
An Integrated Hardware-Software Approach to
Flexible Transactional Memory∗

Arrvindh Shriraman, Michael F. Spear, Hemayet Hossain, Virendra J. Marathe,
Sandhya Dwarkadas, and Michael L. Scott

Department of Computer Science, University of Rochester
{ashriram,spear,hossain,vmarathe,sandhya,scott}@cs.rochester.edu

ABSTRACT
There has been considerable recent interest in both hardware and
software transactional memory (TM). We present an intermediate
approach, in which hardware serves to accelerate a TM implemen-
tation controlled fundamentally by software. Specifically, we de-
scribe an alert on update mechanism (AOU) that allows a thread to
receive fast, asynchronous notification when previously-identified
lines are written by other threads, and a programmable data isola-
tion mechanism (PDI) that allows a thread to hide its speculative
writes from other threads, ignoring conflicts, until software decides
to make them visible. These mechanisms reduce bookkeeping, val-
idation, and copying overheads without constraining software pol-
icy on a host of design decisions.

We have used AOU and PDI to implement a hardware-
accelerated software transactional memory system we call RTM.
We have also used AOU alone to create a simpler “RTM-Lite”.
Across a range of microbenchmarks, RTM outperforms RSTM, a
publicly available software transactional memory system, by as
much as 8.7× (geometric mean of 3.5×) in single-thread mode.
At 16 threads, it outperforms RSTM by as much as 5×, with an
average speedup of 2×. Performance degrades gracefully when
transactions overflow hardware structures. RTM-Lite is slightly
faster than RTM for transactions that modify only small objects;
full RTM is significantly faster when objects are large. In a strong
argument for policy flexibility, we find that the choice between ea-
ger (first-access) and lazy (commit-time) conflict detection can lead
to significant performance differences in both directions, depending
on application characteristics.

Categories and Subject Descriptors: B.3.2 [Memory Struc-
tures]: Design Styles—Shared memory D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel programming
C.1.2 [Processor Architectures]: Multiprocessors

General Terms: Performance, Design, Languages

Keywords: Transactional memory, Cache coherence, Multiproces-
sors, RSTM
∗This work was supported in part by NSF grants CCR-0204344, CNS-
0411127, CNS-0615139, and CNS-0509270; an IBM Faculty Partnership
Award; equipment support from Sun Microsystems Laboratories; and fi-
nancial support from Intel and Microsoft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’07, June 9–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-706-3/07/0006 ...$5.00.

1. INTRODUCTION AND BACKGROUND
Transactional memory (TM) has emerged as a promising al-

ternative to lock-based synchronization. TM systems seek to in-
crease scalability, reduce programming complexity, and overcome
the semantic problems of deadlock, priority inversion, and non-
composability associated with locks. Originally proposed by Her-
lihy and Moss [9], TM borrows the notions of atomicity, consis-
tency, and isolation from database transactions. In a nutshell, the
programmer or compiler labels sections of code as atomic and
relies on the underlying system to ensure that their execution is
serializable and as highly concurrent as possible. Several hard-
ware [1, 3,7,14, 16,18–20] and software [5,8,12, 22,24] TMs have
been proposed. Hardware has the advantage of speed, but embeds
significant policy in silicon. Software can run on stock processors
and preserves policy flexibility, but incurs significant overhead to
track data versions, detect conflicts between transactions, and guar-
antee a consistent view of memory.

We propose that hardware serve simply to optimize the perfor-
mance of transactions that are controlled fundamentally by soft-
ware. We present a system, RTM, that embodies this philosophy.
The RTM software (currently based on a modified version of the
RSTM software TM [13]) retains policy flexibility, and implements
transactions unbounded in space and in time.

The RTM hardware consists of 1) an alert-on-update mecha-
nism (AOU) for fast software-controlled conflict detection; and 2)
programmable data isolation (PDI), which allows potentially con-
flicting readers and writers to proceed concurrently under software
control. AOU is the simpler and more general of the mechanisms. It
can be used for almost any task that benefits from fine-grain access
control. In RTM, it serves to capture transaction conflicts and guar-
antee memory consistency without the heavy cost of continually
validating objects that were previously read [27]. PDI additionally
eliminates the cost of data copying or logging in bounded transac-
tions. In our experiments we evaluate both full RTM (RTM-F) and
an “RTM-Lite” that uses only AOU.

Damron et al. [4] describe a design philosophy for a hybrid TM
system in which hardware makes a “best effort” attempt to complete
transactions, falling back to software when necessary. The goal is
to leverage almost any reasonable hardware implementation. Ku-
mar et al. [10] describe a specific hardware–software hybrid that
builds on the software system of Herlihy et al. [8]. Unfortunately,
this system still embeds significant policy in silicon. It assumes, for
example, that conflicts are detected as early as possible, disallow-
ing either read-write or write-write sharing. Scherer et al. [12, 23]
report performance differences across applications of 2×–10× in
each direction for this design decision, and for contention manage-
ment and metadata organization.

By leaving policy to software, AOU and PDI allow us to ex-
periment with alternative policies on central TM issues such as
data granularity (e.g., word v. object-based), metadata organiza-
tion, progress guarantees (blocking/nonblocking), conflict detec-
tion, contention management, nesting, privatization, and virtual-
ization. We focus in this paper on conflict detection: we permit,
but do not require, read-write and write-write sharing, with delayed
detection of conflicts. We also employ a software contention man-
ager [23] to arbitrate conflicts and determine the order of commits.

Like the Damron and Kumar hybrid proposals, RTM falls back
to a software-only implementation of transactions in the event of
overflow. Because conflicts are handled in software, speculatively
written data can be made visible at commit time by the local cache,
with no need for global coordination in hardware. Moreover, these
speculative writes (and a small amount of nonspeculative metadata)
are all that must remain in the cache for fast-path execution: data
that were speculatively read or nonspeculatively written can safely
be evicted at any time. Hence, in contrast not only to the hybrid pro-
posals, but also to TLR [19], LTM [1], VTM [20], and LogTM [16],
it can accommodate “fast path” execution of significantly larger
transactions with a given size of cache. Nonspeculative loads and
stores are permitted in the middle of transactions—in fact they con-
stitute the hook that allows us to implement policy in software.

We describe an implementation of AOU and PDI that can be in-
tegrated into either the L1 level of a CMP with a shared L2 cache, or
the L2 level of an SMP with write-through L1 caches. We describe
an implementation based on the classic snoop-based MESI proto-
col. Other implementations (for directory-based protocols) are a
subject of ongoing work. Likewise, while our current software in-
herits a variety of policies (in particular, nonblocking semantics and
object-level granularity) from RSTM, our hardware could be used
with a variety of other software TMs, including systems that track
conflicts at word granularity or use locks to make updates in place.

RTM was originally introduced (without performance results)
in a 2005 technical report and a paper at TRANSACT’06 [26]. Re-
searchers in the McRT group at Intel subsequently published a vari-
ant of AOU that uses synchronous polling instead of asynchronous
events to detect cache line evictions. Their HASTM system [21]
resembles RTM-Lite in its emphasis on software control, but em-
ploys a more streamlined software stack, with blocking semantics,
eager-only conflict detection, simplified contention management,
and weak guarantees of correctness.

For a suite of microbenchmarks with varying access patterns,
RTM improves the performance of common-case bounded transac-
tions by an average (geometric mean) of 3.5× relative to RSTM on
one thread, while retaining RSTM’s good scalability as the number
of threads increases. Using AOU alone, RTM-Lite is able to dra-
matically reduce the overhead of validation. It loses to full RTM,
however, for transactions that modify large objects. When trans-
actions overflow the available hardware support, performance de-
grades linearly with the fraction of overflowed transactions. The
choice between eager (first access) and lazy (commit time) detec-
tion of conflicts, enabled by software control of PDI, can result in
differences in performance in either direction depending on the ap-
plication access pattern (up to two orders of magnitude in one of our
microbenchmarks), demonstrating the need for policy flexibility.

Section 2 describes our hardware mechanisms in detail, includ-
ing instruction set extensions, coherence protocol, and the mecha-
nism used to detect conflicts and abort remote transactions. Sec-
tion 3 then describes the RTM runtime that leverages this hardware
support. Section 4 evaluates the performance of RTM in compar-
ison to coarse-grain locks, RSTM, and the “RTM-Lite” system,

which uses AOU but not PDI. It also presents results to demon-
strate the benefits of policy flexibility. We conclude in Section 5
with a summary of contributions and future directions.

2. RTM HARDWARE

2.1 Alert-On-Update (AOU)
AOU facilitates conflict detection by selectively exposing co-

herence events (potential writes by other processors) to user pro-
grams: threads register an alert handler and then mark selected
lines as alert-on-update. When a marked line is lost from the cache,
the cache controller notifies the local processor, effecting a spon-
taneous subroutine call to the handler of the current thread. The
handler is informed of the nature of the event (and potentially of
the address of the affected line, though we do not use this infor-
mation/feature in RTM). Because a line may be lost due not only
to coherence but to conflict or capacity misses, a handler must in
general double-check the cause of the alert.

Registers
%aou_handlerPC: address of handler to be called on a user-space alert
%aou_oldPC: PC immediately prior to call to

%aou_handlerPC
%aou_alertType (2bits): remote write, lost alert, or capacity/conflict

eviction
%alert_enable (1bit): set if alerts are to be delivered; unset when they are

masked
interrupt vector table one extra entry to hold address of handler for

kernel-mode alerts
Instructions
set_handler %r move %r into %aou_handlerPC
clear_handler clear %aou_handlerPC and flash-clear alert bits

for all cache lines
aload %r set alert bit for cache line containing the address in

%r; set overflow condition code to indicate
whether the bit was already set

arelease %r unset alert bit for line containing the address in %r
arelease_all flash-clear alert bits on all cache lines
enable_alerts set the alert-enable bit

Cache
one extra bit per line, orthogonal to the usual state bits

1: Alert-on-update hardware requirements.

Implementation of AOU relies on the cache coherence protocol,
but is essentially independent of protocol details. Table 1 summa-
rizes hardware requirements. These include special registers to hold
the address of the user-mode handler and a description of the cur-
rent alert; an extra entry in the interrupt vector table (for alerts that
happen while running in kernel mode); and instructions to set and
unset the user-mode handler and to mark and unmark cache lines
(i.e., to set and clear their alert bits).

ALoads serve two related roles in RTM, which we describe in
more detail in Section 3. First, every transaction ALoads a location
that describes its current status. If any other transaction aborts it
(by modifying this location), the first transaction is guaranteed to
notice. Second, a transaction can ALoad a word of metadata as-
sociated with a given object. If writers modify that word before
committing changes to the object, readers are guaranteed to notice.
Via this mechanism, we permit lazy conflict detection (i.e., we do
not require that conflicts be detected as soon as some word of the
object is speculatively written) by controlling when the metadata is
ALoaded and when it is written with respect to the rest of the object.

2.2 Programmable Data Isolation
Caches inherently provide data buffering, but coherence proto-

cols normally propagate modifications quickly to all copies. As in

Registers
%t_in_flight: a bit to indicate that a transaction is currently executing
%hardware_t: a bit to indicate that tload and tstore should be treated as such
Instructions
begin_t set the %t_in_flight bit to indicate the start of a transaction
begin_hw_t set the %hardware_t and %t_in_flight bits to indicate a transaction in which tloads and tstores should be

treated as such
tstore [%r1], %r2 write the value in register %r2 to the word at address %r1; isolate the line (TMI state)
tload [%r1], %r2 read the word at address %r1, place the value in register %r2, and tag the line as transactional
abort discard all isolated (TMI or TI) lines; clear all transactional tags and reset the %t_in_flight and %hardware_t bits
cas-commit [%r1], %r2, %r3 compare %r2 to the word at address %r1; if they match, commit all isolated writes (TMI lines) and store %r3 to the word;

otherwise discard all isolated writes; in either case, clear all transactional tags, discard all isolated reads (TI lines), and reset
the %t_in_flight and %hardware_t bits

Cache
two extra stable states, TMI and TI, for isolated reads and writes; transactional tag for the MES states

2: TMESI hardware requirements.

BusRd/S

 BusTRdX,
UpgrTX/Flush

PrTWr/Flush

PrTRd/−

PrTRd/−

PrRd,PrTRd/−

PrTWr/−

PrRd,PrTRd/−

PrTWr
/ BusTRdX

PrWr

X/–

PrRd/−

PrWr

PrRd /

BusRd,X/–

PrRd/−

PrRd /

/ BusRdX

PrRd&¬t_in_flight
/ BusRd(T)

PrRd,PrWr/−

PrWr/−

PrRd&t_in_flight/BusRd(T)

PrTRd/BusRd(S,T)

/ UpgrX

/ UpgrX

E

M

I

S

PrTWr/–

X/–

X/Flush

BusRd TMI

TS

PrTWr

TE

TM

TI

PrTWr
/ UpgrTX

PrRd,PrTRd/−

/ Flush

BusTRdX,
 UpgrTX/–

BusRd/Flush

PrRd,PrTRd,PrTWr,
BusTRdX,UpgrTX/–
 BusRd/T

BusTRdX,
 UpgrTX/–

PrTRd/BusRd(S,T)

MESI States

TMESI States

PrTRd/−

BusRd/S

CAS−Commit

ABORT
PrRd,PrTRd,BusRd,BusTRdX,UpgrTX/−

/ Flush
PrTWr

PrTWr
/ UpgrTX

BusRd/S

BusRd/S

BusRd(S,T)

BusRd(S,T)

PrTRd/BusRd(T)

PrWr,BusRdX,UpgrX
/ ABORT state, MESI action;
if TMI, alert processor

Dashed boxes enclose the MESI and TMESI
subsets of the state space. On a CAS-Commit,
TM, TE, TS, and TI revert to M, E, S, and I, re-
spectively; TMI reverts to M if the CAS suc-
ceeds, or to I if it fails. Notation on transi-
tions is conventional: the part before the slash
is the triggering message; after is the ancil-
lary action (‘–’ means none). X stands for the
set {BusRdX, UpgrX, BusTRdX, UpgrTX}.
“Flush” indicates writing the line to the bus.
S and T indicate signals on the “shared” and
“threatened” bus lines respectively. Plain,
they indicate assertion by the local proces-
sor; parenthesized, they indicate the signals
that accompany the response to a BusRd re-
quest. An overbar means “not signaled”. For
simplicity, we assume that the base protocol
prefers memory–cache transfers over cache–
cache transfers. The dashed transition from
the TMESI state space to the MESI state
space indicates that actions occur only on the
corresponding cache line. “ABORT state”
is the state to which the line would transi-
tion on abort. The solid “CAS-Commit” and
“ABORT” transitions from the TMESI state
space to the MESI state space operate on all
transactional lines.

1: TMESI Protocol

most hardware TM proposals [1, 7, 16, 20], we allow a thread to
delay this propagation while executing speculatively, and then to
make an entire set of changes visible to other threads atomically.
We use a level of cache close to the processor to hold the new copy
of data, and rely on shared lower levels of the memory hierarchy to
hold the old copy. Unlike most other hardware TM designers, how-
ever, we allow software to limit the extent to which transactionally
read and written lines are visible to the coherence protocol, allow-
ing those lines to be read and written transactionally even when
they are also being written by some other, concurrent transaction.

We describe an implementation based on the traditional snoop-
based MESI coherence protocol, which we label TMESI. Table 2
summarizes hardware requirements. Figure 1 presents the state
transition diagram. Potentially speculative reads and writes use
TLoad and TStore instructions. These instructions are interpreted
as speculative when the hardware transaction bit (%hardware_t)
is set (and an alert handler is in place). As described in Section 3,

this allows the same code path to be used by both fast-path transac-
tions and those that overflow the available hardware support. TStore
is used for writes that require isolation. TLoad is used for reads that
can safely be cached despite remote TStores.

Speculative reads and writes employ two new coherence states:
TI and TMI. These states allow a software policy, if it chooses,
to perform lazy detection of read-write and write-write conflicts.
Hardware helps in the detection task by piggybacking a threat-
ened (T) signal/message, analogous to the traditional shared (S)
signal/message, on responses to read requests whenever the line
exists in TMI state somewhere in the system. The T signal warns a
reader of the existence of a potentially conflicting writer.

TMI serves to buffer speculative local writes. Regardless of pre-
vious state, a line moves to TMI in response to a PrTWr (the result
of a TStore), tagging any necessary coherence message as a trans-
actional access. A TMI line then reverts to M on commit and to
I on abort. Software must ensure that among any concurrent con-

flicting writers, at most one commits, and if a conflicting reader
and writer both commit, the reader serializes first. The first TStore
to a modified cache line results in a writeback prior to transitioning
to TMI to ensure that lower levels of the memory hierarchy have
the latest non-speculative value. A line in TMI state threatens read
requests and suppresses its data response, allowing lower levels of
the hierarchy to supply the non-speculative version of the data.

TI allows continued use of data that have been read by the cur-
rent transaction, but that may have been speculatively written by
a concurrent transaction in another thread. An I line moves to TI
when threatened during a TLoad(speculative caching of ordinary
loads is also allowed inside a transaction so long as software con-
ventions detect the read-write conflict); an M, E, or S line that is
tagged transactional (indicating that the current transaction has pre-
viously performed a TLoad) moves to TI when written by another
processor. A TI line must revert to I when the current transaction
commits or aborts, because a remote processor has made specu-
lative changes which, if committed, would render the local copy
stale. No writeback or flush is required since the line is not dirty.
Even during a transaction, silent eviction and re-read of a TI or
transactional M, E, or S line is not a problem; software ensures
that no writer can commit unless it first aborts the reader. A non-
transactional store (whether from the local processor or from a re-
mote processor via an exclusive request) to a line in transactional
state reverts the line to the state it would be in if aborted, and then
performs the corresponding MESI coherence protocol action. In
addition, if the line was in TMI state, an alert is triggered.

The CAS-Commit instruction performs the usual function of
compare-and-swap. In addition, if the CAS succeeds, TMI lines re-
vert to M, making their data visible to other readers through normal
coherence actions. If the CAS fails, TMI lines are invalidated, and
software branches to an abort handler. In either case, TI lines revert
to I and any transactional tags are flashed clear on M, E, and S lines.
The motivation behind CAS-Commit is simple: software TM sys-
tems invariably use a CAS or its equivalent to commit the current
transaction; we overload this instruction to make buffered transac-
tional state once again visible to the coherence protocol. The Abort
instruction clears the transactional state in the cache in the same
manner as a failed CAS-Commit.

To the best of our knowledge, RTM and TCC [7] are the only
hardware or hybrid TM systems that permit read-write and write-
write sharing; other schemes all perform eager conflict detection at
the point where a conventional coherence protocol must invalidate
a speculatively read line or demote a speculatively written line. By
allowing a reader transaction to commit before a conflicting writer,
RTM permits significant concurrency in the face of long-running
writers. Write-write sharing is more problematic, since it can’t re-
sult in more than one commit. Even so, it allows us to avoid abort-
ing a transaction in favor of a competitor that is ultimately unable
to commit; it may also be desirable in conjunction with early re-
lease [12]. Note that nothing about the TMESI protocol requires
read-write or write-write sharing; if the software protocol detects
and resolves conflicts eagerly, the TI state will simply go unused.

2.3 Ordering and Atomicity Requirements
On machines with relaxed memory models, begin_t and

begin_hw_t must be acquire fences, and cas-commit must
be a release fence. An aload by itself is not a fence. As used in
RTM, however, both aload (and enable_alerts) must pre-
cede subsequent TLoads and TStores; this can be arranged with an
explicit acquire fence.

Since alerts are only hints (they are never elided, but may

be spurious), it isn’t essential to resolve prior branches and ex-
ceptions prior to an aload, but resolution would be required
prior to enable_alerts. Alternatively, aload (and enable_
alerts) could take effect at retirement (similar to stores), with an
alert delivered if the line is invalid at the time of retirement.

Simultaneous transactional and non-transactional stores to the
same cache line within a transaction are not allowed (and may re-
sult in loss of transactional modifications to the line, triggering an
alert, which the software can use to abort the transaction). Non-
transactional stores concurrent with executing transactions cause
the transaction to receive an alert if it has the line in TMI state;
they invalidate the line if in other transactional states. RTM lever-
ages this behavior in its handling of memory management meta-
data, which is colocated (in the same cache line) as transactional
object data: updates to this metadata are made only outside trans-
actions, thereby preserving coherence.

To simplify the management of transactional metadata, our im-
plementation of RTM employs a Wide-CAS instruction (not shown
in Table 2) that implements compare-and-swap across multiple con-
tiguous locations (within a single cache line). As in Itanium’s
cmp8xchg16 instruction, if the first two words at location A
match their “old” values, all words are swapped with the “new”
values (loaded into contiguous registers). Success is detected by
comparing old and new values in the registers.

3. RTM SOFTWARE
The RTM runtime is based on the open-source RSTM sys-

tem [13], a C++ library that runs on legacy hardware. RTM uses
alert-on-update and programmable data isolation to reduce book-
keeping and validation overheads, and to avoid copying, thereby
improving the speed of “fast path” transactions. When a transac-
tion’s execution time exceeds a single quantum, or when the work-
ing set of a transaction exceeds the ALoad or TStore capacity of the
cache, RTM restarts the transaction in a more conservative “over-
flow mode” that supports unboundedness in both space and time.

3.1 The RTM API
RTM runs the same source code—and supports the same pro-

gramming model—as RSTM. Transactions are lexically scoped,
and delimited by BEGIN_TRANSACTION and END_TRANS-
ACTION macros. The first of these sets the alert handler for a
transaction and configures per-transaction metadata. The second
issues a CAS-Commit.

Objects accessed transactionally must derive from the RTM
Object class. This class contains metadata described in Sec-
tion 3.2, and provides access to transaction-safe memory manage-
ment routines, which defer the reuse of deleted space until we are
certain that no doomed transaction retains a dangling reference.

In order to access fields of an object, a thread must obtain read
or write permission by performing an open_RO or open_RW call.
The API also provides a release method [8], which allows a
programmer with application-specific semantic knowledge to in-
form the runtime that conflicts on the object are no longer cause to
abort the transaction. Release is a potentially unsafe optimiza-
tion, which must be used with care.

The runtime sometimes requires that a set of related metadata
updates be allowed to complete, i.e., that the transaction not be
aborted immediately. This is accomplished by setting a “do not
abort me” flag. If an alert occurs while the flag is set, the handler
defers its normal actions, sets another flag, and returns. When the
runtime finishes its updates, it clears the first flag, checks the sec-
ond, and jumps back to the handler if action was deferred. This

“deferred abort” mechanism is also available to user applications,
where it serves as a cheap, non-isolated approximation of open
nested transactions [17].

3.2 Metadata
Every RTM transaction is represented by a descriptor (Figure 2)

containing a serial number and a word that indicates whether the
transaction is currently ACTIVE, COMMITTED, or ABORTED. The
serial number is incremented every time a new transaction begins.
It enables the reuse of descriptors without the need for cleanup in
the wake of a successful commit.

Every transactional object is represented by a header containing
five fields: a pointer to an “owner” transaction, the owner’s serial
number, pointers to valid (old) and speculative(new) versions of the
object, and a bitmap listing overflow transactions currently reading
the object (threads that need to run in overflow mode compete for
one of 32 global overflow IDs).

If the serial numbers of an object header and descriptor do not
match, then the descriptor’s status is assumed to be COMMITTED.
ABORTED overflow transactions must clean up all references to
their descriptors before they start a new transaction. The mem-
ory manager allocates every object, header, and descriptor at a new
cache-line boundary. On a system with large cache lines, internal
fragmentation could be reduced (for headers and descriptors) by
implementing A tags at sub-line granularity, as in HASTM [21];
we do not consider this option here.

Open_RO returns a pointer to the most recently committed ver-
sion of the object. Typically, the owner/serial number pair indi-
cates a COMMITTED transaction, in which case the New pointer is
valid if it is not NULL; otherwise the Old pointer is valid. If the
owner/serial number pair indicates an ABORTED transaction, then
the Old pointer is always valid. As an optimization, open_RO
also CASes a NULL pointer into the owner/serial number pair in
order to avoid having to look up the status of the transaction de-
scriptor multiple times per successful transaction. When the owner
is ACTIVE, there is a conflict. An object never has entries in the
overflow readers list while there is an ACTIVE owner.

Open_RW returns a pointer to a writable copy of the object. For
fast-path transactions this is the valid version that would be returned
by open_RO; updates will be buffered in the cache. For overflow
transactions it is a clone or copy of the valid version.

At some point between its open_RW and commit time, a
transaction must acquire every object it has written. The acquire
operation first gets permission from a software contention man-
ager [8, 23] to abort all transactions in the overflow reader list. It
then writes the owner’s ID, the owner’s serial number, and the ad-
dresses of both the last valid version and the new speculative ver-
sion into the header using Wide-CAS. Finally, it aborts any transac-
tions in the overflow reader list of the freshly acquired object.1

At the end of a transaction, a thread issues a CAS-Commit to
change its state from ACTIVE to COMMITTED. If the CAS fails
because another thread has set the state to ABORTED, the transac-
tion is retried.

3.3 Policy Flexibility
In a typical hardware TM system, contention management is

performed by the cache controller that owns the line, based on
the limited information available to it, while the requesting thread
blocks waiting for a response. In RTM, contention management
1It is possible for a reader to enter the list after the acquirer finishes request-
ing permission to abort readers. In this case the late-arriving reader may be
aborted without arbitration, ensuring correctness but not fairness.

is performed by nonblocking software, executed by the thread that
discovers the conflict, using whatever information the runtime de-
signer wants.

Two transactions conflict only if they access the same object
and at least one of them attempts to write it. In RTM this conflict is
not visible until the writer acquires the object. Under eager conflict
detection, acquisition occurs at open time, and read-write and write-
write sharing are precluded. A writer aborts any extant readers, and
once there is a writer, subsequent readers and writers must abort the
eager writer before they can access the object. In contrast, under
lazy conflict detection, acquisition is deferred until commit time,
and read-write and write-write sharing are permitted.

Eager acquisition avoids the need to maintain an explicit list of
written objects, making it faster for workloads in which aborts are
rare. It may also avoid useless work by aborting a doomed trans-
action early. Lazy acquisition, by contrast, avoids the possibility of
aborting a transaction in favor of a competitor that is subsequently
unable to commit. It also allows a writer and one or more concur-
rent readers to all commit, so long as the readers do so first.

3.4 Fast-Path RTM Transactions
Eliminating Data Copying. A fast-path transaction calls

begin_hw_t inside the BEGIN_TRANSACTION macro. Sub-
sequent TStores will be buffered in the cache; their data will remain
invisible to other threads until the transaction commits (at the hard-
ware level, of course, the existence of lines to which TStores have
been made is visible in the form of “threatened” signals/messages).
As noted in Section 3.2, open_RW returns a pointer to the cur-
rent version of an object when invoked by a fast-path transaction,
thereby enabling in-place updates. Programmable data isolation
thus avoids the need to create a separate writable copy, as is com-
mon in software TM systems (RSTM among them). When a fast-
path transaction acquires an object, it writes a NULL into the New
pointer, since the old pointer is both the last and next valid version.
As a result, when a fast-path transaction aborts, it does not need to
clean up the Owner pointers in objects it has acquired; since the
owner has been working directly on the Old version of the data,
a newly arriving transaction that sees mis-matched serial numbers
will read the appropriate version.

Reducing Bookkeeping and Validation Costs. In most soft-
ware TM systems, a transaction may be doomed to fail (because
of conflicting operations in committed peers) well before it notices
its fate. In the interim it may read versions of objects that are mu-
tually inconsistent. This possibility raises the problem of valida-
tion: a transaction must ensure that inconsistency never causes it to
perform erroneous operations that cannot be rolled back. In gen-
eral, a transaction must verify that all its previously read objects are
still valid before it performs any dangerous operation. Such vali-
dation can be a major component of the cost of software TM [27]:
making readers visible to writers requires metadata updates that in-
duce large numbers of cache misses; leaving them invisible leads to
O(n2) total cost for a transaction that reads n objects.

ALoad allows validation to be achieved essentially for free.
Whenever an object is read (or opened for writing with lazy ac-
quire), the transaction uses ALoad to mark the object’s header in the
local cache. Since transactions cannot commit changes to an object
without modifying the object header first, the remote acquisition of
a locally ALoaded line results in an immediate alert to the reader
transaction. Since the header must be read in any case, the ALoad
induces no extra overhead. Freed of the need to explicitly validate
previously opened objects, software can also avoid the bookkeeping

Serial Number

Status

Serial Number

Status

Txn−1 Descriptor

Old Writer

Old Version

Data Object −
Clone

Txn−2 Descriptor

New Writer

Object Header

Owner

Old Object

New Object

Serial Number

Overflow Readers

Data Object −

Here a writer transaction is in the process of acquiring the object, over-
writing the Owner pointer and Serial Number fields, and updating the Old
Object pointer to refer to the previously valid copy of the data. A fast-path
transaction will set the New Object field to null; an overflow transaction
will set it to refer to a newly created clone. Several overflow transactions
can work concurrently on their own object clones prior to acquire time,
just as fast-path transactions can work concurrently on copies buffered in
their caches.

2: RTM metadata structure.

overhead of maintaining those objects on a list. Best of all, perhaps,
a transaction that acquires an object implicitly aborts all fast-path
readers of that object simply by writing the header: fast-path read-
ers need not add themselves to the list of readers in the header, and
the O(t) cost of aborting the readers is replaced by the broadcast
invalidation already present in the cache coherence protocol.

Alerts are masked while running in the handler; before return-
ing, the handler unmasks them with an enable_alerts instruc-
tion. If more than one alert occurs while masked, the hardware
combines them into a single lost alert event. RTM transactions
abort and retry in overflow mode in response to such an event, or to
invalidation or eviction of an A-tagged or TMI line.

Single Thread Optimizations. Metadata management and
bookkeeping in API calls comprise a significant fraction of the
overhead of software-managed TM, relative to coarse-grain locks.
Much of this overhead can be elided for transactions that are guar-
anteed to run in isolation (i.e., when no other transaction is active
in the system, as is the case when using a single thread). We em-
ploy a global flag to detect this situation. In single-thread mode,
a fast-path transaction optimistically buffers all writes with PDI,
while Aloading only its descriptor. It skips all bookkeeping as-
sociated with open_RO and open_RW calls. To begin a concur-
rent transaction, other threads must first examine the flag and abort
the single-thread-mode transaction by writing to its descriptor. The
aborted transaction will receive an alert and retry in conventional
fast-path mode. This optimization is completely safe and maintains
non-blocking progress since PDI guarantees that no intermediate
writes are seen and AOU guarantees immediate abort.

3.5 Overflow RTM Transactions
Like most hardware TM proposals, fast-path RTM transactions

are bounded in space and time. They cannot ALoad or TStore more
lines than the cache can hold, and they cannot execute across a con-
text switch, because we do not (currently) associate transaction IDs
with tagged lines in the cache. To accommodate larger or longer
transactions, RTM employs an overflow mode with only one hard-
ware requirement: that the transaction’s ALoaded descriptor remain
in the cache whenever the transaction is running. Since committing
a fast-path writer updates written objects in-place, we must ensure
that a transaction in overflow mode also notices immediately when
it is aborted by a competitor. We therefore require that every trans-
action ALoad its own descriptor. If a competitor CAS-es its status
to ABORTED, the transaction will suffer an immediate alert, avoid-
ing the possibility that it will read mutually inconsistent data from
within a single object.

Disabling Speculative Loads and Stores. In principle, a trans-
action that exceeds the capacity of the cache could continue to use
the available space for as many objects as fit. For the sake of sim-

plicity we do not currently pursue this possibility. Rather, a transac-
tion that suffers a “no more space” alert aborts and retries in over-
flow mode. In this mode it leaves the %hardware_t bit clear,
instructing the hardware to interpret TLoad and TStore instructions
as ordinary loads and stores. This convention allows the overflow
transaction to execute the exact same user code as fast-path trans-
actions; there is no need for a separate version. An overflow trans-
action does, however, invoke begin_t in the BEGIN_TRANS-
ACTION macro to indicate an active transaction.

Without speculative stores, open_RW calls in the overflow
transaction must clone to-be-written objects. At acquire time, the
WCAS instruction writes the address of the clone into the New field
of the metadata. When open_RO calls encounter a header whose
last Owner is committed and whose New field is non-null, they re-
turn the New version as the current valid version.

Limiting ALoads. Though an overflow transaction cannot
ALoad every object header it reads, it still ALoads its own descrip-
tor. It also writes itself into the Overflow Reader list of every object
it reads; this ensures it will be explicitly aborted by writers.

While only one ALoaded line is necessary to ensure immediate
aborts and to handle validation, using a second ALoad can improve
performance when a fast-path transaction and an overflow trans-
action are concurrent writers. If the overflow writer is cloning an
object when the fast-path writer commits, the clone operation may
return an internally inconsistent object. If the overflow transaction
becomes a visible reader first, the problem is avoided. It is simpler,
however, to ALoad the header and then clone the object. An acquire
by another writing transaction will result in the clone operation suf-
fering an alert. We assume in our experiments that the hardware is
able (with a small victim cache) to prefer non-ALoaded lines for
eviction, and to keep at least two in the cache.

Context Switches. To support transactions that must be pre-
empted, we require two actions from the operating system. When
it swaps a transaction out, the operating system flash clears all the
A tags. In addition, for transactions in fast-path mode, it executes
the abort instruction to discard isolated lines. When it swaps
the transaction back in, it starts execution in a software-specified
restart handler (separate from the alert handler). The restart han-
dler aborts and retries if the transaction was in fast-path mode or
was swapped out in mid-clone; otherwise it re-ALoads the transac-
tion descriptor and checks that the transaction status has not been
changed to ABORTED. If this check succeeds, control returns as
normal; otherwise the transaction jumps to its abort code.

3.6 Privatization
Hardware TM systems typically provide a strongly isolated

(a.k.a. strongly atomic [2]) programming model, in which the in-
ternal state of a transaction is isolated not only from other transac-
tions, but from individual (nontransactional) loads and stores. We
consider this model to be overkill: isolated accesses that are not
ordered with respect to transactions constitute data races that are
likely to be bugs [11, Section 2.1.2].

RTM does provide serialization between transactional and non-
transactional accesses to the same location, however, for programs
that are free of such races. As an example, our largest benchmark
application, a locally-constructed implementation of Delaunay tri-
angulation, has lengthy phases in which edges in the triangulation
graph are partitioned among threads geometrically; these are sep-
arated by barriers from phases in which edges are protected by
transactions. In a similar vein, our LinkedList and RBTree bench-
marks employ privatizing transactions that remove an element from
a transactional set, after which it can be accessed with ordinary
loads and stores.2

Privatization introduces a pair of implementation challenges for
STM: (1) a thread that privatizes data must see all changes made to
that data by previously committed transactions; (2) a doomed trans-
action that continues, temporarily, to use data that has been priva-
tized by another thread must never perform erroneous, externally
visible operations due to updates made by the privatizer. RTM ad-
dresses challenge (2) by means of immediate aborts: by definition,
privatization must logically conflict (on some datum somewhere)
with any ongoing transaction that would be imperiled by subse-
quent private writes. Before committing, the privatizing transaction
is therefore guaranteed to force such transactions to abort, either
explicitly or by invalidating words they have ALoaded.

Regarding challenge (1), we provide access to privatized ob-
jects via “smart pointers” that hide the extra indirection shown in
Figure 2. Initialization of the smart pointer provides a hook that
allows RTM to make sure that the object is “clean”—that all com-
mitted updates are in place. We could make the initialization opera-
tion faster in the common (no cleanup required) case by requiring a
thread to perform an explicit “transactional fence” operation before
using privatized data; we are currently exploring this option [30].

3.7 RTM-Lite
While both AOU and PDI can improve the performance of TM,

AOU is a much smaller change to existing cache designs—an AOU-
capable processor can, in fact, be completely compatible with ex-
isting bus interfaces and protocols, where a PDI-capable proces-
sor cannot. An analysis of overheads in software TM also sug-
gested that AOU alone could yield significant performance gains.
We therefore designed a system that relies only on this mechanism.

Like a fast-path RTM transaction, an RTM-Lite transaction
ALoads the headers of the objects it reads. It does not add itself to
Overflow Reader lists. Since TStore is not available, it must clone
every acquired object. At the same time, it never has to worry about
in-place updates, so immediate aborts are not required. This avoids
some complexity in the run-time system: the alert handler simply
sets the transaction descriptor to ABORTED and returns. A trans-
action checks its status on every API call, but this takes constant
time: in comparison to RSTM, validation requires neither a cache-
2A transaction is said to privatize object X if it modifies program state in
such a way that subsequent successful transactions will not access X . A
“private” object may be shared by more than one thread if those threads
use locks or some other non-transactional mechanism to avoid races among
themselves.

miss-inducing change to a visible reader list nor an O(n) check of
n previously-opened objects.

RTM-Lite transactions actually resemble RSTM transactions
(with invisible reads) more closely than they resemble either fast-
path or overflow transactions in RTM. We therefore created the
RTM-Lite code base by adding ALoads to RSTM and removing
validation, rather than by removing in-place update from RTM.
As a result, RTM-Lite shares some additional, incidental similar-
ities to RSTM: Instead of using a Wide-CAS to update multiple
header fields atomically, RTM-Lite moves several fields into the
data object and requires an extra level of indirection to read an ob-
ject whose owner has aborted.3 Instead of using serial numbers to
recognize re-used descriptors, RTM-Lite requires both committed
and aborted transactions to clean up Owner pointers in acquired
objects.

Every RTM-Lite transaction keeps an estimate of the number
of lines it can safely ALoad. If it opens more objects than this, it
keeps a list of the extra objects and validates them incrementally,
as RSTM does. If it suffers a capacity/conflict alert, it reduces its
space estimate, aborts, and restarts. On a context switch, RTM-Lite
transactions abort and restart as RSTM transactions.

As noted in Section 1, RTM-Lite shares much of its design phi-
losophy with the Intel HASTM system [21]. From a hardware
perspective, the principal distinction between the systems is that
AOU provides asynchronous alerts when designated cache lines are
evicted, while HASTM increments a saturating counter. While the
counter may be simpler to implement than an asynchronous alert,
it does not support immediate aborts. These help us ensure correct-
ness in the presence of privatization or in-place updates. They also
enable several useful applications other than transactional mem-
ory [25, 28] (though simultaneous use for more than one purpose
would require software convention/agreement).

By ALoading object headers in fast-path transactions and com-
bining visible readers and ALoaded transaction descriptors in over-
flow transactions, RTM-Lite inexpensively ensures that a transac-
tion never sees inconsistent memory. Without immediate aborts,
a doomed transaction might see inconsistencies between or, given
privatization or in-place updates, even within objects. Incremental
validation at open time suffices to catch inter-object inconsistency,
and is all one really needs in clone-based systems, where commit-
ted data is immutable [8,27]. One could protect against intra-object
inconsistency by performing incremental validation on every read,
but even with HASTM hardware, this would be unacceptably ex-
pensive for transactions whose read set overflows the cache. Alter-
natively, one could tolerate inconsistency via sandboxing, but this
appears to be possible only for typesafe, managed languages, and
then only with extensive compiler support. (Among other things,
one must ensure that a “confused” transaction can never store to a
nontransactional location, e.g. through a garbage pointer.)

4. EVALUATION
We present experimental results to evaluate our three main

claims: (1) RTM hardware can be effectively used to speed a soft-
ware TM system, (2) policy flexibility is important, and (3) the hy-
brid design permits a heterogeneous mix of fast-path and overflow
transactions without impeding throughput.

3Indirect access to transactional objects, inherited from RSTM, facilitates
nonblocking progress in RTM-Lite, but it is not required in the presence of
AOU. We have recently developed a nonblocking successor to RTM-Lite
that performs all updates in place [29].

4.1 Evaluation Framework
We evaluate RTM through full system simulation of a 16-way

chip multiprocessor (CMP) with private split L1 caches and a
shared L2. We use the GEMS/Simics infrastructure [15], a full
system functional simulator that faithfully models the SPARC ar-
chitecture. The instructions specified in Section 2 interface with
the TM runtime systems using the standard Simics “magic instruc-
tion” mechanism. We implemented the TMESI protocol and alert-
on-update mechanism using the SLICC [15] framework to encode
all the stable and transient states in the system.

16-way CMP, Private L1, Shared L2
Processor Cores 16 1.2GHz in-order, single issue,

non-memory IPC=1
L1 Cache 64kB 4-way split, 64-byte blocks,

1 cycle uncontended latency,
32 entry victim buffer

L2 Cache 8MB, 8-way unified, 4 banks, 64-byte blocks,
20 cycle uncontended latency

Memory 2GB, 100 cycle latency
Interconnect 4-ary ordered tree, 1 cycle link latency, 64-

byte links

3: Target System Parameters

We employ GEMS’s network model for interconnect and switch
contention, using the parameters in Table 3. Simics allows us to
run an unmodified Solaris 9 kernel on our target system with the
“user-mode-change” and “exception-handler” interface enabling us
to trap user-kernel mode crossings. On crossings, we suspend the
current transaction context and allow the OS to handle TLB misses,
register-window overflow, and other kernel activities required by
an active user context in the midst of a transaction. On transfer
back from the kernel we deliver any alert signals received during the
kernel routine, triggering the alert handler as needed. On context
switches, we simulate the execution of the simple software handlers
described in Section 3.5.

HashTable: Transactions use a hash table with 256 buckets and over-
flow chains to lookup, insert, or delete a value in the range 0 . . . 255
with equal probability. At steady state, the table is 50% full.
RBTree: In the red-black tree (RBTree) benchmark, transactions at-
tempt to insert, remove, or delete values in the range 0 . . . 4095 with
equal probability. At steady state there are about 2048 objects, with
about half of the values stored in leaves.
RBTree-Large: This version of the RBTree benchmark uses 256-byte
tree nodes to increase copying overheads. Transactions only modify a
small percent of the fields of the node.
LFUCache: LFUCache uses a large (2048) array based index and a
smaller (255 entry) priority queue to track the most frequently accessed
pages in a simulated web cache. When re-heapifying the queue, trans-
actions always swap a value-one node with a value-one child; this in-
duces hysteresis and gives each page a chance to accumulate cache hits.
Pages to be accessed are randomly chosen using a Zipf distribution:
p(i) ∝ Σ0<j≤ij

−2.

LinkedList-Release: In the LinkedList-Release benchmark, early re-
lease is used to minimize read-set size while performing inserts,
lookups, and deletes into a sorted, singly-linked list holding values in
the range 0 . . . 255.
RandomGraph The RandomGraph benchmark requires transactions to
insert or delete vertices in an undirected graph represented with adja-
cency lists. Edges in the graph are chosen at random, with each new
vertex initially having up to 4 randomly selected neighbors.

4: Workload Description

We consider the six benchmarks listed in Figure 4, designed
to stress different aspects of software TM. In all the benchmarks,
we execute a fixed number of transactions in single-thread mode
to ensure that the data structures are in steady state. We then exe-
cute a fixed number of transactions concurrently in order to evaluate
throughput and scalability.

4.2 Runtime Systems Evaluated
We evaluate each benchmark with two RTM configurations.

RTM-F always executes fast-path transactions to extract maxi-
mum benefit from the hardware; RTM-O always executes over-
flow transactions to demonstrate worst-case throughput. We also
compare RTM to RSTM and to the RTM-Lite runtime described
in Section 3.7. As a baseline best-case single-thread execu-
tion, we compare against a coarse-grain locking library (CGL),
which enforces mutual exclusion by mapping the BEGIN_ and
END_TRANSACTION macros to acquisition and release of a single
coarse-grain test-and-test-and-set lock.

Since RTM-Lite uses AOU to eliminate the incremental valida-
tion of RSTM’s invisible reads, we configured RSTM to use in-
visible reads for all experiments. This provides a clearer evalu-
ation of the benefit of AOU, although it complicates comparison
to RTM-O. In separate experiments, we compared visible and in-
visible read throughput in RSTM on a SunFire T1000 (CMP) and
SunFire 6800 (16-way SMP). We found that visible reads scaled
dramatically worse on the SMP, due to the cost of cache misses
induced by modifying reader lists, but offered much higher single-
thread performance. On the CMP, visible reads scaled at roughly
the same rate as invisible reads, with the same performance spike at
one thread. Since we simulate a CMP, we expect our choice of read
strategy in RSTM to have little effect on its relative performance.

To ensure a fair comparison, we use the same benchmark code,
memory manager, and contention manager (Polka [23]) in all sys-
tems. To avoid the need for a hook on every load and store, how-
ever, we modify the memory manager to segregate the heap and to
place shared object payloads at high addresses (metadata remains
at low addresses). The simulator then interprets memory operations
on high addresses as TLoads and TStores.

4.3 Throughput and Latency
Figure 3 presents normalized throughput (transactions/sec.) for

all benchmark and runtime combinations. We use eager conflict de-
tection, and normalize results to single-thread CGL performance.
Figure 4 presents a breakdown of transaction latency at 1 thread
and 8 threads. App Tx represents time spent in user-provided
code between the BEGIN_ and END_TRANSACTION macros;
time in user code outside these macros is App Non-Tx. Valida-
tion records any time spent by the runtime explicitly validating its
read set; Copy is the time spent cloning objects; MM is memory
management; CM is contention management. Fine-grain metadata
and bookkeeping operations are aggregated in Bookkeeping. For
single-thread runs, the time spent in statistics collection for con-
tention management is merged into bookkeeping; for multi-thread
runs, Abort is the sum of all costs in aborted transactions. Our re-
sults highlight: 1) overheads of RTM relative to CGL on a single
thread; 2) scalability of RTM relative to RSTM across all thread
levels; and 3) the relative benefits of AOU alone vs. AOU + PDI.

On a single thread, RTM-Lite leverages AOU to achieve up to
a 5× speedup over RSTM. RTM-F exploits PDI and a the shorter
code path to attain a maximum speedup of 8.7× on RandomGraph
and a geometric-mean speedup of 3.5× across all the benchmarks.
This brings the throughput of RTM-F to 35-50% of CGL through-

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

(a) HashTable

0

0.5

1

1.5

2

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(b) RBTree

0

0.5

1

1.5

2

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(c) LinkedList-Release

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(d) LFUCache

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(e) RandomGraph

0

0.5

1

1.5

2

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(f) RBTree-Large

CGL RTM-F RTM-Lite RTM-O RSTM

3: Throughput (transactions/106 cycles), normalized to 1-thread CGL. X-axis specifies the number of threads.

put on a single thread. Figure 4 shows that bookkeeping is the dom-
inant overhead in RTM-F relative to CGL. One source of overhead
is RTM’s use of indirection to access an object. This in turn stems
from our choice of metadata organization (Figure 2). Additional
improvements in single-thread performance might be realized by
eliminating indirection; we leave this for future work.

Despite single-thread performance loss, RTM shows better scal-
ability and performance than CGL for benchmarks with concur-
rency. RTM-F, RTM-O, RTM-Lite, and RSTM scale similarly
across all benchmarks. As the breakdowns show, RTM and RTM-
Lite appear to successfully leverage ALoad to eliminate RSTM’s
validation overhead. RTM-F also eliminates copying costs. Due
to the small object sizes in benchmarks other than RBTree-Large,
this gain is sometimes compensated for by differences in metadata
structure and corresponding bookkeeping overhead. Similar anal-
ysis at 8 threads (Figure 4) continues to show these benefits, al-
though increased network contention and cache misses, as well as
limited concurrency in some benchmarks, cause increased latency
per transaction. In RSTM, as the number of threads is increased,
validation and copying costs increase due to network contention
and cache misses. For example, with HashTable, at 8 threads, the
validation cost increases by 2.2× and copying cost increases by 2×
when compared to a single thread. RTM-Lite and RTM-F therefore
show improved scalability over RSTM.

HashTable exhibits embarrassing parallelism since transactions
are short (at most 2 objects read and 1 written) and conflicts are
rare. Even RSTM is able to scale to a higher throughput than
single-thread CGL. However, these properties prevent the hardware
from offering much additional benefit. In single thread mode, the
cost of copying is 4.3% of transaction latency in RSTM. Since the
read set is small the cost of validation is 16.8%. RTM-Lite elimi-
nates the validation overhead and reduces bookkeeping to improve
transaction latency by 23%. In single-thread mode, RTM-F min-

imizes bookkeeping over RTM-Lite by 2.2× due to single-thread
optimizations. Memory management and bookkeeping account for
52% of RTM-F’s transaction latency, resulting in RTM-F achiev-
ing 53% of CGL’s throughput. Since conflicts are rare, even at 8
threads, aborts account for only 4% of the total time. At 16 threads,
RTM-F and RTM-Lite attain 2.67× and 2.52× the throughput of
single-thread CGL, respectively.

For LinkedList-Release, the use of early release keeps conflicts
low. However, LinkedList-Release has a high cost for metadata
manipulation and bookkeeping (on average 64 objects are read and
62 released). Together, they account for 88% of the transaction la-
tency of an RSTM transaction. RTM-Lite eliminates the validation
overhead, resulting in 24% of the throughput of CGL. In addi-
tion, RTM-F lowers RSTM’s bookkeeping overheads by 2.8× to
attain 42% the throughput of CGL on a single thread. Even at high
thread levels, aborts account for only 5% of the latency across all
the TM systems. This enables all the TM systems to demonstrate
good scalability. At higher thread levels, RSTM suffers an increase
in validation and bookkeeping costs. RTM-F and RTM-Lite both
exploit the hardware to eliminate the validation overhead of RSTM
at all thread levels and attain ∼2× the throughput of single-thread
CGL at 16 threads. RTM-Lite performs slightly better than RTM-F
at more than 1 thread. RTM-F has 11% higher bookkeeping com-
pared to RTM-Lite at > 1 thread. This increase in bookkeeping
outweighs the benefits obtained from eliminating the copying.

Tree rebalancing in RBTree gives rise to conflicts, with read
and write sets above 10 and 3 objects, respectively. By deferring
to transactions that have invested more work, and by backing off
before retrying, the Polka [23] contention manager keeps aborts
to within 5% of the total transactions committed. At 8 threads,
transactions spend ∼10% of the time in contention management.
All TMs scale well. As shown in Figure 4, validation is a sig-
nificant overhead in RSTM transactions (40% of transaction la-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
G

L

R
S

T
M

R
T

M
-L

ite

R
T

M
-F

C
G

L

R
S

T
M

R
T

M
-L

ite

R
T

M
-F

C
G

L

R
S

T
M

R
T

M
-L

ite

R
T

M
-F

C
G

L

R
S

T
M

R
T

M
-L

ite

R
T

M
-F

C
G

L

R
S

T
M

R
T

M
-L

ite

R
T

M
-F

C
G

L

R
S

T
M

R
T

M
-L

ite

R
T

M
-F

Hash RBTree LinkedList-Release LFUCache RandomGraph RBTree-Large

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Abort

Copy

Validation

CM

Bookkeeping

MM

App Non-Tx

App Tx

0

0.5

1

1.5

2

2.5

R
S

T
M

R
T

M
-L

ite

R
T

M
-F

R
S

T
M

R
T

M
-L

ite

R
T

M
-F

R
S

T
M

R
T

M
-L

ite

R
T

M
-F

R
S

T
M

R
T

M
-L

ite

R
T

M
-F

R
S

T
M

R
T

M
-L

ite

R
T

M
-F

R
S

T
M

R
T

M
-L

ite

R
T

M
-F

Hash RBTree LinkedList-Release LFUCache RandomGraph RBTree-Large

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Abort

Copy

Validation

CM

Bookkeeping

MM

App Non-Tx

App Tx

9.2 6.7 Livelock5.7

4: Breakdown of per transaction latency for 1 thread (top) and 8 threads (bottom). All results are normalized to 1-thread RSTM.

tency). Copying and memory management costs are negligible.
Both RTM-F and RTM-Lite eliminate the validation cost. At 16
threads, RTM-F attains 1.75× the throughput of single-thread CGL.

RBTree-Large scales much as RBTree, but RTM-F is able to
leverage TLoad and TStore to eliminate long copy operations.
RTM-Lite reduces transaction latency by 31% over RSTM by elim-
inating validation. RTM-F reduces latency another 19% by elimi-
nating the copy overhead. On a single thread, reduced bookkeep-
ing allows RTM-F to get within 50% of the throughput of CGL.
Copy operations are a dominant overhead at higher thread levels
and RTM-F achieves 1.8× the throughput of single-thread CGL.

LFUCache has little concurrency due to the Zipf distribution
used to choose which page to access. RSTM and RTM-Lite flat-
line as threads are added. RTM-F’s throughput degrades from 1 to
2 threads (due to the increased complexity of the code path when
there are multiple threads) and then flat-lines. On a single thread,
RTM-F eliminates copying and validation, and reduces bookkeep-
ing, resulting in 2.6× the throughput of RSTM. With more threads,
LFUCache transaction latency is dominated by aborts. At 8 threads,
RSTM transactions take 9.2× as long as they do on a single thread,
and aborts account for 75% of total time. Commit latency in a
transaction increases by 2.4× compared to a single thread. ALoad
allows RTM-F and RTM-Lite to outperform RSTM by factors of
1.6 and 1.4 at 16 threads, respectively, but CGL’s peak throughput
(at a single thread) is still 4× higher than RTM-F.

Transactions in RandomGraph are complex; they read hundreds
of objects, write tens of objects, and conflict with high probabil-

ity. Validation is expensive and aborts are frequent. In RSTM,
validation dominates single thread latency, contributing to 79% of
overall execution time. RSTM has 25× lower throughput than
CGL. Leveraging ALoad to eliminate validation enables RTM-Lite
and RTM-F to improve over RSTM, resulting in 20% and 35%
the throughput of 1-thread CGL, respectively. RTM-Lite demon-
strates 5× higher throughput than RSTM. Similarly, RTM-O’s
use of a visible reader list enables it to avoid validation and out-
perform RSTM by 2.8×, although the two perform comparably
when RSTM is configured to use visible readers. RTM-F improves
throughput by a factor of 8.7× compared to RSTM.

When there is any concurrency, the choice of eager acquire
causes all TMs to livelock in RandomGraph with the Polka con-
tention manager. In the next section, we demonstrate the use of
lazy conflict detection to avoid this pathological case.4

4.4 Advantages of Policy Flexibility
In order to study the advantages of policy flexibility, we evalu-

ated RTM-F under two different conflict detection policies, eager
and lazy. Figure 5 presents the results for HashTable, RBTree,
LFUCache, and RandomGraph using 16 threads. For RBTree-
Large the eager/lazy tradeoff demonstrates behavior similar to RB-
Tree and for LinkedList-Release the performance variation between
4We have tagged the top of the breakdown plots for 8 threads as “livelock”
since almost 99% of transaction time is spent in aborts. This livelocking
behavior can be avoided even with eager acquire by using a Greedy con-
tention manager [6], modified to support invisible reads. Using Greedy, all
TMs flat-line in RandomGraph as threads are added.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(a) HashTable

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(b) RBTree

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(c) LFUCache

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(d) RandomGraph

Eager Lazy

5: Eager vs. lazy conflict detection comparison, for RTM-F transactions. Throughput normalized to RTM Eager, 1 thread. X-axis specifies
the number of threads

eager and lazy was 2% in favor of lazy at 16 threads.
Neither lazy nor eager is a clear winner, demonstrating the need

for policy flexibility. Even in applications like HashTable and RB-
Tree, which scale well with increasing thread levels, the choice of
conflict detection policy has a measurable effect on performance,
given different access patterns. Lazy conflict detection requires
non-trivial software overhead: the runtime must remember writ-
ten objects and acquire ownership just prior to commit time. This
overhead may outweigh the benefits of increased read-write con-
currency and livelock freedom, especially if the application scales
well. On a single thread there is no appreciable difference between
eager and lazy acquire: single-thread mode optimizations eliminate
both header ALoads and acquire operations, leaving little difference
between the code paths. Comparing single thread throughput to 2
threads, we notice that there is not much scalability for benchmarks
that exhibit parallelism (ie. HashTable and RBTree). This is due to
the difference in code paths between the single threaded and mul-
tithreaded configurations. For benchmarks with little parallelism
(LFUCache and RandomGraph), performance degrades by ∼45%
from 1 to 2 threads for both eager and lazy acquire.

For HashTable, where conflicts are rare, the extra bookkeeping
overhead of lazy relative to eager acquire results in performance
degradation of 11%, 13%, and 21%, respectively, at 4, 8, and 16
threads. However, while RBTree shows a slight degradation with
lazy acquire at low thread counts (> 1), at higher thread counts lazy
acquire enables RBTree to scale slightly better, achieving an 11%
speedup at 16 threads.

In LFUCache, as in RBTree, lazy transactions are slower than
eager at 2 threads due to extra bookkeeping. Since LFUCache
admits no concurrency, eager acquire hurts performance at higher
thread levels. As soon as an eager transaction accesses and acquires
an object, it is vulnerable to conflicts with other threads. Since the
likelihood of another thread trying to use the same object is high,
increased concurrency decreases the likelihood of that transaction
committing, causing performance to flatten beyond 2 threads. In
contrast, lazy acquire actually improves performance slightly. We
expect that lazy acquire would not degrade due to contention; con-
flicts are only visible at the point where one transaction attempts
to commit, and at that commit point conflicts are usually only re-
alized between writers on the same object. Since the conflicting
transactions are both about to commit, the likelihood of the con-
flict “winner” ultimately failing is low. Despite LFUCache’s lack
of concurrency, lazy acquire’s ability to overlap a thread’s transac-
tional work with another thread’s non-transactional work improves
performance over eager by 28% at 16 threads.

On RandomGraph, we had earlier noted that at high thread lev-
els all TM systems livelocked under eager acquire. RandomGraph

transactions usually open_RW at least one highly contended ob-
ject early, and then continue to read and write multiple objects. The
average RTM-F transaction latency in RandomGraph is 19× longer
than that of HashTable. Since transactions run for tens of thousands
of instructions, the likelihood of another transaction detecting and
winning a conflict on the contended object is high under eager ac-
quire, resulting in potentially cascading aborts. With lazy acquire,
the conflict window is narrowed since conflicts are only detected
at the very end of transactions. The probability of a conflict win-
ner committing is also higher in lazy acquire compared to eager.
Figure 5 shows that lazy acquire avoids the pathological livelock
resulting from eager conflict detection.

4.5 Interaction of Fast-Path and Overflow
Transactions

The previous subsections analyzed the performance of RTM
fast-path (RTM-F) transactions. Figure 6 presents average transac-
tion latency as the fraction of fast-path transactions is varied from
0–100%, normalized to latency in the all-fast-path case. The fig-
ure shows a linear increase in latency as the percentage of overflow
transactions is increased, with the fraction of time spent in over-
flow mode being directly proportional to this percentage. Overflow
transactions do not block or significantly affect the performance of
fast-path transactions when executed concurrently.

0

0.5

1

1.5

2

10
0%

F
75

%
F

-
50

%
F

-
25

%
F

-
10

0%
O

10
0%

F
75

%
F

-
50

%
F

-
25

%
F

-
10

0%
O

10
0%

F
75

%
F

-
50

%
F

-
25

%
F

-
10

0%
O

10
0%

F
75

%
F

-
50

%
F

-
25

%
F

-
10

0%
O

10
0%

F
75

%
F

-
50

%
F

-
25

%
F

-
10

0%
O

10
0%

F
75

%
F

-
50

%
F

-
25

%
F

-
10

0%
O

HashTable RBTree LinkedList-
Release

LFUCache RandomGraph RBTree-
Large

N
or

m
al

iz
ed

 T
ra

ns
ac

tio
n

 L
at

en
cy Tx-O

Tx-F

6: Breakdown of time spent in fast-path and in overflow mode,
normalized to the all-fast-path execution (16 threads).

5. CONCLUSIONS AND FUTURE WORK
We have described a transactional memory system, RTM, that

uses a pair of hardware mechanisms to accelerate software trans-
actions: alert-on-update (AOU) provides fast event-based commu-

nication for conflict detection; programmable data isolation (PDI)
allows a processor to hide speculative writes from other processors
and to continue to use speculatively read and written lines despite
potentially conflicting writes on other processors.

RTM’s fast-path (fully hardware-supported) transactions require
cache space only for speculative writes; lines that have only been
read can safely be evicted, as can nontransactional data. Transac-
tions that nonetheless overflow hardware resources fall back grace-
fully to software, and interoperate smoothly with fast-path trans-
actions. All transactions employ a software contention manager,
enabling the use of adaptive or application-specific policies.

Our results show that RTM outperforms RSTM by an average
of 3.5× on a single thread and 2× on 16 threads. The simpler
RTM-Lite system, which relies on AOU but not PDI, is effective at
eliminating validation overhead, but loses to RTM for transactions
that modify large objects. Echoing the findings of previous software
TM studies, we find significant performance differences between
eager and lazy conflict detection, with neither outperforming the
other in all cases; this supports the need for policy flexibility.

In future work, we plan to explore a variety of topics, includ-
ing performance sensitivity to processor organization parameters;
simplified protocols (without transactional loads); implementations
for other coherence protocols (e.g., MOESI or directory-based); ad-
ditional hardware assists; nested transactions; gradual fall-back to
software, with ongoing use of whatever fits in cache; other styles
of RTM software (e.g., word-based, blocking, and/or indirection-
free); context identifiers for transactions implemented at a shared
level of cache; and more realistic applications.

6. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers and our shep-

herd, Ravi Rajwar, for suggestions and feedback that helped to
improve this paper. Our thanks as well to Virtutech AB for their
support of Simics, and to the Wisconsin Multifacet group for their
support of GEMS.

7. REFERENCES
[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie.

Unbounded Transactional Memory. In Proc. of the 11th Intl. Symp. on High
Performance Computer Architecture, San Francisco, CA, Feb. 2005.

[2] C. Blundell, E. C. Lewis, and M. M. K. Martin. Subtleties of Transactional
Memory Atomicity Semantics. ACM SIGARCH Computer Architecture News,
5(2), Nov. 2006.

[3] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, M. V. Biesbrouck, G.
Pokam, B. Calder, and O. Colavin. Unbounded Page-Based Transactional
Memory. In Proc. of the 12th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, San Jose, CA, Oct. 2006.

[4] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum.
Hybrid Transactional Memory. In Proc. of the 12th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems, San Jose, CA,
Oct. 2006.

[5] K. Fraser and T. Harris. Concurrent Programming Without Locks. Submitted for
publication, 2004. Available as research.microsoft.com/∼tharris/
drafts/cpwl-submission.pdf.

[6] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic Contention
Management in SXM. In Proc. of the 19th Intl. Symp. on Distributed
Computing, Cracow, Poland, Sept. 2005.

[7] L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. Carlstrom, M. Prabhu, H.
Wijaya, C. Kozyrakis, and K. Olukotun. Transactional Memory Coherence and
Consistency. In Proc. of the 31st Intl. Symp. on Computer Architecture,
München, Germany, June 2004.

[8] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software
Transactional Memory for Dynamic-sized Data Structures. In Proc. of the 22nd
ACM Symp. on Principles of Distributed Computing, Boston, MA, July 2003.

[9] M. Herlihy and J. E. Moss. Transactional Memory: Architectural Support for
Lock-Free Data Structures. In Proc. of the 20th Intl. Symp. on Computer
Architecture, San Diego, CA, May 1993. Expanded version available as CRL
92/07, DEC Cambridge Research Laboratory, Dec. 1992.

[10] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid
Transactional Memory. In Proc. of the 11th ACM Symp. on Principles and
Practice of Parallel Programming, New York, NY, Mar. 2006.

[11] J. R. Larus and R. Rajwar. Transactional Memory, Synthesis Lectures on
Computer Architecture. Morgan & Claypool, 2007.

[12] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive Software
Transactional Memory. In Proc. of the 19th Intl. Symp. on Distributed
Computing, Cracow, Poland, Sept. 2005.

[13] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N. Scherer
III, and M. L. Scott. Lowering the Overhead of Software Transactional Memory.
In ACM SIGPLAN Workshop on Transactional Computing, Ottawa, ON,
Canada, June 2006. Expanded version available as TR 893, Dept. of Computer
Science, Univ. of Rochester, Mar. 2006.

[14] J. F. Martı́nez and J. Torrellas. Speculative Synchronization: Applying
Thread-Level Speculation to Explicitly Parallel Applications. In Proc. of the
10th Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, Oct. 2002.

[15] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s General
Execution-driven Multiprocessor Simulator (GEMS) Toolset. In ACM
SIGARCH Computer Architecture News, Sept. 2005.

[16] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM:
Log-based Transactional Memory. In Proc. of the 12th Intl. Symp. on High
Performance Computer Architecture, Austin, TX, Feb. 2006.

[17] J. E. B. Moss. Open Nested Transactions: Semantics and Support. In Proc. of
the 4th IEEE Workshop on Memory Performance Issues, Austin, TX, Feb. 2006.

[18] R. Rajwar and J. R. Goodman. Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution. In Proc. of the 34th Intl. Symp. on
Microarchitecture, Austin, TX, Dec. 2001.

[19] R. Rajwar and J. R. Goodman. Transactional Lock-Free Execution of
Lock-Based Programs. In Proc. of the 10th Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, San Jose, CA, Oct. 2002.

[20] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Memory. In Proc.
of the 32nd Intl. Symp. on Computer Architecture, Madison, WI, June 2005.

[21] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson. Architectural Support for
Software Transactional Memory. In Proc. of the 39th Intl. Symp. on
Microarchitecture, Dec. 2006. Orlando, FL.

[22] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg.
McRT-STM: A High Performance Software Transactional Memory System for
a Multi-Core Runtime. In Proc. of the 11th ACM Symp. on Principles and
Practice of Parallel Programming, New York, NY, Mar. 2006.

[23] W. N. Scherer III and M. L. Scott. Advanced Contention Management for
Dynamic Software Transactional Memory. In Proc. of the 24th ACM Symp. on
Principles of Distributed Computing, Las Vegas, NV, July 2005.

[24] N. Shavit and D. Touitou. Software Transactional Memory. Distributed
Computing, 10(2):99-116, Feb. 1997. Originally presented at the 14th ACM
Symp. on Principles of Distributed Computing, Aug. 1995.

[25] A. Shriraman, M. F. Spear, H. Hossain, S. Dwarkadas, and M. L. Scott. An
Integrated Hardware-Software Approach to Flexible Transactional Memory. TR
910, Dept. of Computer Science, Univ. of Rochester, Dec. 2006.

[26] A. Shriraman, V. J. Marathe, S. Dwarkadas, M. L. Scott, D. Eisenstat, C. Heriot,
W. N. Scherer III, and M. F. Spear. Hardware Acceleration of Software
Transactional Memory. In ACM SIGPLAN Workshop on Transactional
Computing, Ottawa, ON, Canada, June 2006. Expanded version available as TR
887, Dept. of Computer Science, Univ. of Rochester, Dec. 2005, revised Mar.
2006.

[27] M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L. Scott. Conflict
Detection and Validation Strategies for Software Transactional Memory. In
Proc. of the 20th Intl. Symp. on Distributed Computing, Stockholm, Sweden,
Sept. 2006.

[28] M. F. Spear, A. Shriraman, H. Hossain, S. Dwarkadas, and M. L. Scott.
Alert-on-Update: A Communication Aid for Shared Memory Multiprocessors
(poster paper). In Proc. of the 12th ACM Symp. on Principles and Practice of
Parallel Programming, San Jose, CA, Mar. 2007.

[29] M. F. Spear, A. Shriraman, L. Dalessandro, S. Dwarkadas, and M. L. Scott.
Nonblocking Transactions Without Indirection Using Alert-on-Update. In Proc.
of the 19th Annual ACM Symp. on Parallelism in Algorithms and Architectures,
San Diego, CA, June 2007.

[30] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott. Privatization
Techniques for Software Transactional Memory. TR 915, Dept. of Computer
Science, Univ. of Rochester, Feb. 2007.

