
Flexible Decoupled Transactional Memory Support∗

Arrvindh Shriraman Sandhya Dwarkadas Michael L. Scott
Department of Computer Science, University of Rochester

{ashriram,sandhya,scott}@cs.rochester.edu

Abstract
A high-concurrency transactional memory (TM) implemen-

tation needs to track concurrent accesses, buffer speculative
updates, and manage conflicts. We present a system, FlexTM
(FLEXible Transactional Memory), that coordinates four de-
coupled hardware mechanisms: read and write signatures,
which summarize per-thread access sets; per-thread conflict
summary tables (CSTs), which identify the threads with which
conflicts have occurred; Programmable Data Isolation, which
maintains speculative updates in the local cache and employs
a thread-private buffer (in virtual memory) in the rare event
of overflow; and Alert-On-Update, which selectively notifies
threads about coherence events. All mechanisms are software-
accessible, to enable virtualization and to support transactions
of arbitrary length. FlexTM allows software to determine when
to manage conflicts (either eagerly or lazily), and to employ
a variety of conflict management and commit protocols. We
describe an STM-inspired protocol that uses CSTs to manage
conflicts in a distributed manner (no global arbitration) and
allows parallel commits.

In experiments with a prototype on Simics/GEMS, FlexTM
exhibits ∼5× speedup over high-quality software TM, with no
loss in policy flexibility. Its distributed commit protocol is also
more efficient than a central hardware manager. Our results
highlight the importance of flexibility in determining when to
manage conflicts: lazy maximizes concurrency and helps to en-
sure forward progress while eager provides better overall uti-
lization in a multi-programmed system.

1 Introduction
Transactional Memory (TM) addresses one of the key chal-
lenges of programming multi-core systems: the complexity of
lock-based synchronization. At a high level, the programmer
or compiler labels sections of the code in a single thread as
atomic. The underlying system is expected to execute this code
atomically, consistently, and in isolation from other transac-
tions, while exploiting as much concurrency as possible.

Most TM systems execute transactions speculatively, and
must thus be prepared for data conflicts, when concurrent trans-
actions access the same location and at least one of the accesses
is a write. Conflict detection refers to the mechanism by which

∗This work was supported in part by NSF grants CCF-0702505, CCR-
0204344, CNS-0411127, CNS-0615139, and CNS-0509270; NIH grant 1 R21
GM079259-01A1; an IBM Faculty Partnership Award; equipment support
from Sun Microsystems Laboratories; and financial support from Intel and Mi-
crosoft.

such conflicts are identified. Conflict management is responsi-
ble for arbitrating between conflicting transactions and decid-
ing which should abort. Pessimistic (eager) systems perform
both conflict detection and conflict management as soon as pos-
sible. Optimistic (lazy) systems delay conflict management un-
til commit time (though they may detect conflicts earlier). TM
systems must also perform version management, either buffer-
ing new values in private locations (a redo log) and making
them visible at commit time, or buffering old values (an undo
log) and restoring them on aborts. In the taxonomy of Moore et
al. [23], undo logs are considered an orthogonal form of eager-
ness (they put updates in the “right” location optimistically);
redo logs are considered lazy.

The mechanisms required for conflict detection, conflict
management, and version management can be implemented
in hardware (HTM) [1, 12, 14, 23, 24], software (STM) [9, 10,
13, 19, 25], or some hybrid of the two (HyTM) [8, 16, 22, 30].
Full hardware systems are typically inflexible in policy, with
fixed choices for eagerness of conflict management, strategies
for conflict arbitration and back-off, and eagerness of version-
ing. Software-only systems are typically slow by comparison,
at least in the common case.

Several systems [5,30,36] have advocated decoupling of the
hardware components of TM, giving each a well-defined API
that allows them to be implemented and invoked independently.
Hill et al. [15] argue that decoupling makes it easier to refine
an architecture incrementally. Shriraman et al. [30] argue that
decoupling helps to separate policy from mechanism, allowing
software to choose a policy dynamically. Both groups suggest
that decoupling may allow TM components to be used for non-
transactional purposes [15] [30, TR version].

Several papers have identified performance pathologies with
certain policy choices (eagerness of conflict management; arbi-
tration and back-off strategy) in certain applications [4, 28, 30,
32]. RTM [30] promotes policy flexibility by decoupling ver-
sion management from conflict detection and management—
specifically, by separating data and metadata, and performing
conflict detection only on the latter. While RTM hardware
provides a single mechanism for both conflict detection and
management, software can choose (by controlling the timing of
metadata inspection and updates) when conflicts are detected.
Unfortunately, metadata management imposes significant soft-
ware costs.

In this paper, we propose more fully decoupled hard-
ware, allowing us to maintain the separation between version
management and conflict management without the need for

software-managed metadata. Specifically, our FlexTM (FLEX-
ible Transactional Memory) system deploys four decoupled
hardware primitives (1) Bloom filter signatures (as in Bulk [5]
and LogTM-SE [36]) to track and summarize a transaction’s
read and write sets; (2) conflict summary tables (CSTs) to con-
cisely capture conflicts between transactions; (3) the versioning
system of RTM (programmable data isolation—PDI), adapted
to directory-based coherence and augmented with an Over-
flow Table (OT) in virtual memory filled by hardware; and (4)
RTM’s Alert-On-Update mechanism to help transactions en-
sure consistency without checking on every memory access.

The hardware primitives are fully visible in software, and
can be read and written under software control. This allows us
to virtualize these structures when context switching and pag-
ing, and to use them for non-TM purposes. FlexTM separates
conflict detection from management, and leaves software in
charge of policy. Simply put, hardware always detects conflicts,
and records them in the CSTs, but software chooses when to
notice, and what to do about it. Additionally, FlexTM employs
a commit protocol that arbitrates between transactions in a dis-
tributed fashion and allows parallel commits. This enables lazy
conflict management without commit tokens [12], broadcast of
write sets [5,12], or ticket-based serialization [7]. FlexTM is, to
our knowledge, the first hardware TM in which the decision to
commit or abort can be an entirely local operation, even when
performed lazily by multiple threads in parallel.

We have developed a 16-core FlexTM CMP prototype on
the Simics/GEMS simulation framework, and have investigated
performance using benchmarks that stress the various hard-
ware components and software policies. Our results suggest
that FlexTM’s performance is comparable to that of fixed pol-
icy HTMs, and 2× and 5× better than that of hardware ac-
celerated STMs and plain STMs, respectively. Experiments
with globally-arbitrated commit mechanisms support the claim
that CSTs avoid significant latency and serialization penalties.
Finally, experiments indicate that lazy conflict management
(for which FlexTM is ideally suited) serves to maximize con-
currency and encourages forward progress. Conversely, ea-
ger management may maximize overall system utilization in a
multi-programmed environment. These results underscore the
importance of letting software take policy decisions.

2 Related Work
Transactional memory is a very active area. Larus and Ra-
jwar [17] provide an excellent summary as of fall 2006. We
discuss only the most relevant proposals here.

The Bulk system of Ceze et al. [5] decouples conflict detec-
tion from cache tags by summarizing read/write sets in Bloom
filter signatures [2]. To commit, a transaction broadcasts its
write signatures, which other transactions compare to their own
read and write signatures to detect conflicts. Conflict manage-
ment (arbitration) is first-come-first-served, and requires global
synchronization in hardware to order commit operations.

LogTM-SE [36] integrates the cache-transparent eager ver-

sioning mechanism of LogTM [23] with Bulk style signatures.
It supports efficient virtualization (i.e., context switches and
paging), but this is closely tied to eager versioning (undo logs),
which in turn requires eager conflict detection and management
to avoid inconsistent reads. Since LogTM does not allow trans-
actions to abort one another, it is possible for running transac-
tions to “convoy” behind a suspended transaction.

UTM [1] and VTM [24] both perform lazy versioning us-
ing virtual memory. On a cache miss (local or forwarded re-
quest) in UTM, a hardware controller walks an uncacheable in-
memory data structure that specifies access permissions. VTM
employs tables maintained in software and uses software rou-
tines to walk the table only on cache misses that hit in a locally
cached lookaside filter. Like LogTM, both VTM and UTM re-
quire eager conflict management.

Hybrid TMs [8, 16] allow hardware to handle common-case
bounded transactions, and fall back to software for transac-
tions that overflow time and space resources. Hybrid TMs must
maintain metadata compatible with the fallback STM and use
policies compatible with the underlying HTM. SigTM [22] em-
ploys hardware signatures for conflict detection but uses an (al-
ways on) TL2 [9] style software redo-log for versioning. Like
hybrid systems, it suffers from per-access metadata bookkeep-
ing overheads. It restricts conflict management policy (specifi-
cally, only self aborts) and requires expensive commit time ar-
bitration on every speculatively written location.

RTM [30] explored hardware acceleration of STM. Specif-
ically, it introduced (1) Alert-On-Update (AOU), which trig-
gers a software handler when pre-specified lines are modi-
fied remotely, and (2) Programmable Data Isolation (PDI),
which buffers speculative writes in (potentially incoherent) lo-
cal caches. Unfortunately, to decouple version management
from conflict detection and management, RTM software had to
segregate data and metadata, retaining much of the bookkeep-
ing cost of all-software TM systems.

3 FlexTM Architecture
FlexTM provides hardware mechanisms for access tracking,
conflict tracking, versioning, and explicit aborts. We describe
these separately, then discuss how they work together.

3.1 Access Tracking: Signatures
Like Bulk [5], LogTM-SE [36], and SigTM [22], FlexTM uses
Bloom filter signatures [2] to summarize the read and write
sets of transactions in a concise but conservative fashion (i.e.,
false positives but no false negatives). Signatures decouple con-
flict detection from critical L1 tag arrays and enable remote re-
quests to test for conflicts using local processor state without
walking in-memory structures, as might be required in [1, 24]
in the case of overflow. Every FlexTM processor maintains a
read signature (Rsig) and a write signature (Wsig) for the cur-
rent transaction. The signatures are updated by the processor
on transactional loads and stores. They allow the controller to
detect conflicts when it receives a remote coherence request.

3.2 Conflict Tracking: CSTs
Existing proposals for both eager [1,23] and lazy [5,12,22] con-
flict detection track information on a cache-line-by-cache-line
basis. FlexTM, by contrast, tracks conflicts on a processor-by-
processor basis (virtualized to thread-by-thread). Specifically,
each processor has three Conflict Summary Tables (CSTs), each
of which contains one bit for every other processor in the sys-
tem. Named R-W, W-R, and W-W, the CSTs indicate that a lo-
cal read (R) or write (W) has conflicted with a read or write (as
suggested by the name) on the corresponding remote processor.
On each coherence request, the controller reads the local Wsig

and Rsig, sets the local CSTs accordingly, and includes infor-
mation in its response that allows the requestor to set its own
CSTs to match.

3.3 Versioning Support: PDI
RTM [30] proposed a lazy versioning mechanism (pro-
grammable data isolation (PDI)) that allowed software to
exploit incoherence (when desired) by utilizing the inherent
buffering capabilities of private caches. Programs use explicit
TLoad and TStore instructions to inform the hardware of trans-
actional memory operations: TStore requests isolation of a
speculative write, whose value will not propagate to other pro-
cessors until commit time. TLoad allows local caching of (pre-
vious values of) remotely TStored lines. When speculatively
modified state fits in the private cache, PDI avoids the latency
and bandwidth penalties of logging.

FlexTM adapts PDI to a directory protocol and simplifies the
management of speculative reads, adding only two new stable
states to the base MESI protocol, rather than the five employed
in RTM. Details appear in Figure 1.

FlexTM’s base protocol for private L1s and a shared L2 is
an adaptation of the SGI ORIGIN 2000 [18] directory-based
MESI, with the directory maintained at the L2 (Figure 2). Lo-
cal L1 controllers respond to both the requestor and the direc-
tory (to indicate whether the cache line has been dropped or re-
tained). Requestors issue a GETS on a read (Load/TLoad) miss
in order to get a copy of the data, a GETX on a normal write
(Store) miss/upgrade in order to gain exclusive access and an
updated copy (in case of a miss), and a TGETX on a transac-
tional store (TStore) miss/upgrade.

A TStore results in a transition to the TMI state in the L1
cache (encoded by setting both the T bit and the MESI dirty
bit—Figure 2). A TMI line reverts to M on commit (propagat-
ing the speculative modifications) and to I on abort (discarding
speculative values). On the first TStore to a line in M, TMESI
writes back the modified line to L2 to ensure subsequent Loads
get the latest non-speculative version. To the directory, the lo-
cal TMI state is analogous to the conventional E state. The
directory realizes that the processor can transition to M (silent
upgrade) or I (silent eviction), and any data request needs to be
forwarded to the processor to detect the latest state. The only
modification required at the directory is the ability to support
multiple owners. We do this by extending the existing support

for multiple sharers and use the modified bit to distinguish be-
tween multiple readers and multiple writers. We add requestors
to the sharer list when they issue a TGETX request and ping all
of them on other requests. On remote requests for a TMI line,
the L1 controller sends a Threatened response, analogous to the
Shared response to a GETS request on an S or E line.

In addition to transitioning the cache line to TMI, a TStore
also updates the Wsig. TLoad likewise updates the Rsig. TLoads
when threatened move to the TI state, encoded by setting the T
bit when in the I (invalid) state. (Note that a TLoad from E or
S can never be threatened; the remote transition to TMI would
have moved the line to I.) TI lines must revert to I on commit
or abort, because if a remote processor commits its speculative
TMI block, the local copy could go stale. The TI state appears
as a conventional sharer to the directory.

FlexTM enforces the single-writer or multiple-reader invari-
ant for non-transactional lines. For transactional lines, it en-
forces (1) TStores can only update lines in TMI state, and (2)
TLoads that are threatened can cache the block only in TI state.
Software is expected to ensure that at most one of the conflict-
ing transactions commits. It can restore coherence to the system
by triggering an Abort on the remote transaction’s cache, with-
out having to re-acquire exclusive access to store sets. Previous
lazy protocols [5,12] forward invalidation messages to the shar-
ers of the store-set and enforce coherence invariants at commit
time. In contrast, TMESI forwards invalidation messages at
the time of the individual TStores, and arranges for concurrent
transactional readers (writers) to use the TI (TMI) state; soft-
ware can then control when (and if) invalidation happens.

Transaction commit is requested with a special variant of
the CAS (compare-and-swap) instruction. Like a normal CAS,
CAS-Commit fails if it does not find an expected value in mem-
ory. It also fails if the caller’s W-W or W-R CST is nonzero. As
a side effect of success, it simultaneously reverts all local TMI
and TI lines to M and I, respectively (achieved by flash clearing
the T bits). On failure, CAS-Commit leaves transactional state
intact in cache. Software can clean up transactional state by
issuing an ABORT to the controller that reverts all TMI and TI
lines to I (achieved by conditionally clearing the M bits based
on the T bits and then flash clearing the T bits).

Conflict Detection On forwarded L1 requests from the di-
rectory, the local cache controller tests the signatures and ap-
pends an appropriate message type to its response, as shown in
the table in Figure 1. Threatened indicates a write conflict (hit
in the Wsig), Exposed-Read indicates a read conflict (hit in the
Rsig), and Shared or Invalidated indicate no conflict. On a miss
in the Wsig, the result from testing the Rsig is used; on a miss
in both, the L1 cache responds as in normal MESI. The local
controller also piggybacks a data response if the block is cur-
rently in M state. When it sends a Threatened or Exposed-Read
message, a responder sets the bit corresponding to the requestor
in its R-W, W-W, or W-R CSTs, as appropriate. The requestor
likewise sets the bit corresponding to the responder in its own
CSTs, as appropriate, when it receives the response.

M

E

S

TMI

TI

I

X /
INV-ACK

X /
INV-ACK

GETS /
Flush

X / Flush

TStore /
Flush

TStore /—

TStore /
TGETX

TStore /
TGETX

TStore /
TGETX

GETX / INV-ACK

TGETX / EXP-RD;
GETS / S

TLoad /
GETS(T)

Store /
GETX

Store /
GETX

Store /—

GETS / S

Load / GETS(T);
X / INV-ACK; GETS /—

Load,Store,TLoad /—

Load,TLoad,TStore /—;
TGETX,GETX,GETS / T

Load,TLoad /
GETS(S

_
,T
_

)

Load,TLoad /
GETS(S,T

_
)

Load,
TLoad /—

Load,TLoad /—

PDI States

COMMIT

ABORT

Figure 1: Dashed boxes enclose the MESI and PDI subsets of the
state space. Notation on transitions is conventional: the part before the
slash is the triggering message; after is the ancillary action (‘–’ means
none). GETS indicates a request for a valid sharable copy; GETX for
an exclusive copy; TGETX for a copy that can be speculatively up-
dated with TStore. X stands for the set {GETX, TGETX}. “Flush”
indicates a data block response to the requestor and directory. S indi-
cates a Shared message; T a Threatened message. Plain, they indicate
a response by the local processor to the remote requestor; parenthe-
sized, they indicate the message that accompanies the response to a
request. An overbar means logically “not signaled”.

State Encoding
MESI

M bit V bit T bit
M 1 0 0
E 1 1 0
S 0 1 0
I 0 0 0

TMI 1 0 1
TI 0 0 1

Responses to requests that hit in Wsig or Rsig
Request Msg Hit in Wsig Hit in Rsig

GETX Threatened Invalidated
TGETX Threatened Exposed-Read
GETS Threatened Shared

Requestor CST set on coherence message
Local op. Response Message

Threatened Exposed-Read
TLoad R-W —
TStore W-W W-R

3.4 Explicit Aborts: AOU
The Alert-On-Update (AOU) mechanism, borrowed from
RTM [30], supports synchronous notification of conflicts. To
use AOU, a program marks (ALoads) one or more cache lines,
and the cache controller effects a subroutine call to a user-
specified handler if the marked line is invalidated. Alert traps
require simple additions to the processor pipeline. Modern pro-
cessors already include trap signals between the Load-Store-
Unit (LSU) and Trap-Logic-Unit (TLU) [35]. AOU adds an
extra message to this interface and an extra mark bit, ‘A’, to
each line in the L1 cache. (An overview of the FlexTM hard-
ware required in the processor core, the L1 controller, and the
L2 controller appears in Figure 2.) RTM used AOU to detect
software-induced changes to (a) transaction status words (indi-
cating an abort) and (b) the metadata associated with objects
accessed in a transaction (indicating conflicts). FlexTM uses
AOU for abort detection only; it performs conflict detection us-
ing signatures and CSTs instead of metadata. Hence, FlexTM
requires AOU support for only one cache line (i.e., the trans-
action status word; see Section 3.6) and can therefore use the
simplified hardware mechanism (avoiding the bit per cache tag)
as proposed in [33]. More general AOU support might still be
useful for non-transactional purposes.

3.5 Programming Model
A FlexTM transaction is delimited by BEGIN_TRANS-
ACTION and END_TRANSACTION macros. The first of
these establishes conflict and abort handlers for the transaction,
checkpoints the processor registers, configures per-transaction
metadata, sets the transaction status word (TSW) to active,
and ALoads that word (for notification of aborts). The second
macro aborts conflicting transactions and tries to atomically
update the status word from active to committed using

User Registers

DataSharer ListStateTag

Processor Core

L2$

Signatures

RS

WSsig

sig

WsigRsig

Cores Summary

Tag State A T Data

L1 D$

Private L1 Cache ControllerOverflow Table Controller

Miss
L1

Shared L2 Cache Controller

Context Switch Support

R−W

W−R

W−W

CSTs

AOU Control

PDI Control

CMPC AbortPC

Thread Id
Osig
Over. Count
Comm./Spec.

V. Base
P. Base
Sets
Ways

Figure 2: FlexTM Architecture Overview (dark lines surround
FlexTM-specific state).

CAS-Commit. In this paper, we assume a subsumption model
for nesting, with support for transactional pause [37].

Within a transaction, a processor issues TLoads and TStores
when it expects transactional semantics, and conventional loads
and stores when it wishes to bypass those semantics. While
one could imagine requiring the compiler to generate instruc-
tions as appropriate, our prototype implementation follows typ-
ical HTM practice and interprets ordinary loads and stores as
TLoads and TStores when they occur within a transaction. This
convention facilitates code sharing between transactional and
nontransactional program fragments. Ordinary loads and stores

can be requested within a transaction by issuing special instruc-
tions; while not needed in our experiments, these could be used
to implement open nesting, update software metadata, or re-
duce the cost of thread-private updates in transactions that over-
flow cache resources (Section 4).

As implied in Figure 1, transactional and ordinary loads and
stores to the same location can occur concurrently. While we
are disinclined to require strong isolation [3] as part of the user
programming model (it’s hard to implement on legacy hard-
ware, and is of questionable value to the programmer [34]),
it can be supported at essentially no cost in HTM systems
(FlexTM among them), and we see no harm in providing it.
If the GETX request resulting from a nontransactional write
miss hits in the responder’s Rsig or Wsig, it aborts the respon-
der’s transaction, so the nontransactional write appears to seri-
alize before the (retried) transaction. A nontransactional read,
likewise, serializes before any concurrent transactions, because
transactional writes remain invisible to remote processors until
commit time (in order to enforce coherence, the corresponding
cache line, which is threatened in the response, is uncached).

3.6 Bounded Transactions
In this section, we focus on transactions that fit in the L1 cache
and complete within an OS quantum.

Name Description
TSW active / committed / aborted
State running / suspended
Rsig, Wsig Signatures
R-W, W-R, W-W Conflict Summary Tables
OT Pointer to Overflow Table descriptor
AbortPC Handler address for AOU on TSW
CMPC Handler address for Eager conflicts
E/L Eager(1)/Lazy(0) conflict detection.

Table 1: Transaction Descriptor contents. All fields except
TSW and State are cached in hardware registers for transac-
tions running.

Every FlexTM transaction is represented by a software de-
scriptor (Table 1). Transactions of a given application can op-
erate in either Eager or Lazy conflict detection mode. In Eager
mode, when conflicts appear through response messages (i.e.,
Threatened and Exposed-Read), the processor effects a subrou-
tine call to the handler specified by CMPC . The conflict man-
ager either stalls the requesting transaction or aborts one of the
conflicting transactions. The remote transaction can be aborted
by atomically updating its TSW from active to aborted,
thereby triggering an alert (since the TSW is always ALoaded).
FlexTM supports a wide variety of conflict management poli-
cies (even policies that desire the ability to synchronously abort
a remote transaction). When an Eager transaction reaches its
commit point, its CSTs will be empty, since all prior conflicts
will have been resolved. It attempts to commit by executing a
CAS-Commit on its TSW. If the CAS-Commit succeeds (replac-
ing active with committed), the hardware flash-commits
all locally buffered (TMI) state. The CAS-Commit will fail leav-

ing the buffered state intact if the CAS does not find the ex-
pected value (a remote transaction managed to abort the com-
mitting transaction before the CAS-Commit could complete).

In Lazy mode, transactions are not alerted into the conflict
manager. The hardware simply updates requestor and respon-
der CSTs. To ensure serialization, a Lazy transaction must,
prior to committing, abort every concurrent transaction that
conflicts with its write-set. It does so using the Commit() rou-
tine shown in Figure 3.

Commit() /* Non-blocking, pre-emptible */
1. copy-and-clear W-R and W-Wregisters
2. foreach i set in W-R or W-W
3. abort id = manage conflict(my id, i)
4. if (abort id 6= NULL) // not resolved by waiting
5. CAS(TSW[abort id], active, aborted)
6. CAS-Commit(TSW[my id], active, committed)
7. if (TSW[my id] == active) // failed due to nonzero CST
8. goto 1

Figure 3: Simplified Commit Routine for Lazy transactions.

All of the work for the Commit() routine occurs in software,
with no need for global arbitration [5, 7, 12], blocking of other
transactions [12], or special hardware states. The routine be-
gins by using a copy and clear instruction (e.g., clruw on the
SPARC) to atomically access its own W-R and W-W. In lines
2–5 of Figure 3, for each of the bits that was set, transaction
T aborts the corresponding transaction R by atomically chang-
ing R’s TSW from active to aborted. Transaction R, of
course, could try to CAS-Commit its TSW and race with T , but
since both operations occur on R’s TSW, conventional cache
coherence guarantees serialization. After T has successfully
aborted all conflicting peers, it performs a CAS-Commit on its
own status word. If the CAS-Commit fails and the failure can
be attributed to a non-zero W-R or W-W (i.e., new conflicts),
the Commit() routine is restarted. To avoid subsequent spuri-
ous aborts, T may also clean itself out of X’s W-R, where X is
the transaction in T ’s R-W (not shown).

4 Unbounded Space Support
For common case transactions that do not overflow the cache,
signatures, CSTs, and PDI avoid the need for logging or other
per-access software overhead. To provide the illusion of un-
bounded space, however, FlexTM must support transactions in
the presence of (1) L1 cache overflows and (2) physical mem-
ory virtualization (i.e., paging).

4.1 Cache Evictions
Cache evictions must be handled carefully in FlexTM. First,
signatures rely on forwarded requests from the directory to trig-
ger lookups and provide conservative conflict hints (Threatened
and Exposed-Read messages). Second, TMI lines holding spec-
ulative values need to be buffered and cannot be merged into the
shared level of the cache.

Conventional MESI performs silent eviction of E and S lines
to avoid the bandwidth overhead of notifying the directory. In

FlexTM, silent evictions of E, S, and TI lines also serve to
ensure that a processor continues to receive the coherence re-
quests it needs to detect conflicts. (Directory information is up-
dated only in the wake of L1 responses to L2 requests, at which
point any conflict is sure to have been noticed.) When evict-
ing a cache block in M, FlexTM updates the L2 copy but does
not remove the processor from the sharer list. Processor sharer
information can, however, be lost due to L2 evictions. To pre-
serve the access conflict tracking mechanism, L2 misses result
in querying all L1 signatures in order to recreate the sharer list.
This scheme is much like the sticky bits used in LogTM [23].

FlexTM employs a per-thread overflow table (OT) to buffer
evicted TMI lines. The OT is organized as a hash table in vir-
tual memory. It is accessed both by software and by an OT con-
troller that sits on the L1 miss path. The latter implements (1)
fast lookups on cache misses, allowing software to be oblivious
to the overflowed status of a cache line, and (2) fast cleanup
and atomic commit of overflowed state.

The controller registers required for OT support appear in
Figure 2. They include a thread identifier, a signature (Osig)
for the overflowed cache lines, a number count of such lines, a
committed/speculative flag, and parameters (virtual and physi-
cal base address, number of sets and ways) used to index into
the table.

On the first overflow of a TMI cache line, the processor traps
to a software handler, which allocates an OT, fills the regis-
ters in the OT controller, and returns control to the transac-
tion. To minimize the state required for lookups, the current OT
controller design requires the OS to ensure that OTs of active
transactions lie in physically contiguous memory. If an active
transaction’s OT is swapped out, then the OS invalidates the
Base-Address register in the controller. If subsequent activity
requires the OT, the hardware traps to a software routine that
re-establishes a mapping. The hardware needs to ensure that
new TMI lines aren’t evicted during OT set-up; the L1 cache
controller could easily support this routine by ensuring at least
one entry in the set is free for non-TMI lines. On a subsequent
TMI eviction, the OT controller calculates the set index using
the physical address of the line, accesses the set tags of the OT
region to find an empty way, and writes the data block back
to the OT instead of the L2. The controller tags the line with
both its physical address (used for associative lookup) and its
virtual address (used to accommodate page-in at commit time;
see below). The controller also adds the physical address to the
overflow signature (Osig) and increments the overflow count.

The Osig provides quick lookaside checks for entries in the
OT. Reads and writes that miss in the L1 are checked against
the signature. Signature hits trigger the L1-to-L2 request and
the OT lookup in parallel. On OT hits, the line is fetched from
the OT, the corresponding OT tag is invalidated, and the L2 re-
sponse is squashed. This scheme is analogous to the speculative
memory request issued by the home memory controller before
snoop responses are all collected. When a remote request hits
in the Osig of a committed transaction, the controller could per-

form lookup in the OT, much as it does for local requests, or it
could NACK the request until copy-back completes. Our cur-
rent implementation does the latter.

In addition to functions previously described, the CAS-
Commit operation sets the Committed bit in the controller’s OT
state. This indicates that the OT content should be visible, ac-
tivating NACKs or lookups. At the same time, the controller
initiates a microcoded copy-back operation. There are no con-
straints on the order in which lines from the OT are copied
back to their natural locations. This stands in contrast to time-
based undo logs [23], which must proceed in reverse order of
insertion. Remote requests need to check only committed OTs
(since speculative lines are private) and for only a brief span
of time (during OT copy-back). On aborts, the OT is returned
to the operating system. The next overflowed transaction allo-
cates a new OT. When an OT overflows a way, the hardware
generates a trap to the OS, which expands the OT appropriately.

With the addition of the OT controller, software is involved
only for the allocation and deallocation of the OT structure. In-
direction to the OT on misses, while unavoidable, is performed
in hardware rather than in software, thereby reducing the result-
ing overheads. Furthermore, FlexTM’s copyback is performed
by the controller and occurs in parallel with other useful work
on the processor.

Virtual Memory Paging Though presumably infrequent,
page faults may nonetheless occur in the middle of a transac-
tion. To accommodate paging of the original locations, OT
tags include the virtual addresses of cache blocks. These ad-
dresses are used during copy-back, to ensure automatic page-in
of any nonresident pages. Though for simplicity we currently
require that OTs be physically contiguous, they can themselves
be paged, albeit as a single unit. In particular, it makes sense
for the OS to swap out the OTs of descheduled threads. A
more ambitious FlexTM design could allow physically non-
contiguous OTs, with controller access mediated by more com-
plex mapping information.

The two challenges left to consider are (1) when a page is
swapped out and its frame is reused for a different page in the
application, and (2) when a page is re-mapped to a different
frame. Since signatures are built using physical addresses, (1)
can lead to false positives, which can cause spurious aborts but
not correctness issues. In a more ambitious design, we could
solve this problem with virtual address-based conflict detection
for non-resident pages.

For (2) we adapt a solution first proposed in LogTM-
SE [36]. At the time of the unmap, active transactions are inter-
rupted both for TLB entry shootdown (already required) and to
flush TMI lines to the OT. When the page is assigned to a new
frame, the OS interrupts all the threads that mapped the page
and tests each thread’s Rsig, Wsig, and Osig for the old address of
each block. If the block is present, the new address is inserted
into the signatures. The corresponding tags of the OT entries
are also updated with the new physical address.

5 Context Switch Support
STMs provide effective virtualization support because they
maintain conflict detection and versioning state in virtualiz-
able locations and use software routines to manipulate them.
For common case transactions, FlexTM uses scalable hardware
support to bookkeep the state associated with access permis-
sions, conflicts, and versioning while controlling policy in soft-
ware. In the presence of context switches, FlexTM detaches
the transactional state of suspended threads from the hardware
and manages it using software routines. This enables support
for transactions to extend across context switches (i.e., to be
unbounded in time [1]).

Ideally, only threads whose actions overlap with the read and
write set of suspended transactions should bear the software
routine overhead. To track the accesses of descheduled threads,
FlexTM maintains two summary signatures, RSsig and WSsig,
at the directory of the system. When suspending a thread in the
middle of a transaction, the OS unions (i.e., ORs) the signatures
(Rsig and Wsig) of the suspended thread into the current RSsig

and WSsig installed at the directory.1

Once the RSsig and WSsig are up to date, the OS invokes
hardware routines to merge the current transaction’s hardware
state into virtual memory. This hardware state consists of (1)
the TMI lines in the local cache, (2) the OT registers, (3) the
current Rsig and Wsig, and (4) the CSTs. After saving this state
(in the order shown), the OS issues an abort instruction, caus-
ing the cache controller to revert all TMI and TI lines to I, and to
clear the signatures, CSTs, and OT registers. This ensures that
any subsequent conflicting access will miss in the private cache
and generate a directory request. In other words, for any given
location, the first conflict between the running thread and a lo-
cal descheduled thread always results in an L1 miss. The L2
controller consults the summary signatures on each such miss,
and traps to software when a conflict is detected.2

On summary hits a software handler mimics hardware oper-
ations on a per-thread basis, testing signature membership and
updating the CSTs of suspended transactions. No special in-
structions are required, since the CSTs and signatures of de-
scheduled threads are all visible in virtual memory. Neverthe-
less, updates need to be performed atomically to ensure consis-
tency when multiple active transactions conflict with a common
descheduled transaction and update the CSTs concurrently. The
OS helps the handler distinguish among transactions running
on different processors. It maintains a global conflict man-
agement table (CMT), indexed by processor id, with the fol-
lowing invariant: if transaction T is active, and has executed

1FlexTM updates RSsig and WSsig using a Sig message that uses the L1
coherence request network and carries the processor’s Rsig and Wsig. The di-
rectory updates the summary signatures and returns an ACK on the forwarding
network. This avoids races between the ACK and remote requests that were
forwarded to the suspending thread/processor before the summary signatures
were updated.

2TStore to an M line generates a write-back (see Figure 1) that also tests
the RSsig and WSsig for conflicts. This resolves the corner case in which a
suspended transaction TLoaded a line in M and a new transaction on the same
processor TStores it.

on processor P , irrespective of the state of the thread (sus-
pended/running), the transaction descriptor will be included in
P ’s portion of the CMT. The handler uses the processor ids in
its CST to index into the CMT and to iterate through transaction
descriptors, testing the saved signatures for conflicts, updating
the saved CSTs (if running in lazy mode), or invoking conflict
management (if running in eager mode). Similar perusal of the
CMT occurs at commit time if running in lazy mode. As al-
ways, we abort a transaction by writing its TSW. If the remote
transaction is running, an alert is triggered since it would have
previously ALoaded its TSW. Otherwise, the OS virtualizes
the AOU operation by causing the transaction to wake up in a
software handler that checks and re-ALoads the TSW.

The directory needs to ensure that sticky bits are retained
when a transaction is suspended. Along with RSsig and WSsig,
the directory maintains a bitmap indicating the processors on
which transactions are currently descheduled (the “Cores Sum-
mary” register in Figure 2). When the directory would normally
remove a processor from the sharers list (because a response to
a coherence request indicates that the line is no longer cached),
the directory refrains from doing so if the processor is in the
Cores Summary list and the line hits in RSsig or WSsig. This
ensures that the L1 continues to receive coherence messages
for lines accessed by descheduled transactions. It will need
these messages if the thread is swapped back in, even if it never
reloads the line.

When re-scheduling a thread, if the thread is being sched-
uled back to the same processor from which it was swapped
out, the thread’s Rsig, Wsig, CST, and OT registers are restored
on the processor. The OS then re-calculates the summary signa-
tures for the currently swapped out threads with active transac-
tions and re-installs them at the directory. Thread migration is
a little more complex, since FlexTM performs write buffering
and does not re-acquire ownership of previously written cache
lines. To avoid the inherent complexity, FlexTM adopts a sim-
ple policy for migration: abort and restart.

Unlike LogTM-SE [36], FlexTM is able to place the sum-
mary signature at the directory rather than on the path of every
L1 access. This scheme does not require inter-processor inter-
rupts to install summary signatures. Since speculative state is
flushed from the local cache when descheduling a transaction,
the first access to a conflicting line after re-scheduling is guar-
anteed to miss, and the conflict will be caught by the summary
signature at the directory. Because it is able to abort remote
transactions using AOU, FlexTM also avoids the problem of
potential convoying behind suspended transactions.

6 Area Analysis
In this section, we briefly summarize the area overheads of
FlexTM. Further details can be found in a technical report [31].
Area estimates appear in Table 2. We consider processors from
a uniform (65nm) technology generation to better understand
microarchitectural tradeoffs. Processor component sizes were

estimated using published die images. FlexTM component
areas were estimated using CACTI 6.

Only for the 8-way multithreaded Niagara-2 do the Rsig

and Wsig have a noticeable area impact: 2.2%; on Merom and
Power6 they add only ∼0.1%. CACTI indicates that the sig-
natures should be readable and writable in less than the L1 ac-
cess latency. These results appear to be consistent with those
of Sanchez et al. [27]. The CSTs for their part are full-map
bit-vector registers (as wide as the number of processors), and
we need only three per hardware context. Also, we do not ex-
pect the extra state bits in the L1 to affect the access latency
because (a) they have minimal impact on the cache area and (b)
the state array is typically accessed in parallel with the higher
latency data array. Finally, the OT controller adds less than
0.5% to core area. Moreover, its state machine is similar to
Niagara-2’s TSB walker [35]. Overall, FlexTM’s add-ons have
noticeable area impact (∼2.6%) only in the case of high core
multithreading. The overheads imposed on out-of-order CMP
cores (Merom and Power6) are well under 1%.

Processor Merom [26] Power6 [11] Niagara-2 [35]

Actual Die
SMT (threads) 1 2 8
Core (mm2) 31.5 53 11.7
L1 D (mm2) 1.8 2.6 0.4

CACTI Prediction
Rsig + Wsig (mm2) .033 .066 0.26

RSsig + WSsig (mm2) .033 .033 0.033
CSTs (registers) 3 6 24

OT controller (mm2) 0.16 0.24 0.035
Extra state bits 2(T,A) 3(T,A,ID) 5(T,A,ID)

% Core increase 0.6% 0.59% 2.6%
% L1 Dcache increase 0.35% 0.29% 3.9%

Table 2: Area Estimation. “ID” = SMT context of TMI line.

7 FlexTM Evaluation
7.1 Evaluation Framework
We evaluate FlexTM through full system simulation of a 16-
way chip multiprocessor (CMP) with private L1 caches and a
shared L2 (see Table 3(a)), on the GEMS/Simics infrastruc-
ture [21]. We added support for the FlexTM instructions using
the standard Simics “magic instruction” interface. Our base
protocol is an adaptation of the SGI ORIGIN 2000 [18] for a
CMP, extended to support FlexTM’s requirements: signatures,
CSTs, PDI, and AOU. Software routines (setjmp) were used
to checkpoint registers.

Simics allows us to run an unmodified Solaris 9 kernel.
Simics also provides a “user-mode-change” and “exception-
handler” interface, which we use to trap user-kernel mode
crossings. On crossings, we suspend the current transaction
mode and allow the OS to handle TLB misses, register-window
overflow, and other kernel activities required by an active user
context in the midst of a transaction. On transfer back from the
kernel, we deliver any alert signals received during the kernel
routine, triggering the alert handler if needed.

7.2 Runtime Systems
We evaluate FlexTM using the seven benchmarks described
in Table 3(b). In the data-structure tests, we execute a fixed
number of transactions in a single thread to warm up the struc-
ture, then fork off threads to perform the timed transactions.
Workload set 1 (WS1) interfaces with three TM systems: (1)
FlexTM; (2) RTM-F [30], a hardware accelerated STM sys-
tem; and (3) RSTM [20], a non-blocking STM for legacy hard-
ware (configured to use invisible readers, with self validation
for conflict detection). Workload set 2 (WS2), which uses a
different API, interfaces with (1) FlexTM and (2) TL2, a block-
ing STM for legacy hardware [9]. We use the “Polka” conflict
manager [28] across all systems. While all runtime systems
execute on our simulated hardware, RSTM and TL2 make no
use of FlexTM extensions. RTM-F uses only PDI and AOU.
FlexTM uses all the presented mechanisms.

7.3 Throughput and Scalability
Result 1: Separable hardware support for conflict detection,
conflict management, and versioning can provide significant
acceleration for software controlled TMs; eliminating software
bookkeeping from the common case critical path is essential to
realize the full benefits of hardware acceleration.

Figure 4 shows normalized throughput (transactions/sec.)
across our applications and systems. FlexTM, RTM-F, and
RSTM have all been set up to perform eager conflict manage-
ment (TL2 is inherently lazy). Throughput is normalized to that
of single-thread coarse-grain locks (CGL), which is very close
to sequential thread performance. To illustrate the usefulness of
CSTs (see the table in Figure 4), we also report the number of
conflicts encountered and resolved by an average transaction—
the number of bits set in the W-R and W-W CST registers.

STM performance suffers from the bookkeeping required
to track data versions (copying), detect conflicts, and guaran-
tee a consistent view of memory (validation). RTM-F exploits
AOU and PDI to eliminate validation and copying but still in-
curs bookkeeping overhead accounting for 40–50% of execu-
tion time. FlexTM’s hardware tracks conflicts, buffers specu-
lative state, and ensures consistency in a manner transparent to
software, resulting in single thread performance close to that
of CGL. FlexTM’s main overhead, register checkpointing, in-
volves spilling of local registers into the stack and is nearly
constant across thread levels. Eliminating per-access software
overheads (metadata tracking, validation, and copying) allows
FlexTM to realize the full potential of hardware acceleration,
with an average speedup of 2× over RTM-F, 5.5× over RSTM,
and 4.5× over TL2.

HashTable and RBTree both scale well. In RSTM, valida-
tion and copying account for 22% of execution time in Hash-
Table and 50% in RBTree; metadata management accounts for
40% and 30%, respectively. Tree rebalancing in RBTree is non-
trivial: insertion proceeds bottom-up while searching moves
top-down. At higher thread levels, eager conflict management
precludes read-write sharing and increases the likelihood of

(a) Target System Parameters
16-way CMP, Private L1, Shared L2

Processor Cores 16 1.2GHz in-order, single
issue; non-memory IPC=1

L1 Cache 32KB 2-way split, 64-byte
blocks, 1 cycle,
32 entry victim buffer,
2Kbit signature [5, S14]

L2 Cache 8MB, 8-way, 4 banks,
64-byte blocks, 20 cycle

Memory 2GB, 250 cycle latency
Interconnect 4-ary tree, 1 cycle, 64-byte

links,
Central Arbiter (Section 7.4)

Arbiter Lat. 30 cycles [6]
Commit Msg. Lat. 16 cycles/link

Commit messages also use the 4-ary tree.

(b) Workload Description
Workload-Set 1
HashTable: Transactions attempt to lookup, insert, or delete (33% each) a value (range 0 . . . 255) with equal probability into a
hash table with 256 buckets and overflow chains.
RBTree: Transactions attempt to insert, remove, or delete (33% each) values in the range 0 . . . 4095 with equal probability. At
steady state there are about 2048 objects, with 50% of the values in leaves. Node size is 256 bytes.
LFUCache: Simulates a web cache using a large (2048) array based index and a smaller (255 entry) priority queue to track the
page access frequency. Pages to be accessed are randomly chosen using a Zipf distribution: p(i) ∝ Σ0<j≤ij

−2.
RandomGraph Transactions insert or delete vertices (50% each) in an undirected graph represented with adjacency lists. Edges
are chosen at random, with each new vertex initially having up to 4 randomly selected neighbors.
Delaunay [29] Solves the original triangulation problem. Sorts the points into geometric regions, employs sequential solvers in
parallel to triangulate the regions, then uses transactions to “stitch” together the seams.
Workload-Set 2
Vacation [22]: Implements a travel reservations system. Client threads interact with an in-memory database in which tables are
implemented as a Red-Black tree. This workload is similar in design to SPECjbb2000. Two contention levels: Low – 90% of
relations queried, read-only tasks dominate; High – 10% of relations queried, 50-50 mix of read-only and read-write tasks.

Table 3: Experimental Set-Up

(a) HashTable

0
1
2
3
4
5
6
7
8

0 2 4 6 8 10 12 14 16

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(b) RBTree

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(c) LFUCache

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16
N

o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(d) RandomGraph

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(e) Delaunay

0
1
2
3
4
5
6
7
8

0 2 4 6 8 10 12 14 16

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(f) Vacation-Low

0
1
2
3
4
5
6
7
8
9
10

0 2 4 6 8 10 12 14 16

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(g) Vacation-High

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

Conflicting Transactions
8T 16T

Md Mx Md Mx
Hash 0 2 0 3
RBTree 1 2 1 3
LFUCache 3 5 6 10
Graph 2 4 5 9
Vac-Low 1 2 1 4
Vac-High 1 3 1 4
Delaunay. 0 2 0 2

Md=Median Mx=Maximum

CGL FlexTM RTM-F STM

Figure 4: Throughput (transactions/106 cycles), normalized to 1-thread CGL. X-axis specifies the number of threads. In plots
(a)-(e) STM represents RSTM [20]; in (f)-(g) it represents TL2 [9].

aborts, though the back-off strategy of the Polka conflict man-
ager limits aborts to about 10% of total transactions committed.

LFUCache and RandomGraph do not scale. Conflict for
popular keys in the Zipf distribution forces transactions in LFU-
Cache to serialize. Stalled writers lead to extra aborts with
larger numbers of threads, but performance eventually stabi-
lizes for all TM systems. In RandomGraph, larger numbers
of more random conflicts cause all TM systems to livelock at
higher thread levels, due to eager contention management. The
average RandomGraph transaction reads ∼80 cache lines and
writes ∼15. In RSTM, read-set validation accounts for 80% of
execution time. RTM-F eliminates this overhead, after which
per-access bookkeeping accounts for 60% of execution time.
FlexTM eliminates this overhead as well, to achieve 2.7× the
performance of RTM-F at 1 thread. At higher thread levels, all
TM systems livelock due to eager conflict management. In the
language of Bobba et al. [4], RandomGraph suffers from the
FriendlyFire, FutileStall, and DuellingUpgrade pathologies.

Delaunay [29] is fundamentally data parallel (less than 5%

of execution time is spent in transactions) and memory band-
width limited. FlexTM and CGL track closely out to 16 threads.
RSTM and RTM-F also track closely, but at half the throughput,
because the extra indirection required for metadata bookkeep-
ing induces a ∼ 2× increase in the number of cache misses.

Vacation is incompatible with the object-based API of
RSTM and RTM-F. Therefore, we evaluate its performance
on CGL, word-based TL2, and Flex-TM. Transactions read
∼100 entries from a database and stream them through an RB-
Tree. TL2 suffers from the bookkeeping required prior to the
first read (i.e., for checking write sets), post-read and commit
time validation [9]. FlexTM avoids this bookkeeping, yielding
4× the performance of TL2 at 1 thread. Vacation-Low dis-
plays good scalability (Figure 4f): 10× CGL’s performance at
16 threads. Vacation-High displays less (Figure 4g): 6× at 16
threads. Multiple threads introduce (1) a mix of read-only (e.g.,
ticket lookup) and read-write (e.g., ticket reservation) tasks and
(2) sets of dueling transactions that try to rotate common sub-
tree nodes. These increase the level of conflicts and aborts.

Idealized Overflow In the event of an overflow, FlexTM
buffers new values in a redo log and needs to perform copy-
back at commit time. Almost all of our benchmarks use the
overflow mechanism sparingly, with a maximum of 5 cache
lines overflowed in RandomGraph. Because our benchmarks
have small write sets, cache set conflicts account for all cases
of overflow. In separate experiments, we extended the L1 with
an unbounded victim buffer. In applications with overflows,
we found that redo-logging reduced performance by an aver-
age of 7% and a maximum of 13% (in RandomGraph) com-
pared to the ideal case, mainly because re-starting transactions
have their accesses queued behind the committed transaction’s
copy-back phase. As expected, benchmarks that don’t overflow
the cache (e.g., HashTable) experience no slowdown.

7.4 FlexTM vs. Central-Arbiter Lazy HTM
Result 2: CSTs are useful: transactions don’t conflict and even
when they do the number of conflicts per transaction is less
than the total active transactions. FlexTM’s distributed commit
demonstrates better scalability than a centralized arbiter.

As shown in the table at the end of Figure 4, the number of
conflicts encountered by a transaction is small compared to the
total number of transactions in the system. Even in workloads
that have a large number of conflicts (LFUCache and Random-
Graph) a typical transaction encounters only 30% of total trans-
actions as conflicts. Scalable workloads (e.g., HashTable and
Vacation) encounter essentially no conflict. This clearly sug-
gests that global arbitration and serialized commits will not
only waste bandwidth but also restrict concurrency. CSTs en-
able local arbitration and the distributed commit protocol al-
lows parallel commits thereby unlocking the full concurrency
potential of the application.

In this set of experiments, we compare FlexTM’s distributed
commit against two schemes with centralized hardware ar-
biters: Central-Serial and Central-Parallel. In both schemes,
instead of using CSTs and requiring each transaction to ALoad
its TSW, transactions forward their Rsig and Wsig to a cen-
tral hardware arbiter at commit time. The arbiter orders each
commit request, and broadcasts the Wsig to other processors.
Every recipient uses the forwarded Wsig to check for conflicts
and abort its active transaction; it also sends an ACK as a re-
sponse to the arbiter. The arbiter collects all the ACKs and
then allows the committing processor to complete. This pro-
cess adds 97 cycles to a transaction, assuming unloaded links
(latencies are listed in Table 3(a)) and arbiter. The Serial ver-
sion services only one commit request at a time (queuing up any
others), while Parallel services all non-conflicting transactions
in parallel (assumes infinite buffers in the arbiter). Central ar-
biters are similar in spirit to BulkSC [6], but serve only to order
commits; they do not interact with the L2 directory.

We present results (see Figure 5) for HashTable, Vacation-
Low, LFUCache, and RandomGraph (we eliminate Delaunay
since the transaction phases have negligible impact on overall
throughput and RBTree since it demonstrates a similar pattern
to Vacation). We enumerate the general trends below:

• Arbitration latency for the Central commit scheme is on
the critical path of transactions. This gives rise to noticeable
overhead in the case of short transactions (e.g., HashTable and
LFUCache) at all thread levels. CSTs simplify the commit pro-
cess, in the absence of conflicts, commit requires only a single
memory operation on a transaction’s cached TSW.

• At higher thread levels, the benchmarks that are inher-
ently parallel (HashTable and Vacation-Low) suffer from seri-
alization of commits in Central-Serial, as transactions wait for
predecessors in the queue. Central-Parallel removes the se-
rialization overhead, but still suffers from commit arbitration
latency at all thread levels.

• In benchmarks with high conflicts (e.g., LFUCache and
RandomGraph) that don’t inherently scale, Central’s conflict
management strategy avoids performance degradation. The
transaction being serviced by the arbiter always commits suc-
cessfully, ensuring progress and livelock freedom. The current
distributed protocol allows the possibility of livelock. However,
the CSTs streamline the commit process, narrow the vulnerabil-
ity window (to essentially the inter-processor message latency)
and eliminate the problem as effectively as Central.

At low conflict levels, a CST-based commit requires mostly
local operations and its performance should be comparable to
an ideal Central-Parallel (i.e., zero message and arbitration la-
tency). At high conflict levels, the penalties of Central are
lower compared to the overhead of aborts and workload inher-
ent serialization. Finally, the influence of commit latency on
performance is dependent on transaction latency (e.g., reduc-
ing commit latency helps Central-Parallel approach FlexTM’s
throughput in HashTable but has negligible impact on Random-
Graph’s throughput).

7.5 Conflict Management Timing
Result 3a: When applications get to use the machine in isola-
tion, lazy conflict management exploits available resources to
maximize concurrency and encourage forward progress.
Result 3b: With multiprogramming, lazy management allows
doomed but executing transactions to occupy valuable re-
sources Eager management may free up resources for other
useful work.

Figures 6(a)-(d) show the potential benefit of lazy conflict
management in FlexTM—specifically, the ability to eliminate
the performance pathologies observed in RBTree, Vacation-
High, LFUCache, and RandomGraph. In applications with
very few conflicts (e.g., HashTable and Vacation-Low), eager
and lazy management yield almost identical results.

RBTree and Vacation-High embody similar tradeoffs in con-
flict management. At low contention levels, Eager and Lazy
yield similar performance. Beyond 4 threads Lazy scales bet-
ter than Eager. Lazy permits reader-writer concurrency, which
pays off when the readers commit first. At 16 threads, Lazy’s
advantage is 16% in RBTree and 27% in Vacation-High.

LFUCache admits no concurrency, since transactions con-
flict on the same cache line with high probability. On conflict,

(a) HashTable

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(b) Vacation-Low

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(c) LFUCache

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(d) RandomGraph

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

FlexTM-CST Central-Serial Central-Parallell

Figure 5: FlexTM vs. Centralized hardware arbiters

(a) RBTree

0
1
2
3
4
5
6
7
8

0 2 4 6 8 10 12 14 16

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(b) Vacation-High

0
1
2
3
4
5
6
7
8
9

0 2 4 6 8 10 12 14 16

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(c) LFUCache

0
0.2
0.4
0.6
0.8
1

1.2

0 2 4 6 8 10 12 14 16

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(d) RandomGraph

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

Eager Lazyl

(e) RandomGraph+Prime

0
1
2
3
4
5
6
7
8
9
10

0 2 4 6 8 10 12 14 16

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(f) LFUCache+Prime

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

X; X-Y represents throughput of X when X and Y run simultaneously on
the machine with Eager (E) or Lazy (L) conflict management. Throughput
is normalized to a 1-thread run of X, running in isolation.

P;P-App(E) P;P-App(L) App(E);P-App(E) App(L);P-App(L)

Figure 6: Eager vs. lazy conflict management in FlexTM. In plots (a)-(d), Throughput is normalized to FlexTM Eager, 1 thread. In
plots (e)-(f), a prime factoring program (P) is mixed with RandomGraph and LFUCache respectively.

the conflict manager performs back-off within the active trans-
action. With high levels of contention, Eager causes a cascade
of futile stalls in doomed transactions. It also reduces con-
currency by creating a large window of conflict vulnerability
(first-access to commit-time). In lazy mode, transactions abort
enemies at commit-time, by which time the likelihood of com-
mitting is very high. Hence, with Lazy, throughput improves
by 38% at 16 threads when compared to Eager for which per-
formance degrades.

RandomGraph transactions livelock with Eager at higher
thread levels, because it is highly likely that transactions will
conflict on a highly contended object, giving rise to multi-
transaction duelling aborts. With Lazy, once a transaction
aborts an enemy at commit time, the remaining window of vul-
nerability is very small, the transaction is quite likely to com-
mit, and performance remains flat with increasing thread count.

In a second set of experiments (Figure 6(e) and 6(f)), we
analyze the impact of conflict management on background ap-
plications. We experimented with both transactional and non-
transactional workloads; for brevity we present only the latter
here: a CPU intensive application (Prime Factorization) sharing
the machine with a non-scalable transactional workload (LFU-

Cache or RandomGraph). We minimized extraneous overheads
by controlling workload schedules at the user level: on transac-
tion abort the thread yields to compute-intensive work.

We found that Prime scales better when running with eager
mode transactions (∼20% better than lazy in RandomGraph),
because Eager detects doomed transactions earlier and imme-
diately yields the CPU to useful work. Lazy is optimistic and
takes longer to detect impending aborts. It also delays the
restart of commit-worthy transactions. Significantly, yielding
to the background application did not negatively impact the
throughput of the transactional application, since LFUCache
and RandomGraph have little concurrency anyway. By effec-
tively serializing transactions, yielding also avoids the livelock
encountered by eager RandomGraph.

8 Conclusions and Future Work
FlexTM introduces Conflict Summary Tables; combines them
with Bloom filter signatures, alert-on-update, and program-
mable data isolation; and virtualizes the combination across
context switches, overflow, and page-swaps. It (1) decouples
conflict detection from conflict management and allows soft-
ware to control detection time (i.e., eager or lazy); (2) supports

a variety of commit protocols by tracking conflicts on a thread-
by-thread basis, rather than a location-by-location basis; (3) en-
ables software to dictate policy without the overhead of sepa-
rate metadata; and (4) permits TM components to be used for
non-transactional purposes. To the best of our knowledge, it is
the first hardware TM to admit an STM-like distributed commit
protocol, allowing lazy transactions to arbitrate and commit in
parallel (it also supports eager transactions).

On a variety of benchmarks, FlexTM outperformed both
pure and hardware-accelerated STM systems. It imposed min-
imal overheads at lower thread levels (single thread latency
comparable to CGL) and attained ∼5× more throughput than
RSTM and TL2 at all thread levels. Experiments with com-
mit schemes indicate that FlexTM’s distributed protocol is free
from the arbitration and serialization overheads of central hard-
ware managers. Finally, our experiments confirm that the
choice between eager and lazy conflict management is work-
load dependent, highlighting the value of policy flexibility.

In the future, we hope to enrich our semantics with hard-
ware support for nesting, and to study the interplay of conflict
management timing and policies. We have begun to experi-
ment with non-TM uses of our decoupled hardware [30, TR
version] [31]; we expect to extend this work by developing
more general interfaces and exploring their applications.

9 Acknowledgments
We would like to thank the anonymous reviewers and our shep-
herd, Onur Mutlu, for suggestions and feedback that helped to
improve this paper. Our thanks as well to Virtutech AB for
their support of Simics, and to the Wisconsin Multifacet group
for their support of GEMS.

References
[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Un-

bounded Transactional Memory. 11th Intl. Symp. on High Performance Computer
Architecture, Feb. 2005.

[2] B. H. Bloom. Space/Time Trade-Off in Hash Coding with Allowable Errors. Comm.
of the ACM, 13(7), July 1970.

[3] C. Blundell, E. C. Lewis, and M. M. K. Martin. Subtleties of Transactional Memory
Atomicity Semantics. IEEE Computer Architecture Letters, 5(2), Nov. 2006.

[4] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift, and D. A. Wood.
Performance Pathologies in Hardware Transactional Memory. 34th Intl. Symp. on
Computer Architecture, June 2007.

[5] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas. Bulk Disambiguation of Speculative
Threads in Multiprocessors. 33rd Intl. Symp. on Computer Architecture, June 2006.

[6] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk Enforcement of
Sequential Consistency. 34th Intl. Symp. on Computer Architecture, June 2007.

[7] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh, W. Baek, C.
Kozyrakis, and K. Olukotun. A Scalable, Non-blocking Approach to Transactional
Memory. 13th Intl. Symp. on High Performance Computer Architecture, Feb. 2007.

[8] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid
Transactional Memory. 12th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, Oct. 2006.

[9] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. 20th Intl. Symp. on
Distributed Computing, Sept. 2006.

[10] K. Fraser and T. Harris. Concurrent Programming Without Locks. ACM Trans. on
Computer Systems, 25(2), May 2007.

[11] J. Friedrich, B. McCredie, N. James, B. Huott, B. Curran, E. Fluhr, G. Mittal, E.
Chan, Y. Chan, D. Plass, S. Chu, H. Le, L. Clark, J. Ripley, S. Taylor, J. Dilullo,
and M. Lanzerotti. Design of the Power6 Microprocessor. Intl. Solid State Circuits
Conf., Feb. 2007.

[12] L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. Carlstrom, M. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional Memory Coherence and Consistency.
31st Intl. Symp. on Computer Architecture, June 2004.

[13] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software Transactional
Memory for Dynamic-sized Data Structures. 22nd ACM Symp. on Principles of
Distributed Computing, July 2003.

[14] M. Herlihy and J. E. Moss. Transactional Memory: Architectural Support for Lock-
Free Data Structures. 20th Intl. Symp. on Computer Architecture, San Diego, CA,
May 1993.

[15] M. D. Hill, D. Hower, K. E. Moore, M. M. Swift, H. Volos, and D. A. Wood. A
Case for Deconstructing Hardware Transactional Memory Systems. TR 1594, Dept.
of Computer Sciences, Univ. of Wisconsin–Madison, June 2007.

[16] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid Transactional
Memory. 11th ACM Symp. on Principles and Practice of Parallel Programming,
Mar. 2006.

[17] J. R. Larus and R. Rajwar. Transactional Memory, Synthesis Lectures on Computer
Architecture. Morgan & Claypool, 2007.

[18] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server.
24th Intl. Symp. on Computer Architecture, June 1997.

[19] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive Software Transactional
Memory. 19th Intl. Symp. on Distributed Computing, Sept. 2005.

[20] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N. Scherer III,
and M. L. Scott. Lowering the Overhead of Software Transactional Memory. 1st
ACM SIGPLAN Workshop on Transactional Computing, Ottawa, ON, Canada, June
2006.

[21] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s General
Execution-driven Multiprocessor Simulator (GEMS) Toolset. ACM SIGARCH Com-
puter Architecture News, Sept. 2005.

[22] C. C. Minh, M. Trautmann, J. Chung,, A. McDonald, N. Bronson, J. Casper, C.
Kozyrakis, and K. Olukotun. An Effective Hybrid Transactional Memory System
with Strong Isolation Guarantees. 34th Intl. Symp. on Computer Architecture, June
2007.

[23] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM:
Log-based Transactional Memory. 12th Intl. Symp. on High Performance Computer
Architecture, Feb. 2006.

[24] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Memory. 32nd Intl.
Symp. on Computer Architecture, June 2005.

[25] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg. McRT-
STM: A High Performance Software Transactional Memory System for a Multi-
Core Runtime. 11th ACM Symp. on Principles and Practice of Parallel Program-
ming, Mar. 2006.

[26] N. Sakran, M. Yuffe, M. Mehalel, J. Doweck, E. Knoll, and A. Kovacs. The Imple-
mentation of the 65nm Dual-Core 64b Merom Processor. Intl. Solid State Circuits
Conf., Feb. 2007.

[27] D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam. Implementing Signatures
for Transactional Memory. 40th Intl. Symp. on Microarchitecture, Dec. 2007.

[28] W. N. Scherer III and M. L. Scott. Advanced Contention Management for Dynamic
Software Transactional Memory. 24th ACM Symp. on Principles of Distributed
Computing, July 2005.

[29] M. L. Scott, M. F. Spear, L. Dalessandro, and V. J. Marathe. Delaunay Triangulation
with Transactions and Barriers. IEEE Intl. Symp. on Workload Characterization,
Sept. 2007.

[30] A. Shriraman, M. F. Spear, H. Hossain, S. Dwarkadas, and M. L. Scott. An Integrated
Hardware-Software Approach to Flexible Transactional Memory. 34th Intl. Symp.
on Computer Architecture, June 2007. TR 910, Dept. of Computer Science, Univ. of
Rochester, Dec. 2006.

[31] A. Shriraman, S. Dwarkadas, and M. L. Scott. Flexible Decoupled Transactional
Memory Support. TR 925, Dept. of Computer Science, Univ. of Rochester, Nov.
2007.

[32] M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L. Scott. Conflict Detection
and Validation Strategies for Software Transactional Memory. 20th Intl. Symp. on
Distributed Computing, Sept. 2006.

[33] M. F. Spear, A. Shriraman, H. Hossain, S. Dwarkadas, and M. L. Scott. Alert-on-
Update: A Communication Aid for Shared Memory Multiprocessors (poster paper).
12th ACM Symp. on Principles and Practice of Parallel Programming, Mar. 2007.

[34] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott. Privatization Techniques
for Software Transactional Memory. TR 915, Dept. of Computer Science, Univ. of
Rochester, Feb. 2007.

[35] Sun Microsystems Inc. OpenSPARC T2 Core Microarchitecture Specification. July
2005.

[36] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Valos, M. D. Hill, M. M. Swift,
and D. A. Wood. LogTM-SE: Decoupling Hardware Transactional Memory from
Caches. 13th Intl. Symp. on High Performance Computer Architecture, Feb. 2007.

[37] C. Zilles and L. Baugh. Extending Hardware Transactional Memory to Support
Non-Busy Waiting and Non-Transactional Actions. 1st ACM SIGPLAN Workshop
on Transactional Computing, June 2006.

