compared to
namically allocated between th@imary program thread 3 single monolithic register file of the same size. A multi-
and afuturethread. Thduturethread executes instructions  cycle register file has its own problems - design complexity
when theprimarythread is limited by resource availability. iy pipelining a RAM structure, having two levels of bypass
Thefuturethread is not constrained by in-order commit re- (which is one of the critical factors in determining cycle
quirements. It is therefore able to examine a much larger tjme [7, 21]), and reduced IPC because of longer branch
instruction window and jump far ahead to execute ready in- mispredict penalties and increased register lifetime®sgh
structions. Results are communicated back toghimary  problems are only exacerbated in an SMT processor, where
thread by warming up the register file, instruction cache, the register file resources have to be shared by multiple
data cache, and instruction reuse buffer, and by resolving threads. Further, as we move to smaller process technolo-
branch mispredicts early. The proposed microarchitecture gies, the dominating effect of long wire delays will make

is able to get an overall speedup of 1.17 over the base pro-jt even more prohibitive to implement large register files in
cessor for our benchmark set, with speedups of up to 1.64. \yide-issue machines [12, 21].

The fundamental reason why the register file size has
1 Introduction such a large impact on the size of the instruction window,
and hence performance, is that instructions can be renamed
Dynamic superscalar processors perform register renam-and dispatched only when there are free registers available
ing and out of order issue in hardware to extract greater Registers are freed only when instructions commit, and in-
instruction-level parallelism (ILP) from existing progna. structions are committed in order. A single instructiorttha
A significant performance limitation in such processors is takes a long time to complete could stall the commit stage,
the lack of forward progress in the midst of long latency thereby holding up all the registers and not allowing subse-
operations €.g, cache misses). When this happens, it quent instructions to dispatch. During this period, the out
would ideally be most beneficial to execute other inde- of-order execution core can only look at a restricted win-
pendent performance degrading instructions (long-lgtenc dow of instructions to extract ILP. As the processor-memory
*This work was supported in part by NSF grants CDA-9401142-E| gap increases, there will be an increasing number of long-
9972881, CCR_9702466, CCR_9701915 CCR-9811929, CCR2848 latency loads, causing dispatch to frequently stall asrisru

and CCR—-9705594; by DARPA/ITO under AFRL contract F2960@  OUt Of physical registers. Thus, there is a need for new ap-
0182; and by an external research grant from DEC/Compag. proaches that allow for forward progress to be made without




increasing the complexity of critical hardware structures  lated architecture, performance is improved by an average

In this paper, we present a novel architecture that uses théf 17% with the dynamic helper thread.
limited number of physical registers to dynamically trade  The restof this paper is organized as follows. We start by
nearby with distant ILP, while still maintaining precise-ex describing the proposed architecture in Section 2. In Sec-
ceptions and program correctness. The front-end can suption 3, we quantitatively evaluate its performance. Sectio
port fetch from two threads, the second of which is dynam- discusses related work, and we conclude in Section 5.
ically spawned by the hardware rather than being statically . .
created by the program. Initially, the only thread to run is 2 Proposed Microarchitecture
the rr_1ain primary) program. The secondari.u(_ure) thread 2.1 The Base Processor
consists only of a program counter and register state. Out
of the available rename registers, we dynamically reserve a  In a typical processor (outlined in Figure 1), the proces-
certain number for théuture thread, according to the pro-  sor front-end performs branch prediction, fetches instruc
gram’s current needs to exploit far-flung ILP. Once i tions from the instruction or trace cache, and deposits them
marythread runs out of its allocated registers, it stalls, and in the instruction fetch queue (IFQ). The IFQ holds the
the future thread gets triggered and starts off from where fetched instructions until they get renamed and dispatched
the primary left off. This future thread cannot change the into the issue queue. In the dispatch stage, the logical reg-
program statei,e., it cannot write to memory or update the isters are mapped to the processor’s pool of physical reg-

primarythread’s registers. It uses the remaining registers toisters. The rename table keeps track of logical to physical
rename and dispatch its instructions. register mappings and is used to rename instructions before

putting them into the issue queue. The destination register

yond the instructions to which these registers are allagate is mapped to a new physical register that is picked out of the
we relax the constraints on when its registers are released®e list (the list of registers not presently in use). Thepma
back into the free list. First, a register is released as soonPiNd i @lso entered into the re-order buffer (ROB), which
as all its consumers have read its value, we make the keeps track _of register mappings for_ all mstrugtlons that
optimistic assumption that there will be no branch mispre- have been dispatched, but not committed. The issue queue
dicts or exceptions raised. Theturethread cannot change checks for register dependences and also has a store queue
the state of therimary thread — it serves the purpose of that ensures that loads are issued only when there can be no
potentially warming up the register file, data and instaucti conflict from an earlier store. As instructions become ready

caches, and resolving mispredicted branches early. Second"d issue, they free up their issue queue entry. A branch
in order to avoid consuminiyturethread resources that pre-  Stack within the rename table checkpoints the mappings at

vent other independent instructions from executing, we als €Very branch, so they can be reinstated in the event of a
add a timeout mechanism to remove instructions that wait ?ranch misprediction. The structure just described cjosel

for operands in the issue queue for too long. This frees upresembles the R10000 [35] and the Alpha 21264 [14].

registers and issue queue slots so that other productive de- 'NStructions are issued from the issue queue when their
pendence chains can make progress, thereby allowing th&egister and memory dependences are satisfied, and they are

futurethread to get far ahead of tipgimary. When thepri- committed from the ROB in program order as they com-
marythread ceases to be stalled, it dispatches its subsequert!ete- Consider the following example:
instructions all over again, but makes speedier progress agy

In order to allow theduture thread to make progress be-

its loads have been prefetched and its branches have beelnr |7g|<f1al code E?Egni? code

correctly predicted. The use of an Instruction Reuse Buffer <. | r 7 < pris

(IRB) [29] could speed up the execution even more as somel'o'r ;';mch to x br ;';mch to x

of these instructions would not have to be re-executed. Ir9 <- 1r3 pr3l <- prio
Thus, we rob the main program thread of some of its | y 7 <. pra3 <-

resources and allocate them to this opportunistic ‘helper’ .

thread that seeks independent instructions that are mere di y - X:

tant. The benefit of such an approach would dependonthe  «. |7 ... < pri5

nature of the program, and we present a mechanism that

dynamically performs this allocation of resources between At dispatch, the first write to logical register 7 (Ir7) casse
the primary andfuture threads. As a result, in situations it to get mapped to physical register 15 (prl5). This is fol-
where thefuture thread degrades performance, the proces-lowed by an instruction that reads Ir7. The branch is then
sor can always revert back to an organization like the basepredicted to be not taken and the next instructions to be dis-
case, where all resources belong tophienarythread. Our ~ patched are a write to Ir9 and a write to Ir7. At this point,
simulation results indicate that relative to the base simu-Ir7 gets mapped to pr43 and subsequent users of Ir7 will
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Figure 1. The base processor structure

now read from pr43. Even if the instruction that reads prl5 ing in the issue queue for this register are also removed.
has completed, prl5 cannot be released back into the freé\pplication of these two criteria is possible because the
list unless the write to pr43 has committed. There are two primary thread will re-execute these instructions in order
reasons for this: (i) if the write to pr31 raises an exception to ensure in-order commit and program correctness. Thus,
to reflect an accurate register file state, Ir7 should show theregisters reserved for taturethread can be reused much
value held in pr15, (ii) if the branch was mispredicted, we more quickly, potentially allowing the thread to execute fa
would need to jump to X, where the read from Ir7 would ahead of thgrimary, enabling prefetching of data into the
actually refer to pr15. Hence, prl5 remains live until all in  cache, early branch prediction, and value reuse. flie
structions prior to the write to pr43 are known to not raise thread does not engage in any speculation apart from spec-
an exception and have all their branches resolved. ulating across branches. It respects register and memory
In the example shown above, if the write to pr31 was dependences while issuing instructions.
a load that missed in the L2, it could occupy the head of .
the ROB for potentially a hundred cycles. If the processor 221 Additional hardwarestructures
has 24 rename registers, only up to 23 more instructionsThe three main additional structures are filneire IFQ, the
that write to registers can be dispatched in this periods Thi futurerename table, and the Preg Status Table.

severely limits the ability of the processor to extract ILP. There are two program counters, one for ghémary
) thread, and one for thieiture These are identical at first,
2.2 Addingthe Future Thread and fetched instructions are placed in each IFQ. Every cy-

The goal of the proposed architecture is to circumvent cle, instructions can potentially be renamed by both ttsead
the in-order commit process in order to exploit any poténtia and dispatched into the issue queue. If the same instruction
far-flung ILP in addition to nearby ILP. We begin with an is being handled by both threads, tlature thread will not
overview of the proposed microarchitecture, followed by a dispatch it. The mapping corresponding to that instruction
more detailed description of the various operations. in theprimary rename table is copied into thigturerename

As an illustrative example, we begin with a base proces- table.
sor that has 32 int and 32 fp logical registers, and 72 int  Each dynamic instruction is assigned a sequence num-
and 72 fp physical registers.€., there are 40 int and 40 ber (this is a counter that wraps around when full and is
fp rename registers). In tHature thread architecture, the large enough to ensure that all in-flight sequence numbers
front-end, comprising the IFQ and the register rename ta-are unique — possibly 10 bits long). Sequence numbers are
ble, is replicated (Figure 2). While theimary thread is rolled back on a branch mispredict. These sequence num-
not stalled, théuturethread does not dispatch instructions, bers make it possible to relate thpemary instructions to
but it updates its rename table to reflect the new mappingstheir future counterparts.
in the primary thread. Of the 40 integer rename registers,  When theprimary thread runs out of physical registers,
12 (for example) are reserved for tifigure instructions. it stalls. Thefuture thread continues, using the remaining
When the primary thread runs out of registers and stalls, physical registers to map subsequent instructions. Fdr eac
the future thread continues to make progress. It uses itsinstruction that is dispatched by tifigurethread, an entry
allocated physical registers to dispatch subsequentimstr is added to the Preg Status Table. This is a small CAM
tions. These registers are then freed according to two cri-structure, the size of the number of registers reserved for
teria. Registers are reused as soon as there is no use fdhefuturethread (12 entries, in this example, for int and fp
them (assuming no mispredicts and exceptions). In addi-each), that keeps track of the current physical registers in
tion, if an instruction waits too long in the issue queue, it use within thefuturethread. The other fields in this struc-
gets timed out and its register is reused. Instructions-wait ture are: (i)Seqnumthe sequence number corresponding to
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Figure 2. The architecture supporting the  futurethread (components belonging to the  futurethread are shaded).

the instruction that has the physical register as destinati  of an instruction in the first 30 cycles implies that it is wait
(ii) Users indicating how many more consumers of that reg- ing on a memory access and is likely to not be woken up for
ister still remain in the pipeline, (iiiDverwrite indicating another 70 cycles. Hence, we time it out and allow its reg-
that the corresponding logical register has been remappedster and issue queue entry to be used by other instructions.
by a subsequent instruction, (iVimeout set to a particular Registers get put back into the free list as soon as their
value (30 in our case) at the time of dispatch, and decre-overwrite bit is set and the number of users becomes zero.
mented every cycle if the instruction has still not been is- Likewise, when the timeout counter becomes zero, the reg-
sued. TheJsersfield is incremented every time an instruc- ister is put back in the free list, its mappings in the rename
tion is dispatched that sources that physical registers It i table (if still active) and the Preg Status Table are rempved
correspondingly decremented when that instruction issues and the instruction is removed from the issue queue. In or-
While it has been logically described as one structure, der to ensure the correct execution of instructions, in the
the Preg Status Table can be broken up into a number ofnext cycle, the tag of this timed out register is broadcast
small CAM structures. The most complex of these would be through the issue queue and all instructions that source it,
the users field which would need as many as 16 ports (corretime themselves out. This not only frees up the issue queue
sponding to two operands for each of four instructions being slot but also ensures that the instructions do not wake them-
renamed and four instructions being issued). This stractur selves up when the same register tag (corresponding to the
would be smaller than arename table that has as many ports;ompletion of a later instruction) is broadcast as readg Th
much larger fields per entry, and more entries. process is repeated for the newly timed out instructiéis.
222 Timeout and register reuse ture instructions dependent on this value will not be dis-
patched due to the invalid entry in the rename table. This
operation could take a few cycles depending on the length
of the dependence chain in the issue queue. To reduce hard-
ware overhead, we could impose the restriction fhatre
instructions only occupy certain issue queue slots, thereb
having this associative logic for a subset of the issue queue
While dispatching grimary instruction, if the issue queue
is full, one of thefuture instructions is explicitly timed out
to make room for it. This ‘stealing’ of issue queue slots
ensures that priority is always given to themary thread.

To help thdfuturethread use its register resources more effi-
ciently, we eagerly free up registers using the timeout mech
anism and the register reuse criteria.

The rationale for the timeout can be illustrated by Fig-
ure 3. It shows a histogram of the number of instructions
that wait in the issue queue for a given period of time. The
particular example is that of a 20 million instruction win-
dow from the progranperimeter and is typical of most
memory-intensive programs. It can be seen that instrugtion
are made ready within the first few cycles of their dispatch, _ _ _ o ]
or after about 20 cycles, or after about 100 cycles. These2-2-3 Redispatching an instruction in the primary
correspond roughly to the L1, L2, and memory latencies. When the instruction at the head of the ROB completes, the
The timeout heuristic models the fact that the non-readines primarythread can start making progress again as registers



10 : : : : : : through a FIFO queue. These predictions in the queue are
updated when resolved by thgurethread, so that thpri-
marythread need not go along the mispredicted path.

When thefuture thread detects a mispredict, it check-
points back to the state at the mispredict. However, some
values may be lost (as the register might have been reused),
thereby disallowing dispatch of instructions along some de
pendence chains.

As mentioned, thduture rename table tracks the se-

25 q

! 7 guence number corresponding to the logical register map-
ping. A conventional rename table checkpoints its mapping

0s 8 at every branch. For thiiture thread, the mappings that
I might have been true at the time of checkpointing need not

0 w ‘ ‘ be true when the checkpointis reinstated — instructiores pri

to the branch may have timed out, had their registers reused,
or been re-dispatched as part of fframary thread. Hence,

Figure 3. Histogram showing waiting time in the instead of checkpointing the mapping, we checkpoint the
issue queue for a portion of the program  perimeter sequence number for the mapping. In addition, the Preg
The X axis shows the time spent waiting in the Status Table also checkpoints its overwrite bit. While rein
issue queue, and the Y axis shows the number of stating the checkpoint, the sequence number is inspected to
instructions that waited for that period. figure out where the correct mapping can be found. If the

sequence number is less than the last sequence number en-
countered by therimary thread, then it means that tpe-
maryrename table has the correct mapping for that register.
If the sequence number is greater, it means that the register
if still valid, should be part of théuturethread and have a
mapping in the Preg Status Table. In the subsequent cycles,
these mappings are copied back intofilteirerename table

go that it reflects an accurate state, and the overwrite bit is
recovered. If theorimary thread detects a mispredict, the
futurethread starts from scratch after copying the contents
of theprimaryrename table.

get put in the free list. Instructions are fetched again from
the I-cache into the IFQ and then dispatched. While dis-
patching an instruction, the Preg Status Tablefatutere-
name table are looked up. Tieture rename table keeps
track of the sequence number for the last instruction that
mapped the logical register within thieture thread, while
the Preg Status Table includes the sequence number of th
instruction writing the physical register. The current in-
struction’s sequence number is used to associatively lpok u
the Preg Status Table. If a physical register mapping still

ists for that instruction in th&uturethread, the same physi- A conventional rename table checkpoints 7-bit values
cal register is used to map the instruction in ganary as (the physical register tag), while tHature rename table

well. The corresponding physical register entry is removed Checkpoints the sequence number (a 9-10 bit value). While

from the Preg Status Table, as the register is no longer sub!Nis implies a longer access time for the rename table, the
ject to the rules of théuturethread. Thdutureinstructions ~ "esults in [21] indicate that the rename table is not on the
that source this register need not update their operand tag<C"itical path for the technology parameters examined.

Also, the instruction need not be dispatched again into the ~ Given that the rename tables have a limited number of
issue queue, as the earlier dispatch will suffice to produceread and write ports, copying as many as 64 mappings
a result in that physical register. If a result already exist could take a number of cycles. To reduce these copies,
in the physical register, tHaiturethread helps speed up the We could checkpoint the actual mapping instead of the se-
primary thread even more. This phenomenon is referred quence number when it is known that the mapping cannot
to asnatural reuse If a physical register mapping for that change. Hence, in this case, by checkpointing the map-
instruction does not exist in the Preg Status Table (the reg-Ping, & copy need not be made at the time of mispredict
ister has already been timed out or reused) and if there is decovery. Even with this change, it is still possible that th
match with the sequence number associated witfiuthwe ~ recovery could add a few cycles to the mispredict penalty
rename table’s |ogica| register entry, flodurerename table for the future thread. We simulated the effect of an extra
is updated to reflect the mapping in themary table. four cycle penalty and noticed only marginal slowdowns for

2.2.4 Recovery after abranch mispredict IFor example, if the sequence number indicates that theugtin

. that set this mapping has been dispatched inpfimary thread, then it
Once triggered, only thiuture thread accesses the branch s nown that this mapping will still be true when the brancispredict is

predictor. It conveys its predictions to tipeimary thread discovered.



Fetch queue size 16
Branch predictor comb. of bimodal and 2-level gshare;
bimodal size 2048;

Levell 1024 entries, history 10;
Level2 4096 entries (global);
Combining predictor size 1024;
RAS size 32; BTB 2048 sets, 2-way
Branch mispredict penalty 9 cycles

Fetch, dispatch, issue, 4

the programs with high mispredict rates. Given the oppor-
tunistic nature of thduture thread, its mispredict penalty
does not play a major role in affecting performance.

2.25 ExploitingtheRB

Inthe microarchitecture described thus far, instructioay
get executed by both thgrimary and future threads. An

instruction reuse buffer (IRB) could be used to minimize
this redundancy An implementation scheme lik6,, or

Sn+a [29] could be easily used with minimal modification.

In our simulations, we use th&, scheme because of its
simplicity. In this scheme, the reuse buffer keeps track of
the program counter, the operand names (register addyesses
for an instruction, and the result value it produced when it

and commit width
Issue queue size
L1 I and D-cache
L2 unified cache
TLB
Memory latency
Memory ports
Integer ALUs/mult-div

20 (int), 15 (fp)
64KB 2-way, 2 cycles
1.5MB 6-way, 15 cycles
128 entries, 8KB page size
70 cycles for the first chunk
2 (interleaved)
4/2

FP ALUs/mult-div 2/1

was last invoked. During dispatch, if a program counter
match is found in the IRB and the result value is valid, an
instruction can bypass the issue and execute stages of the
pipeline. Each instruction creates an entry in the IRB at the figuration to use in the next interval. After every 100K in-
time of dispatch, and updates the result value at the time ofstruction interval, we examine a set of hardware counters
completion. When an instruction dispatches, it also iavali that track the number of branches and the number of L1
dates all the entries in the IRB that source the same logicalcache misses. If there is a significant change in either of
register as its destination. Similarly, a store invalidzé these compared to those in the last interval, we assume a
loads in the IRB that have the same source address. change in program phase. Every new program phase is ac-
To support thduture thread, two modifications need to companied by an exploration process. For the subsequent
be made to the IRBRPrimaryinstructions cannot create IRB  intervals, the program is run with various register panif,
entries once thuturethread is triggered (these entries may and the IPC for each interval is recorded. At the end of this
be invalid because thiture thread may have dispatched short exploration process, the partition that worked best i
instructions that have modified the operands, whiclptiie used until the next phase change is detected. This process
mary has no way of knowing). In addition, the entries in of recording IPCs and picking the best configuration is eas-
the IRB also keep track of the sequence number fofuhe ily done in hardware with simple logic, or in software by
tureinstruction that produced them. Themarythread can  low-overhead interrupt handlers (like that used for sofewa
reuse valid results in the IRB as long as these results wereTLB refill). Some programs do not show consistent behav-
produced by instructions with sequence numbers less tharor across 100K instruction intervals and spend most of thei
or equal to that of the instruction being dispatched. This time in the exploration phase. If such a scenario is detected
ensures that the contents of the logical registers thatare t we shut off the exploration process and resort to the ragiste
operands is the same as that used to generate the result. partitioning that was picked most frequently. More details
about the interval-based mechanism can be found in [3].

Table 1. Simplescalar simulator parameters

2.2.6 Dynamic partitioning of registers
The allocation of physical registers between grenary
andfuturethreads need not be set at design time. In fact, a
number of programs that do not have distant ILP would be 31 Methodology
better off using their registers to exploit nearby ILP rathe
than have thduturethread throw those results away to ad- We used Simplescalar-3.0 [4] for the Alpha AXP instruc-
vance further. We include a mechanism that dynamically tion set to simulate a dynamically scheduled 4-wide super-
accomplishes this partitioning on the fly. The number of scalar. The simulation parameters are listed in Table 1.
registers allocated to each thread is controlled by stallin The simulator has been modified to model the memory
the thread’s dispatch as soon as it has consumed its allottethierarchy in great detail (including interleaved access, b
registers. A counter keeps track of the registers allotled t and port contention, writeback buffers). We also model a
and freed by each thread. A register, set at run-time, speciphysical register file and an issue queue that is smaller than
fies the maximum allowed counter value. the ROB size. (In Simplescalar, the issue queues and the
We use a simple interval-based mechanism [2] that mon-ROB constitute one single unified structure called the Reg-
itors the program over regular intervals to decide what con-ister Update Unit (RUU).) These are further divided into
separate integer and floating-point structures.
Our base processor has parameters resembling the Alpha

3 Reaults

2An IRB in a conventional microarchitecture exploits valoedlity by
not re-executing instructions if they have the same opevahds.



Benchmark Input Simulation IPC of the 3.2.1 Dynamic partitioning of registers
dataset window (instrs) | base case ) ) )
em3d (Olden) 20000 nodes,| 500M-525M 0.51 Figure 4 shows speedups with theure thread for vari-
Olden) arity 23 ous fixed allocations of registers between ginenary and
mst (Olden 256 nodes 9M-14M 0.44 ;
perimeter (Olden) | 32Kx32K 1515 1540M 0.29 futurethreads. For all figures, the IPCs have been normal-
art (SPEC2K) ref 500M-550M 0.96 ized WIFh respectto an |dgntlcal base case that ha_[atuce
swim (SPEC2k) ref 1000M-1025M 0.73 thread (.e., all rename registers are allocated to phienary
lucas Eﬁlig?k) r/if ggggmggggm (1)-32 thread). Of these various static organizations, the 28::112
sp - . g ) .
bt (NAS) A 3200M-3250M 071 allocation that reserves 28 registers for ﬂm,f_nary thread _
go (SPEC95) ref 1000M-1025M 1.29 has the best overall speedup (when comparing the harmonic
compress (SPEC95 ref 2000M-2025M 1.53 mean (HM) of IPCs). However, we see that different allo-
cations do well for different programs. This depends on
Table 2. Benchmark description whether the program has distant or nearby ILP and whether

21264 [14]. We use 72 integkfint) and 72 floating-point the number of r_egisters reserved for tieure thregd are
(fp) physical registers (corresponding to 40 rename regis_enough to aIIovy it to advance far enough to exploit this dis-
ters, int and fp, each) and integer and fp issue queues of@nt ILP. The highest speedups facasandmstare seen
20 and 15 entries, respectively. We use a sufficiently largePY reserving only eight registers for tpemary thread, but
ROB as it is a relatively simple structure and is likely to not this is the worst allocation for a number of programs that
be on the critical path. Dispatch gets stalled as soon as ei&IS0 have nearby ILP. This motivates the need for a dynamic
ther the registers or the issue queue entries get used up, sécheme that picks the right allocation on the fly, depending
the ROB occupancy rarely exceeds 80 entries, which is theOn Program requirements. The last bar in Figure 4 shows
ROB size in the 21264. Our goal is to demonstrate potential that the overall speedup of 1.17 with the interval-based dy-
improvements on an existing processor model. In addition, "@mic scheme far exceeds the speedup of 1.11 possible with
we present results with and without a small 16-entry fully- the best static organization. The only program that experi-
associative IRB with the,, implementation scheme. ences a large number of phase changestias it does not

We ran our simulations on 10 programs from SPEC2000, have consistent behavior across 100K instruction interval
SPEC95, the NAS Parallel Benchmark [8], and the Olden Hence, after a number of initial exploration phases, it re-
suite [23]. Eight of these are memory-intensive and suffer mains fixed at the organization that was picked most .often.
the most from the problem of a single long latency instruc- All Subsequent results assume the use of the dynamic allo-
tion holding up the commit stage. We have also included cation of registers between themary andfuturethreads.
two non-memory-intensive programga, compregsfrom
SPEC95 INT, to illustrate the effect of tiieturethread on
this class of applications. To reduce simulation time, we Table 3 shows various statistics that help us explain the be-
studied cache miss rate traces to identify program warm-havior of thefuturethread. In Figures 5 and 6, we attempt
up phases and smaller instruction windows that were rep-to isolate the contributions of the various componentseo th
resentative of the program behavioiThe programs were  performance of théuturethread. In Figure 5, the first bar
also run for 1M instructions in detail to warm up the var- (prefetch only) shows éuture thread implementation that
ious structures before measuring performance. Details onjust runs ahead along predicted paths to warm up the data
the benchmark are listed in Table 2. The programs wereand instruction caches, while ignoring the outcome of all
compiled with Compag’s cc, 77, and f90 compilers for the branch instructions. In this scenario, branch mispredaicts

3.2.2 Effectsof prefetch, branch resolution, and reuse

Alpha 21164 at the highest optimization level. discovered only when thprimary thread re-executes the
_ branch instruction. The second bar shows an implementa-
3.2 Analysis tion where thefuture thread also resolves branch mispre-

We first show the performance withfaturethread when dicts early and initiates recovery. The third bar represant
there is a fixed allocation of registers betweengrienary ~ Model thatadds an IRB. We see that a significant portion of
andfuturethreads. This motivates the use of dynamic allo- the improvementis due to the prefetch effect, with the over-
cation, which we then use throughout the rest of the paper.!l SPeedup being 1.12. Table 3 shows that there is a sharp
The improvement s attributed to the various features of the d70P in the number of long latency loads seen by e
future thread and we then look at the effect of various pa- Mary thread. The number of loads per committed instruc-

rameters like the IRB, issue queue, and register file size.  tion that see a latency of more than 40 cycles falls by almost
a factor of two and is even reduced to zero in the case-of
3The Alpha has 80 integer registers. We use 72 for uniformity.

s BT . cas Forlucas the dynamic scheme allocates most rename
Since each iteration ibtis very long, we used a smaller window than . . .
was representative of the whole program. However, theteare selec-  T€gisters to théuture threlad and this enables it to advance
tively verified to be indicative of the performance over lengvindows. as far as the next loop iteration, thereby fetching the data




Normalized IPCs

1.8

E8::32
1.7 O16::24
1.6 0O24::16
1.5 E28::12
=£132::8
1.4 .
S B dynamic
1.3 §
= 3
1.2 4 & §
)
1.1 N | E :
3 N | E M M
1 5 S| E M = :
N | E : st IR NTE :
0.9 3 N | E : NIER R |
By = = " = = ke " £
3 8| E : 8| E S| E g | E
3 N N [El R N | E
0.7 3 3 : NIl §|E N | E
B 3 2 N | E N | E M | E
= i S B | E SRR | E
0.6 3 N | E : | E N[ E | E
2 M| E | E 3 By
3 S| E 2 S | E 3 3
32 S | E 3 N | E 3 &
0.5 ~ 3 N | E 3 S | E 3 S | E
B N | E 3 : | E N | B H | E
3 | E B 2 |k B |k N | E
0.4 - N S| BN N | B N N | E
3 S | E 3 3 & & | £
3 3 3 3 & o | £
0.3 - 3 3 3 3 & 3
N 3 N I*: 3 3
em3d peri art swim lucas sp bt go HM
Figure 4. Performance of the futurethread for various fixed register allocations between the primary and future

thread. For example, ‘8::32’ represents an allocation wher e 8 rename registers are reserved for the  primary
thread and the remaining 32 are reserved forthe  future The last bar shows performance with the interval-based
scheme that dynamically picks the best allocation. IPCs hav e been normalized with respect to a base case that
has no futurethread and uses all 40 rename registers for the ~ primary.

em3d mst peri art swim lucas sp bt go comp

Num timeouts 0.29 1.12 0.56 0.31 0.42 0.59 0.37 0.16 0.00 0.03

Num eager reg 0.45 0.03 0.65 0.30 0.11 0.06 0.13 0.28 0.01 0.06
release

Num natural reuse 0.14 0.13 0.20 0.23 0.37 0.25 0.22 0.26 0.10 0.16

Avg dist between 71, 136 25,115 51, 114 63, 131 67,123 31, 183 75,128 47,75 19,19 | 39, 49
oldest and youngest
instrs (basefuture)

Num loads issued by 0.12,0.05| 0.02,0.02| 0.11, 0.05| 0.02,0.01| 0.04,0.04| 0.05,0 | 0.03,0.02| 0.05,0.04| 0,0 0,0
primary thread that
take more than 40
cycles (basefuture)

Num future 0.7 0.2 14 0.8 0.8 0.6 0.6 0.9 0.2 0.4
instrs issued
Branch direction 95% 97% 94% 98% 99% 98% 89% 98% 80% 93%

prediction rate
(rounded off)

% of mispreds 88% 0% 59% 42% 74% 99% 73% 68% 4% 3%
detected by
futureinstrs

IRB hit rate for 20% 5% 10% 35% 8% 0% 5% 14% 22% 16%
primary thread

Table 3. Various statistics pertaining to the future thread (with a dynamic allocation of registers) and the base
case with no futurethread (most numbers are normalized to the number of committ ed instructions, for example,
Num timeouts is the number of timeouts per committed instruc tion).
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Figure 5. Futurethread performance broken down Figure 6. Contributions of the features of the future
as prefetch, early branch recovery, and reuse. thread. The left bar has all features turned on. The

other bars show speedups when each is disabled.

long before thgrimarythread starts that iteration.

When thefuturethread is allowed to initiate early branch  instruction within the processor increases greatly bezaus
recovery, we see significant improvements for the programsof thefuturethread. This number represents the size of the
with high branch mispredict rates. This results in an addi- in-flight instruction window. The largest window seen by
tional improvement of 5%, 24%, and 13%eém3d, perime-  the base processor is only 75 instructions (in the case of
ter, andsp. On the other hand, we see a big drop in per- sp), but thefuturethread can look in a much larger window
formance forswim When thefuture thread initiates early  (aslarge as 183 in the casdwfag because of the eager re-
branch recovery, it tries to restore a valid register staee. lease of registers and the timeout. Both of these often come
cause of the eager release of registers, some values remainto play as evidenced by the statistics in the first two rows
lost, disallowing progress along those dependence chainsof Table 3. In addition, Table 3 demonstrates that a sig-
This sets off a chain reaction, where thurethread runs  nificant number of instructions need not be re-executed by
much further ahead but is unable to execute any of the in-theprimarythread if their mapping still exists in ttfature,
structions. It can be productive again only whenghienary which we describe as natural reuse.

thread catches up, which occurs whenghenary discovers Figure 6 quantifies the contributions of these three com-
a branch mispredict (for a branch not executed byuhae) ponents by disabling them one at a time. It can be seen that
and squashes all subsequent instructicBa&imis a loop- eager register release accounts for most of the speedup in

based floating-point code and has a low branch mispredictem3dandperimeter while timeout helps greatly iperime-
rate. As a result, thiuturethread may have to wait a very terandlucas Forlucas the primary bottleneck is the issue
long time before it has valid register mappings. This effect queue. The use of the timeout makes it possible to reduce
is also somewhat seen fbt. This negative effect of early  contention for the issue queue, thereby not stalling didpat
branch recovery can be easily eliminated by not attemptingSimilarly, by allowing natural reuse, we prevent the re-
it for programs with high branch prediction accuracies. Our dispatch of instructions into the issue queue, thus aliiega
simulations do not assume the use of such a scheme. the bottleneck again. Thus, the combination of the timeout
Finally, by adding the IRB we see an additional over- mechanism and the natural reuse allowsfttiarethread to
all improvement of 5%. A number of instructions that have advance far enough to do an effective job prefetching. Elim-
been dispatched by tfieturethread need not be re-executed inating eager register release results in an improvement fo
when seen by thprimary thread. The last row in Table 3 swimbecause an early recovery from a branch mispredict
shows that up to 35% of these instructions can obtain theirby thefuture thread now results in no lost values, thereby
result from the IRB. This IRB hit rate improves slightly eliminating the problem alluded to earlier. We see almost
when we use larger IRBs. Using a 128-entry IRB, we see no improvements for non-memory-intensive programs like

additional improvements of 8% and 7% mnstandbt, re- goandcompressas they rarely run out of registers, thereby
sulting in an additional 1% overall improvement. not triggering theuturethread.
3.2.3 Breakdown of contributions 3.2.4 Effect of various processor parameters

Three major design components enableftharethread to ~ Mst is a memory-intensive program that does not show
advance ahead of Frpsﬂmary. From Table 3, it can be seen 5Compresshas a high L1 miss rate, but a low L2 miss rate, and the
that the average distance between the oldest and youngesi-flight window in the base processor is large enough to hllatencies.
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Figure 7. Speedups with the future thread for the Figure 8. Speedups with the futurethread for pro-
Alpha-like model (left), and a model that has iden- cessor models with different register file sizes.

tical parameters except for a larger issue queue.

instructions has been exploited in a number of approaches,

much improvement as it has little nearby ILP, causing in- such as Multiscalar [30], Trace processors [25], DMT [1],
structions to wait in the issue queue, thus stalling dispatc and TLDS [31]. These are hardware intensive solutions as
For the other programs, by using theurethread, the reg-  they assume the presence of a separate processing unit or a
ister file is removed as the bottleneck to dispatch. Hence,Simultaneous Multithreaded (SMT [33]) base to execute the
stalls are often caused by the small size of the issue queuethreads. They require significant hardware to store results
We next evaluate theuture thread for a processor model and to transfer register values between threads to free up
that has larger int and fp issue queues of 30 entries eachdependences. They are also highly speculative in nature, as
The larger issue queues resulted in no improvement for thethese threads might lie much further ahead in the program
base case, butthey enabledfineirethread to advance even  control flow.
further, resulting in an overall speedup of 1.21 (Figure 7). zjlles and Sohi [36] characterize problem instructions

Finally, we study the effect of different register file sizes  (cache misses, branches) and the instructions that lead to
Figure 8 shows speedups with theurethread for proces-  them. They point out that a smaller subset of the program
sor models that have physical register file sizes ranging fro  code can be pre-executed so thatrtr@ninstruction stream
56 to 80 registers (intand fp, each). Each bar uses the correrarely encounters cache misses or branch mispredicts. They
sponding base case to compute speedups. Two effects comgssume an underlying implementation that can pre-execute
into play here. Using a smaller register file makes it more these slices. Roth and Sohi [28] talk about such an imple-
of a bottleneck, increasing the potential benefit of fite  mentation that can pre-execute certain dependence chains.
turethread. However, with a smaller register file, fature  They use profiling to generate these slices and annotate the
thread will also be limited in its ablllty to look ahead, redu code to trigger them at appropriate points_ These threads
ing the prefetch effect. Depending on which effect domi- yse physical registers to store their results and they e in
nates, we see different behaviors for the different progtam grated into the main program thread when it catches up.
Hence, a clear trend i.s not seen in the overall speedup NUM- There have also been a couple of attempts at improving
bers. It must be pointed out that the raw IPC for & 56- pranch resolution by pre-execution [11, 27], where thesslic
register base case augmented with filterre thread (0.72 getermining the branch is duplicated and made to run in a
IPC) is better than the raw IPC for a 72-register base casesgnarate window. Farcy et al [11] notice regularity in the
without thefuture thread (0.71 IPC). While the IPCs are  pranch condition computations and use value prediction to
comparable, the former processor model is likely to have a 5.celerate the second thread.
faster clock speed. Simultaneous Subordinate Microthreading (SSMT) [5]
4 Rdated Work and Assisted Execution [9] are _sc_hemes where custom-

generated threads are invoked within the hardware by cer-

Dundas and Mudge [10] introduced a scheme for halting tain events. These threads perform very simple specific
the main instruction stream on a cache miss, and running tasks and cannot be automatically generated.
ahead to prefetch data. However, this was only applicable A related concept is AR-SMT [24] and SRT [22], that
to an in-order machine with no ILP support. run two copies of the same program on an SMT proces-

The idea of forming multiple threads that execute distant sor and compare results from both threads. Their goal is



to detect transient faults in a chip, rather than to enhancetecture on reaching the head of the re-order buffer. Subse-
performance. An extension of this is the Slipstream proces-quentinstructions use up the available physical regisars
sor [32], where the thread running ahead is a shortened verter which the dispatch stage stalls. In our proposed mieroar
sion of the original program (dynamically created by detect chitecture, part of the physical registers are allocated fo
ing and eliminating ineffectual pieces of the program), and the main program and once they are consumed,ftitare
the trailing thread is the full program that verifies the eatr ~ thread gets triggered and makes forward progress. It ea-
working of the leading thread. The two programs together gerly releases registers and times out instructions thet wa
can run faster than the single original program because theoo long in order to opportunistically advance far beyond
leading thread communicates values and branch outcomesvhat theprimary thread is capable of. It thus improves per-
to the trailing thread as (often correct) predictions. formance by resolving branch mispredicts early, by warm-
Cruz et al [7] present a multi-banked register file, with ing up the data and instruction caches, the instructiorereus
the banks having different speeds. While this degrades IPC buffer, and by reusing register mappings and values. In ad-
it enables a faster clock. Other work [17, 34] proposes im- dition, an interval-based scheme is used to allocate the op-
proving register utilization by allocating registers whien timal number of registers to tHaturethread.
structions complete. The relaxed conditions for releasing Our evaluation on some of the more memory-intensive
registers into the free list have been proposed before fil8] i benchmarks show very promising speedups of up to 1.64.
the context of processors with imprecise exceptions. The overall improvement on our benchmark suite is 17%.
The primary advantage of théuture thread is its  The contributions come mainly from prefetching, with sig-
prefetching effect. A number of hardware [6, 13, 26] and nificant contributions from early branch recovery in the-pro
software prefetching [16, 19] schemes have been proposedgrams limited by poor branch prediction accuracies. The
Most of these schemes can do a better job of prefetching agise of a small 16-entry IRB accounts for 5% of this im-
they exploit some higher-level program information (reg- provement. The dynamic allocation of registers plays a ma-
ularity of accesses). This regularity can be determined atjor role in tuning the hardware to the ILP requirements of
compile time or as strides or load-value dependences ineach program phase. The use of a larger issue queue allows
hardware. This lack of high-level information prevents us thefuturethread to achieve an overall speedup of 1.21.
from doing a very effective job of prefetching. We, how-
ever, do a more exact job as we respect dependences anBEferenceS
actually compute load addresses (rather than use hesristic
like most hardware prefetch schemes). We also use dy- [1] H. Akkary and M. Driscoll. A Dynamic Multithread-
namic branch prediction to follow the probable control-flow ing Processor. IProceedings of MICRO-31pages
path, instead of greedily prefetching [16] along all pokesib 226-236, 1998.
paths. This prevents us from fetching useless lines into the ) )
cache (unless we are on the wrong branch path). Hence, [2] R. Balasubramonian, D. Albonesi, A. Buyukto-
our techniques are also applicable to irregular codes with sunoglu, and S. Dwarkadas. Memory Hierarchy Re-
unpredictable control flow and unpredictable data accesses ~ configuration for Energy and Performance in General-
Luk [15] addresses a similar problem in the context of an Purpose Processor Architectures. Rroceedings of
SMT processor by using the compiler to help pre-execute MICRO-33 pages 245-257, Dec 2000.
these codes. Some of the prefetch schemes can also be Com[g]
bined with thefuturethread to yield greater speedups. For
example, adding th&uture thread to a base case that has a
stride prefetcher results in significant speedups [3].
A software approach to tackling the problem of a sin-
gle cache miss holding up the ROB is described by Pai and [4] D. Burger and T. Austin. The Simplescalar Toolset,
Adve [20]. They present a compiler algorithm that restruc- Version 2.0. Technical Report TR-97-1342, University
tures code so that cache misses are clustered, thereby in-  of Wisconsin-Madison, June 1997.
creasing the memory parallelism while the ROB is stalled.
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