
VM-Based Shared Memory on Low-Latency, Remote-Memory-Access

Networks�

Leonidas Kontothanassisy, Galen Hunt, Robert Stets, Nikolaos Hardavellas,
Michał Cierniak, Srinivasan Parthasarathy, Wagner Meira, Jr.,

Sandhya Dwarkadas, and Michael Scott

Department of Computer Science y DEC Cambridge Research Lab
University of Rochester One Kendall Sq., Bldg. 700

Rochester, NY 14627–0226 Cambridge, MA 02139

Abstract

Recent technological advances have produced network inter-

faces that provide users with very low-latency access to the

memory of remote machines. We examine the impact of such

networks on the implementation and performance of software

DSM. Specifically, we compare two DSM systems—Cashmere

and TreadMarks—on a 32-processor DEC Alpha cluster con-

nected by a Memory Channel network.

Both Cashmere and TreadMarks use virtual memory to main-

tain coherence on pages, and both use lazy, multi-writer release

consistency. The systems differ dramatically, however, in the

mechanisms used to track sharing information and to collect and

merge concurrent updates to a page, with the result that Cash-

mere communicates much more frequently, and at a much finer

grain.

Our principal conclusion is that low-latency networks make

DSM based on fine-grain communication competitive with more

coarse-grain approaches,but that further hardware improvements

will be needed before such systems can provide consistently

superior performance. In our experiments, Cashmere scales

slightly better than TreadMarks for applications with false shar-

ing. At the same time, it is severely constrained by limitations of

the current Memory Channel hardware. In general, performance

is better for TreadMarks.

�This work was supported in part by NSF grants CDA–9401142,

CCR–9319445, CCR–9409120, and CCR–9510173; ARPA contract
F19628–94–C–0057; an external research grant from Digital Equipment
Corporation; and graduate fellowships from Microsoft Research (Galen

Hunt) and CNPq–Brazil (Wagner Meira, Jr., Grant 200.862/93-6).

To appear in the Proceedings of the Twenth-

Fourth Annual International Symposium on

Computer Architecture, Denver, CO, June

1997.

1 Introduction

Distributed shared memory (DSM) is an attractive design alterna-

tive for large-scale shared memory multiprocessing. Traditional

DSM systems rely on virtual memory hardware and simple mes-

sage passing to implement shared memory. State-of-the-art DSM

systems (e.g. TreadMarks [1, 16]) employ sophisticated proto-

col optimizations, such as relaxed consistency models, multiple

writable copies of a page, and lazy processing of all coherence-

related events. These optimizations recognize the very high (mil-

lisecond) latency of communication on workstation networks;

their aim is to minimize the frequency of communication, even

at the expense of additional computation.

Recent technological advances, however, have led to the

commercial availability of inexpensive workstation networks on

which a processorcan access the memory of a remote node safely

from user space, at a latency two to three orders of magnitude

lower than that of traditional message passing. These networks

suggest the need to re-evaluate the assumptions underlying the

design of DSM protocols, and specifically to consider protocols

that communicate at a much finer grain. The Cashmere system

employs this sort of protocol [17, 18]. It uses directories to keep

track of sharing information, and merges concurrent writes to

the same coherence block via write-through to a unique (and

possibly remote) main-memory copy of each page.

In this paper we compare implementations of TreadMarks

and a modified version of Cashmere on a 32-processor cluster

(8 nodes, 4 processors each) of DEC AlphaServers, connected

by DEC’s Memory Channel [12] network. Memory Channel

allows a user-level application to write to the memory of re-

mote nodes. The remote-write capability can be used for (non-

coherent) shared memory, for broadcast/multicast, and for very

fast user-level messages. Remote reads are not directly sup-

ported. Where the original Cashmere protocol used remote reads

to access directory information, we broadcast directory updates

on the Memory Channel. Where the original Cashmere protocol

would read the contents of a page from the home node, we ask

a processor at the home node to write the data to us. In Tread-

Marks, we use the Memory Channel simply to provide a very

fast messaging system. Our aim is to compare a more fine-grain

approach to shared memory to a state-of-the-art DSM that does

1

not rely on remote memory access. In future work we intend to

study alternative fine-grain protocols in more detail; we believe

the current version of Cashmere to be a good first cut.

Our performance results compare six specific protocol imple-

mentations: three each for TreadMarks and Cashmere. For both

systems, one implementation uses interrupts to request informa-

tion from remote processors, while another requires processors

to poll for remote requests at the top of every loop. The third

TreadMarks implementation uses DEC’s standard, kernel-level

implementation of UDP for the Memory Channel. The third

Cashmere implementation dedicates one processor per node to

handling remote requests. This approach is similar to polling,

but without the additional overhead and the unpredictability in

response time: it is meant to emulate a hypothetical Memory

Channel in which remote reads are supported in hardware. The

emulation is conservative in the sense that it moves data across

the local bus twice (through the processor registers), while true

remote reads would cross the bus only once.

In general, both Cashmere and TreadMarks provide good per-

formance for many of the applications in our test suite. The high

remote memory channel interrupt overheads of Digital Unix sig-

nificantly reduce performance for both TreadMarks and Cash-

mere. In general, TreadMarks is more sensitive to interrupt

latencies since it uses request-response communication for both

synchronization and data transfer. The Memory Channel im-

plementation of Cashmere uses interrupts only for page (data)

transfers. Cashmere takes advantage of remote memory access

for program and meta-data resulting in fewer messages requir-

ing a reply. In our experiments, Cashmere scales slightly better

than TreadMarks for applications with false sharing since the

use of home nodes reduces the number of request-response mes-

sages required to update the local copy of a page. In general,

however, performance is better for TreadMarks due to reduced

communication requirements. Overall, Cashmere spends less

time in protocol code at the expense of extra communication,

but is severely constrained by limitations of the current Memory

Channel hardware.

Three principal factors appear to contribute to making the

differences between TreadMarks and Cashmere on the Memory

Channel smaller than one would expect on an “ideal” remote-

memory-access network. First, the current Memory Channel has

relatively modest cross-sectional bandwidth, which limits the

performance of write-through. Second, it lacks remote reads,

forcing Cashmere to copy pages to local memory (rather than

fetching them incrementally in response to cache misses), and

to engage the active assistance of a remote processor in order

to make the copy. With equal numbers of compute processors,

Cashmere usually performs best when an additional processor

per node is dedicated to servicing remote requests, implying

that remote-read hardware would improve performance further.

Third, our processors (the 21064A) have very small first-level

caches. Our write-doubling mechanism increases the first-level

working set for certain applications beyond the 16K available,

dramatically reducing performance. The larger caches of the

21264 should largely eliminate this problem.

We are optimistic about the future of Cashmere-like systems

as network interfaces continue to evolve. Based on previous

simulations [18], it is in fact somewhat surprising that Cashmere

performs as well as it does on the current generation of hardware.

The second-generationMemory Channel, due on the market very

soon, will have something like half the latency, and an order of

magnitude more bandwidth. Finer-grain DSM systems are in

a position to make excellent use of this sort of hardware as it

becomes available.

The remainder of this paper is organized as follows. We

present the coherence protocols we are evaluating in Section 2.

In Section 3, we discuss our implementations of the protocols,

together with the mechanisms we employed (write doubling,

page copying, directory broadcast, and remote read emulation)

to overcome limitations of the hardware. Section 4 presents

experimental results. The final two sections discuss related work

and summarize our conclusions.

2 Protocols

Both TreadMarks and Cashmere maintain coherence at page

granularity, employ a relaxed consistency model, and allow mul-

tiple concurrent writers to the same coherence block. There are

significant differences, however, in the way sharing information

for coherence blocks is maintained, and in the way writes to

the same coherence block by multiple processors are merged.

Mainly, TreadMarks does not take advantage of remote memory

access for anything other than fast messaging, while Cashmere

uses remote memory access for fine-grain communication of co-

herence information and shared data.

2.1 Cashmere

Cashmere maintains coherence information using a distributed

directory data structure. Currently, directory entries are orga-

nized as a set of eight 4-byte words, one for each SMP node in

the system. Each word contains presence bits for each of the

four processors within the SMP (4 bits), the id of the home node

for the page (5 bits), whether the home node is still the original

default or has been set as the result of a “first touch” heuristic (1

bit), and an indication of whether a particular CPU within a node

has exclusive read/write permission for the page (4 bits). The

home node indications in separate words are redundant. Direc-

tory space overhead for the 8K pages supported by Digital Unix

is about 3% and would be smaller if we did not have to replicate

the directory on each of our eight nodes. Directory overhead

could be reduced by packing the directory information into a

single long word (64 bits). However, this would require locking

of the directory entry. The current directory structure does not

require the use of locks except to set the home node of a page.

The choice of home node can have a significant impact on

performance. The home node itself can access the page directly,

while the remaining processors have to use the slower Memory

Channel interface. We assign home nodes at run time, based

on which processor first touches a page after the program has

completed any initialization phase [23]. The home node is set

only once during the lifetime of a program, and thus the use of

locks does not impact performance.

In addition to the directory data structure, each processor also

holds two globally accessible lists, the write notice list and the

no longer exclusive (NLE) list. These globally accessible lists

are protected by cluster-wide locks. The write notice list con-

tains descriptors (write notices) for pages that are valid on the

2

processor and have been written by remote processors. A bit

map is also associated with the write notice list in order to avoid

duplicate write notices for the same page. The NLE list contains

descriptors for pages to which the processor once held exclusive

access, but which are now shared by multiple processors. A pro-

cessor can avoid certain overhead for a page so long as it retains

exclusive access (see below).

Protocol operations happen in response to four types of events:

read page faults, write page faults, acquire synchronization

operations, and release synchronization operations.

When a processor takes a read page fault, it acquires exclusive

access to the directory word representing its SMP node (using

load-linked/store-conditional (ll/sc) within the node), and adds

itself to the sharing set. It then checks to see if the home node

has been assigned (valid home node bits). If the home node

bits are not valid and home node ownership has already been

asserted by another node, the faulting processor sets the home

node bits in its node’s directory entry. If home node ownership

has not been asserted by any other node (checked by examining

all other directory words), the faulting processor acquires the

directory entry lock to assert home node ownership. It also scans

all words in the directory entry to determine if another processor

has previously acquired exclusive read/write permission on the

page. If so, it appends a descriptor for the page to the NLE list

of the former exclusive-sharer processor.

Locally, the faulting processor creates a mapping for the page.

Ideally, the mapping would allow the processor to load cache

lines from the home node on demand. On the Memory Channel,

which does not support remote reads, a copy of the page is

requested from the home node, and then written into the local

copy (see below). A write page fault on an invalid page is

treated the same as a read page fault. In addition, on each write

page fault, the processor inserts the page number in a local list

called the dirty list. The faulting operation is then restarted after

providing the appropriate (read and write) permissions to the

page.

At an acquire synchronization operation, the processor tra-

verses its write notice list and removes itself from the sharing set

of each page found therein. The removal operation requires that

the processor obtain exclusive access (within the SMP node) for

the corresponding word in the directory entry, and modify the

bitmask of sharing processors.

At a release synchronizationoperation, the processor traverses

its dirty list and informs other processors of the writes it has

performed since the previous release operation. For each entry

in the dirty list the processor scans the directory entry for that

page. If other processors are found to be sharing the page,

the releaser appends a notice to the write notice list of every

sharing processor, if a write notice does not already exist for

the page (checked by examining the bit mask). If no other

processor is found sharing the page, the processor indicates that

the page is in exclusive mode by appropriately modifying its

directory word. If the page does not move to exclusive mode, the

processor downgrades its permission to read-only so as to catch

subsequent writes. After processing its dirty list the processor

also traverse its NLE list. For each entry listed in the list it takes

the same set of actions it took for entries in the dirty list with

two differences. It sets a flag indicating that this page should

never move to exclusive mode again and also avoids moving it

to exclusive mode now, even if no other processors are found to

be sharing the page.

The final issue to be addressed is the mechanism that allows

a processor to obtain the data written by other processors. For

each page there is a unique home node to which processors

send changes on the fly. Our protocol guarantees that a release

operation cannot complete before all its writes have been applied

at the unique home node. Future acquires are guaranteed to find

data that is in their logical past at the home node. On a network

with remote reads there would be only one copy of each page in

main memory—namely the copy at the home node. Every page

mapping would refer to this page; cache fills would be satisfied

from this page; and the collection of changes would happen via

the standard cache write-through or write-back. On the Memory

Channel, we must create a local copy of a page in response to

a page fault. Normal write-back then updates this local copy.

To update the copy at the home node, we insert additional code

into the program executable at every shared memory write (write

doubling).

This protocol differs in a number of ways from the Cashmere

protocol employed in simulation-based studies [18]. The most

important differences stem from differences in hardware plat-

forms. The ideal simulated hardware (i.e. the one that yields

the best performance for Cashmere-like protocols) assumes the

ability to map remote pages and service cache misses to them in

hardware as well as the ability to forward writes to home nodes

using write-through. In the current implementation we were

forced to use page copying and doubling of writes in software

(see section 3).

We have also made modifications to the protocol itself. In

particular we have removed the “weak” state from the imple-

mented protocol. In simulation, any page with at least one writer

resided in the weak state. Weak pages were optimistically as-

sumed to be modified during every synchronization interval: all

sharers would automatically invalidate the pages during acquire

operations. The current protocol opts instead for the exclusive

mode and for explicit write notices. Pages in exclusive mode

experience only the initial write fault, the minimum of possi-

ble protocol overhead. At release operations, processors send

write notices for all modified non-exclusive pages that do not

already have such a notice pending. These two enhancements

improve Cashmere’s ability to efficiently handle private pages

and producer-consumer sharing patterns.

2.2 TreadMarks

TreadMarks is a distributed shared memory system based on

lazy release consistency (LRC) [16]. Lazy release consistency

is a variant of release consistency [20]. It guarantees memory

consistency only at synchronization points and permits multiple

writers per coherence block. Lazy release consistency divides

time on each node into intervals delineated by remote synchro-

nization operations. Each interval is represented by a vector of

timestamps, with entry i on processor j representing the most

recent interval on processor i that logically precedes the current

interval on processor j. When a processor takes a write page

fault, it creates a write notice for the faulting page and appends

the notice to a list of notices associated with its current interval.

3

When a processor acquires a lock, it sends a copy of its cur-

rent vector timestamp to the previous lock owner. The previous

lock owner compares the received timestamp with its own, and

responds with a list of all intervals (and the write notices asso-

ciated with them) that are in the new owner’s past, but that the

new owner has not seen. The acquiring processor sets its vector

timestamp to be the pairwise maximum of its old vector and the

vector of the previous lock owner. It also incorporates in its local

data structures all intervals (and the associatedwrite notices) sent

by the previous owner. Finally, it invalidates (unmaps) all pages

for which it received a write notice. The write notice signifies

that there is a write to the page in the processor’s logical past and

that the processor needs to bring its copy of the page up to date.

To support multiple writers to a page, each processor saves a

pristine copy of a page called a twin before it writes the page.

When asked for changes, the processorcompares its current copy

of the page to the page’s twin. The result of the comparison is

a run-length encoding of the changes, called a diff. There is one

diff for every write notice in the system. When a processor takes

a read page fault (or a write page fault on a completely unmapped

page), it peruses its list of write notices and makes requests for

all unseen modifications. It then merges the changes into its local

copy in software, in the causal order defined by the timestamps

of the write notices.

Barrier synchronization is dealt with somewhat differently.

Upon arrival at a barrier, all processors send their vector times-

tamps (and intervals and write notices), to a barrier manager,

using a conservative guess as to the contents of the manager’s

vector timestamp. The manager merges all timestamps, inter-

vals, and write notices into its local data structures, and then

sends to each processor its new updated timestamp along with

the intervals and write notices that the processor has not seen.

The TreadMarks protocol avoids communication at the time

of a release, and limits communication to the processes partici-

pating in a synchronization operation. However, because it must

guarantee the correctness of arbitrary future references, and be-

cause all information is local and communication occurs only

via messaging, the TreadMarks protocol must send notices of all

logically previous writes to synchronizing processors even if the

processors have no copy of the page to which the write notice

refers. If a processor is not going to acquire a copy of the page

in the future (something the protocol cannot of course predict),

then sending and processing these notices may constitute a sig-

nificant amount of unnecessary work, especially during barrier

synchronization, when all processors need to be made aware of

all other processors’ writes. Further information on TreadMarks

can be found in other papers [1].

3 Implementation Issues

3.1 Memory Channel

Digital Equipment’s Memory Channel (MC) network provides

applications with a global address space using memory mapped

regions. A region can be mapped into a process’s address space

for transmit, receive, or both (a single virtual address mapping

can only be either for transmit or for receive). Virtual addresses

for transmit regions map into physical addresses located in I/O

space, and, in particular, on the MC’s PCI adapter. Virtual

Memory Channel
Address Space

������
������
������

������
������
������

������
������
������
������

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������

Node 2Node 1

Figure 1: Memory Channel space. The lined region is mapped

for both transmit and receive on node 1 and for receive on node 2.

The gray region is mapped for receive on node 1 and for transmit

on node 2.

label:

ldq $7, 0($13) ; Check poll flag.

beq $7, nomsg ; If message,

jsr $26, handler ; call handler.

ldgp $29, 0($26)

nomsg:

Figure 2: Polling. Polling code is inserted at all interior,

backward-referenced labels. The address of the polling flag

is preserved in register $13 throughout execution.

addresses for receive regions map into physical RAM. Writes

into transmit regions are collected by the source MC adapter,

forwarded to destination MC adapters through a hub, and trans-

ferred via DMA to receive regions with the same global identifier

(see Figure 1). Regions within a node can be shared across pro-

cessors and processes. Writes to transmit regions originating on a

given node will be sent to receive regions on that same node only

if loop-back has been enabled for the region. In our implemen-

tation of Cashmere, we use loop-back only for synchronization

primitives. TreadMarks does not use it at all.

Unicast and multicast process-to-processwrites have a latency

of 5.2 �s on our system (latency drops below 5�s for other

AlphaServer models). Our MC configuration can sustain per-

link transfer bandwidths of 30 MB/s with the limiting factor

being the 32-bit AlphaServer 2100 PCI bus. MC peak aggregate

bandwidth is also about 32 MB/s due to a limitation on the

early implementation of the Memory Channel device driver. We

expect that number to get closer to the 100MB/s supported by

the hardware with the new driver release.

Memory Channel guarantees write ordering and local cache

coherence. Two writes issued to the same transmit region (even

on different nodes) will appear in the same order in every receive

region. When a write appears in a receive region it invalidates

any locally cached copies of its line.

3.2 Remote-Read Mechanisms

Although the first-generation Memory Channel supports remote

writes, it does not support remote reads. To read remote data,

a message passing protocol must be used to send a request to a

remote node. The remote node respondsby writing the requested

4

data into a region that is mapped for receive on the originating

node.

Three different mechanisms can be used to process transfer

requests. The most obvious alternative uses a MC provided

inter-node interrupt to force a processor on the remote node into

a handler. The second alternative is for processes to poll for

messages on a periodic basis (e.g. at the tops of loops). The

third alternative is to dedicate one processor on every node to

servicing remote requests, and have that processor poll on a

continual basis.

Memory Channel allows a processor to trigger an inter-node

interrupt by means of a remote write for which the recipient has

created a special receive region mapping. This capability is ex-

ported to applications as an imc kill function which is called

with a remote host name, process identifier and UNIX signal

number. The interrupt is filtered up through the kernel to the

receiving process only when the receiving process subsequently

enters the kernel, resulting in an average inter-node signal cost

of almost 1 millisecond.

Polling requires instrumentation that checks the message re-

ceive region frequently, and branches to a handler if a message

has arrived. Applications can be instrumented either by hand

or automatically. We instrument the protocol libraries by hand

and use an extra compilation pass between the compiler and as-

sembler to instrument applications1. The instrumentation pass

parses the compiler-generated assembly file and inserts polling

instrumentation at the start of all labeled basic blocks that are in-

ternal to a function and are backward referenced—i.e. at tops of

all loops. The polling instruction sequence appears in Figure 2.

Dedicating a processor to polling on each node is the least

intrusive mechanism: it requires neither application changes nor

expensive interrupt handlers. Of course, a dedicated processor

is unavailable for regular computation. In general, we would

not expect this to be a productive way to use an Alpha proces-

sor (though in programs that don’t scale well it can actually be

better than further parallelism). Our intent is rather to simulate

the behavior of a hypothetical (and somewhat smaller) Memory

Channel system that supports remote reads in hardware.

3.3 Cashmere

Cashmere takes advantage of MC remote writes to collect shared

memory writes, to update the page directory, and to implement

synchronization. The Cashmere virtual address space consists of

four areas (see Figure 3). The first area consists of processprivate

memory. The second contains Cashmere meta-data, including

the page directory, synchronization memory, write notice and

NLE lists, and protocol message-passing regions (for page fetch

requests). The other two areas contain Cashmere shared memory.

The higher of these two contains the processor’s local copies of

shared pages and the lower contains MC regions used to maintain

memory consistency between nodes.

The page directory and synchronization regions are mapped

twice on each node: once for receive and once for transmit.

Remote meta-data updates are implemented by writing once to

the receive region in local memory and again to the write region

1We did not use ATOM since the current version can only insert

instrumentation in the form of procedure calls incurring singificantly
higher overhead

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������Doubled

Writes

Private Memory

0x00100000000

0x11000002000

Cashmere Meta-data

0x01000000000

Shared Memory

Memory Channel
Shared Regions

(local copies)

Figure 3: Cashmere process address space. Writes are dupli-

cated from the private copy of a shared memory page to the

corresponding page in the MC regions. MC regions are mapped

for receive on home nodes and for transmit on all other nodes.

srl $3, 40, $7 ; Create page offset

sll $7, 13, $7 ; if shared write.

subq $3, $7, $7

zap $7, 0x20, $7 ; Subtract MC offset.

stq $1, 0($3) ; Original write.

stq $1, 0($7) ; Doubled write.

Figure 4: Write Doubling, in this case for an address in register

3 with 0 displacement.

for transmit. MC loop-back is not used because it requires twice

the PCI bandwidth: once for transmit and once for receive, and

because it does not guarantee processor consistency.

For every actively-shared page of memory, one page is allo-

cated in the process’s local copy area and another in the MC area.

If a process is located on the home node for a shared page, the

MC page is mapped for receive. If a process is not located on

the home node, then the MC page is mapped for transmit. In the

current version of Digital Unix, the number of separate Memory

Channel regions is limited by fixed-size kernel tables. Each MC

region in our Cashmere implementation contains a superpage,

the size of which is obtained by dividing the maximum shared

memory size required by the application by the number of table

entries. Superpages have no effect on coherence granularity:

we still map and unmap individual pages. They do, however,

constrain our “first touch” page placement policy: all pages of a

given superpage must share the same home node.

3.3.1 Write Doubling

All writes to shared memory consist of an original write to the

private copy and a duplicate write to the MC area. The du-

plicate write and associated address arithmetic are inserted into

applications by parsing and updating assembly code, in a man-

ner analagous to that used to insert polling. As in polling, we

rely on the GNU C compiler’s ability to reserve a register for

5

use in the instrumented code. Single-processor tests confirm

that the additional register pressure caused by the reservation has

a minimal impact on the performance of our applications. A

compiler-supported Cashmere implementation would be able to

use one of the registers ($7) for other purposes as well.

Figure 4 contains the assembly sequence for a doubled write.

The sequence relies on careful alignment of the Cashmere shared-

memory regions. The local copy of a shared page and its

corresponding Memory Channel region differ in address by

0x01000000 2000. The high bit in the offset places the addresses

far enough apart that all of shared memory can be contiguous.

The low bit in the offset ensures that the two addresses will map

to different locations in the first-level cache on the home node.

To obtain the address to which to double a write, we use the value

of the 40th bit to mask out the 13th bit. We also clear the 40th

bit. For a truly private reference, which should not be doubled,

these operations have no effect, because the 40th bit is already 0.

In this case, the private address is written twice. By placing the

address arithmetic before the original write, so that the writes are

consecutive instructions, we make it likely that spurious doubles

of private writes will combine in the processor’s write buffer. As

an obvious optimization, we refrain from doubling writes that

use the stack pointer or global pointer as a base.

3.3.2 Page Directory and Locks

Page directory access time is crucial to the overall performance

of Cashmere. Directory entries must be globally consistent and

inexpensive to access. As mentioned previously, the page direc-

tory is mapped into both receive and transmit regions on each

node. Each entry consists of eight 4-byte words.

Both application and protocol locks are represented by an

8-entry array in Memory Channel space, and by a test-and-set

flag on each node. To acquire a lock, a process first acquires

the per-node flag using ll/sc. It then sets the array entry for its

node, waits for the write to appear via loop-back, and reads the

whole array. If its entry is the only one set, then the process

has acquired the lock. Otherwise it clears its entry, backs off,

and tries again. In the absence of contention, acquiring and

releasing a lock takes about 11 �s. Digital Unix provides a

system-call interface for Memory Channel locks, but while its

internal implementation is essentially the same as ours, its latency

is more than 280�s. Most of that overhead is due to the crossing

of thr kernel-user boundary. Application and protocol locks use

the same implementation. Application barriers are tree-based.

Upon arrival, each processor first waits for all of its children to

arrive, then notifies its parent of the sub-tree’s arrival, and finally

waits for notification from the root of the barrier tree before

continuing. All notifications are posted through explicit words

in Memory Channel space.

3.4 TreadMarks

We have modified TreadMarks version 0.10.2 to use the MC ar-

chitecture for fast user-level messages. Only the messaging layer

was changed: all other aspects of the implementation are stan-

dard. In particular, we do not use broadcast or remote memory

access for either synchronization or protocol data structures, nor

do we place shared memory in Memory Channel space.

We present results for three versions of TreadMarks. The first

uses DEC’s kernel-level implementation of UDP for the Mem-

ory Channel, with regular sig io interrupts. The second uses

user-level message buffers, and sends imc kill interrupts (see

Section 3.2) to signal message arrival. The third is built entirely

in user space, with polling (see Section 3.2—the polling instru-

mentation used for TreadMarks and Cashmere is identical) to

determine message arrival. Interrupts (and in particular signals)

for the first two implementations are expensive in Digital Unix,

and are a principal factor limiting scalability. While polling in

our implementation makes use of the Memory Channel hard-

ware, it could also be implemented (at somewhat higher cost) on

a more conventional network. In our experiments it allows us to

separate the intrinsic behavior of the TreadMarks protocol from

the very high cost of signals on this particular system.

The UDP version of TreadMarks creates a pair of UDP sockets

between each pair of participating processors: a request socket

on which processor A sends requests to processor B and receives

replies, and a reply socket on which processor A receives re-

quests from processor B and sends replies. The MC version

replaces the sockets with a pair of message buffers. Two sense-

reversing flags (variables allocated in Memory Channel space)

provide flow control between the sender and the receiver: the

sender uses one flag to indicate when data is ready to be con-

sumed; the receiver uses the other to indicate when data has been

consumed. Reply messages do not require interrupts or polling:

the requesting processor always spins while waiting for a reply.

Becauseboth DEC’s MC UDP and our user-level buffers provide

reliable delivery, we have disabled the usual timeout mechanism

used to detect lost messages in TreadMarks. To avoid deadlock

due to buffer flow-control, we have made the request handler

re-entrant: whenever it spins while waiting for a free buffer or

for an expected reply it also polls for, and queues, additional

incoming requests.

In both TreadMarks and Cashmere each application-level pro-

cess is bound to a separate processor of the AlphaServer. The

binding improves performance by taking advantage of memory

locality, and reduces the time to deliver a page fault. To mini-

mize latency and demand for Memory Channel bandwidth, we

allocate message buffers in ordinary shared memory, rather than

Memory Channel space, whenever the communicating processes

are on the same AlphaServer. This is the only place in either

TreadMarks or Cashmere that our current implementations take

advantage of the hardware coherenceavailable within each node.

4 Performance Evaluation

Our experimental environment consists of eight DEC Al-

phaServer2100 4/233 computers. Each AlphaServer is equipped

with four 21064A processors operating at 233 MHz and with

256MB of shared memory, as well as a Memory Channel net-

work interface. No other processors are connected to the Memory

Channel. Each AlphaServer runs in multi-user mode, but with

the exception of normal Unix daemons no other processes were

active during the tests. The underlying virtual memory page size

is 8 Kbytes. A cache line is 64 bytes.

For Cashmere, we present results for three different mecha-

nisms to handle remote requests—a dedicated “protocol proces-

sor” (csm pp), imc kill interrupts (csm int), and polling

6

(csm poll). The protocol processor option approximates the

ability to read remote memory in hardware. For TreadMarks,

we present results for three different versions—one that uses

DEC’s kernel-level MC UDP protocol stack with sigio inter-

rupts (tmk udp int), one that uses user-level messaging on

MC with imc kill interrupts (tmk mc int), and one that

uses user-level messaging on MC with polling (tmk mc poll).

4.1 Basic Operation Costs

Memory protection operations on the AlphaServers cost about

62 �s. Page faults cost 89 �s. It takes 69 �s to deliver a signal

locally, while remote delivery costs the sender 584 �s and incurs

an end-to-end latency of about 1 ms. The overhead for polling

ranges between 0% and 36% compared to a single processor

execution, depending on the application.

The overhead for write doubling ranges between 0% and 39%

compared to a single processor execution for Cashmere, depend-

ing on the application. Directory entry modification takes 16

�s for Cashmere, if locking is required, and 5 �s otherwise. In

other words, 11 �s is spent acquiring and releasing the directory

entry lock, but only when relocating the home node. The cost

of a twinning operation on an 8K page in TreadMarks is 362 �s.

The cost of diff creation ranges from 289 to 534 �s per page,

depending on the size of the diff.

Table 1 provides a summary of the minimum cost of page

transfers and of user-level synchronization operations for the

different implementations of Cashmere and TreadMarks. All

times are for interactions between two processors. The barrier

times in parentheses are for a 16 processor barrier.

4.2 Application Characteristics

We present results for 8 applications:

SOR: a Red-Black Successive Over-Relaxation program for

solving partial differential equations. The red and black

arrays are divided into roughly equal size bands of rows,

with each band assigned to a different processor. Com-

munication occurs across the boundaries between bands.

Processors synchronize with barriers.

LU: a kernel from the SPLASH-2 [32] benchmark, which for

a given matrix A finds its factorization A = LU , where

L is a lower-triangular matrix and U is upper triangular.

The matrix A is divided into square blocks for temporal

and spatial locality. Each block is “owned” by a particular

processor, which performs all computation on it.

Water: a molecular dynamics simulation from the SPLASH-

1 [30] benchmark suite. The shared array of molecule

structures is divided into equal contiguous chunks, with

each chunk assigned to a different processor. The bulk of

the interprocessor communication happens during a com-

putation phase that computes intermolecular forces. Each

processor accumulates its forces locally and then acquires

per-processor locks to update the globally shared force vec-

tors, resulting in a migratory sharing pattern.

TSP: a branch-and-bound solution to the traveling salesman

problem. Locks are used to insert and delete unsolved

tours in a priority queue. Updates to the shortest path

are protected by a separate lock. The algorithm is non-

deterministic in the sense that the earlier some processor

stumbles upon the shortest path, the more quickly other

parts of the search space can be pruned.

Gauss: a solver for a system of linear equationsAX = B using

Gaussian Elimination and back-substitution. The Gaussian

elimination phase makes A upper triangular. Each row of

the matrix is the responsibility of a single processor. For

load balance, the rows are distributed among processors

cyclically. A synchronization flag for each row indicates

when it is available to other rows for use as a pivot.

Ilink: a widely used genetic linkage analysis program from the

FASTLINK 2.3P package that locates disease genes on

chromosomes. We use the parallel algorithm described

by Dwarkadas et al. [8]. The main shared data is a pool

of sparse arrays of genotype probabilities. Updates to each

array are parallelized. A master processor assigns individ-

ual array elements to processors in a round robin fashion

in order to improve load balance. After each processor has

updated its elements, the master processor sums the contri-

butions. Barriers are used for synchronization. Scalability

is limited by an inherent serial componentand inherent load

imbalance.

Barnes: an N-body simulation from the SPLASH-1 [30] suite,

using the hierarchical Barnes-Hut Method. Each leaf of the

program’s tree represents a body, and each internal node

a “cell”: a collection of bodies in close physical proxim-

ity. The major shared data structures are two arrays, one

representing the bodies and the other representing the cells.

The Barnes-Hut tree construction is performed sequentially,

while all other phases are parallelized and dynamically load

balanced. Synchronization consists of barriers between

phases.

Em3d: a program to simulate electromagnetic wave propagation

through 3D objects [7]. The major data structure is an array

that contains the set of magnetic and electric nodes. These

are equally distributed among the processors in the system.

For each phase in the computation, each processor updates

the electromagnetic potential of its nodes based on the po-

tential of neighboring nodes. While arbitrary graphs of

dependencies between nodes can be constructed, the stan-

dard input assumes that nodes that belong to a processor

have dependencies only on nodes that belong to that pro-

cessor or neighboring processors. Processors use barriers

to synchronize between computational phases.

Table 2 presents the data set sizes and uniprocessor execu-

tion times for each of the eight applications, with the size of

shared memory space used in parentheses. The execution times

were measured by running each application sequentially without

linking it to either TreadMarks or Cashmere.

4.3 Comparative Speedups

Figure 5 presents speedups for our applications on up to 32

processors. All calculations are with respect to the sequential

7

0

4

8

12

16

20

24

28

0 4 8 12 16 20 24 28 32

S
pe

ed
up

Processors

Sor

csm_pp
csm_poll
csm_int

tmk_mc_poll
tmk_mc_int

tmk_udp_int

0

4

8

12

16

0 4 8 12 16 20 24 28 32

S
pe

ed
up

Processors

LU

csm_pp
csm_poll
csm_int

tmk_mc_poll
tmk_mc_int

tmk_udp_int

0

4

8

12

16

20

24

28

0 4 8 12 16 20 24 28 32

S
pe

ed
up

Processors

Water

csm_pp
csm_poll
csm_int

tmk_mc_poll
tmk_mc_int

tmk_udp_int

0

4

8

12

16

20

24

28

0 4 8 12 16 20 24 28 32

S
pe

ed
up

Processors

TSP

csm_pp
csm_poll
csm_int

tmk_mc_poll
tmk_mc_int

tmk_udp_int

0

4

8

12

16

0 4 8 12 16 20 24 28 32

S
pe

ed
up

Processors

Gauss

csm_pp
csm_poll
csm_int

tmk_mc_poll
tmk_mc_int

tmk_udp_int

0

4

8

12

16

0 4 8 12 16 20 24 28 32

S
pe

ed
up

Processors

Ilink

csm_pp
csm_poll
csm_int

tmk_mc_poll
tmk_mc_int

tmk_udp_int

0

4

8

12

0 4 8 12 16 20 24 28 32

S
pe

ed
up

Processors

EM3D

csm_pp
csm_poll
csm_int

tmk_mc_poll
tmk_mc_int

tmk_udp_int

0

4

8

12

0 4 8 12 16 20 24 28 32

S
pe

ed
up

Processors

Barnes

csm_pp
csm_poll
csm_int

tmk_mc_poll
tmk_mc_int

tmk_udp_int

Figure 5: Speedups.

8

Operation Time (�s)

csm pp csm int csm poll tmk udp int tmk mc int tmk mc poll

Lock Acquire 11 11 11 1362 976 79

Barrier 90 (173) 88 (208) 86 (205) 987 (8006) 568 (5432) 75 (1213)

Page Transfer 736 1960 742 2932 1962 784

Table 1: Cost of basic operations.

Program Problem Size Time (sec.)

SOR 3072x4096 (50Mbytes) 194.96

LU 2046x2046 (33Mbytes) 254.77

Water 4096 mols. (4Mbytes) 1847.56

TSP 17 cities (1Mbyte) 4028.95

Gauss 2046x2046 (33Mbytes) 953.71

Ilink CLP (15Mbytes) 898.97

Em3d 60106 nodes (49Mbytes) 161.43

Barnes 128K bodies (26Mbytes) 469.43

Table 2: Data set sizes and sequential execution time of applica-

tions.

times in Table 2. The configurations we use are as follows: 1

processor: trivial; 2: separate nodes; 4: one processor in each

of 4 nodes; 8: two processors in each of 4 nodes; 12: three

processors in each of 4 nodes; 16: two processors in each of 8

nodes; 24: three processors in each of 8 nodes; and 32: trivial,

but not applicable to csm pp.

Table 3 presents detailed statistics on the communication in-

curred by eachof the applications on the polling implementations

of Cashmere and TreadMarks at 32 processors,except for Barnes,

where the statistics presented are for 16 processors. Since the

performance for Barnes drops significantly with more than 16

processors, we present the statistics at 16 processors in order

to make a reasonable comparison. The statistics presented are

the execution time, the number of lock and barrier synchroniza-

tion operations, number of read and write faults, the number of

page transfers for Cashmere, and the number of messages and

data transferred for TreadMarks. Other than execution time, the

statistics are aggregated over all 32 (16 in the case of Barnes)

processors.

Figure 6 presents a break-down of the execution time pro-

cessors for each application. The breakdown is normalized

with respect to total execution time for Cashmere on 32 pro-

cessors (16 for Barnes). The components shown represent time

spent executing user code (User), the overhead of profiling

for polling (Polling—Cashmere and TreadMarks) and write

doubling (Write doubling—Cashmere only), time spent in

protocol code (Protocol), and communication and wait time

(Comm & Wait). Two of the components—Comm & Wait

andProtocol—were measured directly on the maximum num-

ber of processors. The remaining three components—User,

Polling, and Write Doubling—could not be measured

directly and thus reflect extrapolation from the one-processor

case. (On one processor we could turn polling and write dou-

bling on and off and measure the change in execution time. On

32 [or 16] processors we assume that the ratios of user and

 C

S
M

S
o

r

 T
M

K

 C

S
M

L
U

T
M

K

C
S

M

W
at

er

T

M
K

 C

S
M

T
S

P

 T
M

K

 C

S
M

G
au

ss

T

M
K

 C

S
M

Il
in

k

T
M

K

 C

S
M

E
m

3
d

T
M

K

 C

S
M

B
ar

n
es

T

M
K

0

20

40

60

80

100

120

140

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e User

Comm & Wait

Protocol

Polling

Write Doubling

Figure 6: Breakdown of normalized execution time for the

polling versions of Cashmere and TreadMarks (Barnes at 16

processors, the others at 32).

polling time remain the same as on a single processor, and use

these times (calculated from TreadMarks) to determine the write

doubling time for Cashmere).

TSP displays nearly linear speedup for all our protocols.

Speedups are also reasonable in SOR and Water. Em3d, LU,

Ilink, Barnes, and Gauss have lower overall speedup. Gener-

alizing over varying numbers of processors (see figure 5), per-

formance of Cashmere and TreadMarks is similar for TSP and

Water. Cashmere outperforms TreadMarks on Barnes. Tread-

Marks outperforms Cashmere by significant amounts on LU and

Gauss, and by smaller amounts on SOR, Em3d, and Ilink.

For Barnes, where Cashmere performs better than Tread-

Marks, the differences in performance stem primarily from Cash-

mere’s ability to merge updates from multiple writers into a single

home node, as well as to eliminate duplicate write notices for

the same page: TreadMarks must generally merge diffs from

multiple sources to update a page in Barnes (note the high mes-

sage count in Table 3, and the larger fraction of communication

9

Application SOR LU Water TSP Gauss Ilink Em3d Barnes

CSM Exec. time (secs) 9.6 66.9 84.3 166.8 128.5 145.2 21.9 78.5

Barriers 48 129 36 2 8 521 250 10

Locks 0 0 3680 2638 133914 0 0 0

Read faults 6242 27041 84271 20442 207035 228605 195268 127029

Write faults 9116 7470 35573 9057 8181 45485 95875 98273

Page transfers 9312 27046 84272 23805 207037 230010 195268 127032

TMK Exec. time (secs) 7.8 21.7 83.1 147.8 77.0 94.2 20.6 96.3

Barriers 48 129 36 2 8 521 250 10

Locks 0 0 3680 2664 133914 0 0 0

Read faults 2976 22828 84300 20479 220748 194462 194349 49577

Write faults 2976 4302 33001 9133 8052 42562 95175 98279

Messages 8990 83896 217590 57841 1008056 653402 406320 1451167

Data (Kbytes) 27296 300400 816601 36021 1008820 511804 460774 592509

Table 3: Detailed statistics for the polling versions of Cashmere and TreadMarks (Barnes at 16 processors, the others at 32).

and wait time in Figure 6), and communicate a write notice for

each process that writes a page. In addition, Figure 6 shows that

TreadMarks spends a larger fraction of time executing protocol

code (diffing and twinning). This overhead is avoided in Cash-

mere through the use of write-through to merge the changes by

multiple writers.

For Ilink, where TreadMarks performs better than Cashmere,

the differences in performance stem from the sparsity of Ilink’s

data structures. Only a small portion of each page is modified

between synchronization operations. Hence, the diffs of Tread-

Marks result in less data communication than the page reads of

Memory-Channel Cashmere, resulting in a much larger amount

of time spent in communication for Cashmere (see Figure 6).

In Water the various competing effects more or less cancel

out. TreadMarks spends more time in protocol code in diffing

and twinning, while Cashmere spends more time communicating

whole pages (the entire molecule data structure is not modified

between any two synchronization points). It is difficult to draw

conclusions from TSP, because of its non-determinism.

Write doubling to internal rows of an SOR or Em3d band is

wasted in Cashmere, since no other processorever inspects those

elements. The impact is reduced to some extent by the “first

write” placement policy, which ensures that the doubled writes

are local, but the doubled writes affect performance none-the-

less. This effect can be seen in Figure 6, where write doubling

comprises 19% of the total time in SOR and 8% of Em3d’s ex-

ecution time. Em3d spends significantly more time in protocol

code for TreadMarks, performing diffing and twinning, while

Cashmere spends more time in communication, once again be-

cause entire pages are transferred on a miss even though only

part of the page was modified.

The most dramatic differences between Cashmere and Tread-

Marks occur in LU and Gauss, and can be traced to cache effects.

Specifically, the increase in cache pressure caused by write dou-

bling forces the working set of these applications out of the

first-level cache of the 21064A. In LU, with a 32X32 block, the

primary working set is 16 Kbytes, which fits entirely in the first

level cache of the 21064A. Write doubling increases the work-

ing set to 24K for Cashmere, forcing the application to work out

of the second level cache and thus significantly hurting perfor-

mance. Gauss exhibits similar behavior. In Gauss the primary

working set decreases over time as fewer rows remain to be

eliminated. For our problem size the working set starts by not

fitting in the first level cache for Cashmere and TreadMarks. As

it reduces in size it starts fitting in the cache first for TreadMarks

and at a later point for Cashmere. The importance of the effect

can be seen in the single-processornumbers. When compiled for

Cashmere (with write doubling and protocol operations), Gauss

takes about 1750 seconds on one processor. When compiled for

TreadMarks, it takes 954. Similarly, LU for Cashmere on one

processor takes 380 seconds; for TreadMarks it takes 255. In

both cases, modifying the write-doubling code in the Cashmere

version so that it “doubles” all writes to a single dummy address

reduces the run time to only slightly more than TreadMarks.

These effects show up in the write doubling sub-bars of Figure 6.

Note that these sub-bars account for 21% of total execution time

in LU, and 27% in Gauss. On a machine with a larger first-level

cache (e.g. the 21264), we would not expect to see the same

magnitude of effect on performance.

In addition to the primary working set (data accessed in the

inner loop) Gauss has a secondary working set which affects

performance. The secondary working set for our input size

is 32Mbytes/P where P is the number of processors. At 32

processors the data fits in the processor’s second level cache

resulting in a jump in performance for the Cashmere protocols.

TreadMarks does not experience the same performance jump due

to the memory pressure effects of requiring space in the cache

for diffs and twins.

With the possible exception of TSP, whose results are non-

deterministic, polling for messages is uniformly better than field-

ing signals in both TreadMarks and Cashmere for larger numbers

of processors (the effect is a function of the number of remote

operations). High interrupt latencies also result in a sudden

reduction in performance for Em3d and Barnes (the two appli-

cations with the most active sharing) for both protocols when we

move from 12 processors spread across 4 nodes to 16 processors

spread across 8 nodes. At 16 processors in Barnes, the high

cost of the imc kill signal results in an 86% drop in performance

for tmk mc int relative to tmk mc poll, with performance

actually being worse than that for tmk udp int. At small

10

numbers of processors,tmk udp int does perform worse than

tmk mc int as expected, because of the overhead of executing

the udp protocol stack. In general, TreadMarks is more sensitive

to interrupt latency than is Cashmere, due to the higher number

of request-response communications (synchronization and data

transfers). Cashmere requires request-response communication

only for data transfer. For example, in Gauss at 32 processors,

TreadMarks fields 231760interrupts, while Cashmere fields only

186001 interrupts.

The tradeoff between polling and the use of a “protocol proces-

sor” in Cashmere is less clear from our results, and there seems to

be no clear incentive for a protocol processor, if the sole use of the

protocol processor is to service page requests. Polling imposes

overhead in every loop, but often results in page requests being

serviced by a processor that has the desired data in its cache. The

protocol processor must generally pull the requested data across

the local bus before pushing it into the Memory Channel. Hard-

ware support for reads could be expected to outperform either

emulation: it would not impose loop overhead, and would use

DMA to ensure a single bus traversal.

Additional bandwidth should also help Cashmere since it has

higher bandwidth requirements than TreadMarks. While band-

width effects are hard to quantify, we have observed that ap-

plications perform significantly better when bandwidth pressure

is reduced. An 8-processor run of Gauss, for example, is 40%

faster with 2 processors on each of 4 nodes than it is with 4

processors on each of 2 nodes. This result is consistent with the

findings of Erlichson et al. [10]; it indicates that there is insuf-

ficient bandwidth on the link between each SMP and the hub,

something that should be remedied in the next generation of the

network.

5 Related Work

Distributed shared memory for workstation clusters is an active

area of research: many systems have been built, and more have

been designed. For purposes of discussion we group them into

systems that supportmore-or-less “generic” shared-memory pro-

grams, such as might run on a machine with hardware coherence,

and those that require a special programming notation or style.

5.1 “Generic” DSM

The original idea of using virtual memory to implement co-

herence on networks dates from Kai Li’s thesis work [21].

Nitzberg and Lo [25] provide a survey of early VM-based sys-

tems. Several groups employed similar techniques to migrate

and replicate pages in early, cache-less shared-memory multi-

processors [4, 19]. Lazy, multi-writer protocols were pioneered

by Keleher et al. [16], and later adopted by several other groups.

Several of the ideas in Cashmere were based on Petersen’s co-

herence algorithms for small-scale, non-hardware-coherentmul-

tiprocessors [26]. Recent work by the Alewife group at MIT [33]

and the FLASH group at Stanford [10] has addressed the imple-

mentation of software coherence on a collection of hardware-

coherent nodes.

Wisconsin’s Blizzard system [29] maintains coherence for

cache-line-size blocks,either in software or by using ECC. It runs

on the Thinking Machines CM-5 and provides a sequentially-

consistent programming model. The more recent Shasta sys-

tem [28], developed at DEC WRL, extends the software-based

Blizzard approach with a relaxed consistency model and variable-

size coherence blocks. Like Cashmere, Shasta runs on the Mem-

ory Channel, with polling for remote requests. Rather than

rely on VM, however, it inserts consistency checks in-line when

accessing shared memory. Aggressive compiler optimizations

attempt to keep the cost of checks as low as possible.

AURC [14] is a multi-writer protocol designed for the Shrimp

network interface [2]. Like Cashmere, AURC relies on remote

memory access to write shared data updates to home nodes. Like

TreadMarks, however, AURC uses distributed information in the

form of timestamps and write notices to maintain sharing in-

formation. As a result, AURC has no need for directory, lock,

or write notice/NLE list metadata: remote-mapped memory is

used only for fast messages and doubled writes. The Shrimp

network interface, like that of the Memory Channel, does not

support remote reads, presumably because they are significantly

more difficult than writes to implement, and less crucial for good

performance. Where the Cashmere protocol was originally de-

signed to read lines from remote memory on a cache miss, the

AURC protocol was designed from the outset with the assump-

tion that whole pages would be copied to local memory. Because

the Shrimp interface connects to the memory bus of its 486-based

nodes, AURC is able to double writes in hardware, avoiding a

major source of overhead in Cashmere. Experimental results for

AURC are currently based on simulation; implementation results

await the completion of a large-scale Shrimp testbed.

5.2 Special Programming Models

A variety of systems implement coherence entirely in software,

without VM support, but require programmers to adopt a spe-

cial programming model. In some systems, such as Split-C [7]

and Shrimp’s Deliberate Update [2], the programmer must use

special primitives to read and write remote data. In others, in-

cluding Shared Regions [27], Cid [24], and CRL [15], remote

data is accessed with the same notation used for local data, but

only in regions of code that have been bracketed by special op-

erations. The Midway system [34] requires the programmer to

associate shared data with synchronization objects, allowing or-

dinary synchronization acquires and releases to play the role of

the bracketing operations. Several other systems use the mem-

ber functions of an object-oriented programming model to trigger

coherence operations [6, 11, 31].

Because they provide the coherence system with information

not available in more general-purpose systems, special program-

ming models have the potential to provide superior performance.

It is not yet clear to what extent the extra effort required of pro-

grammers will be considered an acceptable burden. In some

cases, it may be possible for an optimizing compiler to obtain

the performance of the special programming model without the

special syntax [9].

5.3 Fast User-Level Messages

The Memory Channel is not unique in its support for user-level

messages, though it is the first commercially-available work-

11

station network with such an interface. Large shared memory

multiprocessors have provided low-latency interprocessor com-

munication for many years, originally on cache-less machines

and more recently with cache coherence. We believe that a

system such as Cashmere would work well on a non-cache-

coherent machine like the Cray T3E. Fast user-level messages

were supported without shared memory on the CM-5, though the

protection mechanism was relatively static.

Among workstation networks, user-level IPC can also be

found in the Princeton Shrimp [2], the HP Hamlyn interface [5]

to Myrinet [3], and Dolphin’s snooping interface [22] for the SCI

cache coherence protocol [13].

6 Conclusion and Future Work

We have presented results for two different DSM protocols—

Cashmere and TreadMarks—on a remote-memory-access net-

work, namely DEC’s Memory Channel. TreadMarks uses the

Memory Channel only for fast messaging,while Cashmere uses it

for directory maintenance and for fine-grained updates to shared

data. Our work is among the first comparative studies of fine and

coarse-grained DSM to be based on working implementations of

“aggressively lazy” protocols.

Our principal conclusion is that low-latency networks make

fine-grain DSM competitive with more coarse-grain approaches,

but that further hardware improvements will be needed before

such systems can provide consistently superior performance.

TreadMarks requires less frequent communication and lower

total communication bandwidth, but suffers from the compu-

tational overhead of twinning and diffing, which occur on the

program’s critical path, and from the propagation of unnecessary

write notices, especially on larger configurations. Cashmere

moves much of the overhead of write collection off the criti-

cal path via write-through, but at the expense of much more

frequent communication, higher communication bandwidth, and

(in the absenceof snooping hardware) significant time and cache-

footprint penalties for software write doubling. Unlike Tread-

Marks, Cashmere sends write notices only to processors that are

actually using the modified data, thereby improving scalability

(though the use of global time can sometimes lead to invalida-

tions not required by the happens-before relationship).

The fact that Cashmere is able to approach (and sometimes

exceed) the performance of TreadMarks on the current Memory

Channel suggests that DSM systems based on fine-grain commu-

nication are likely to out-perform more coarse-grain alternatives

on future remote-memory-access networks. Many of the most

severe constraints on our current Cashmere implementation re-

sult from hardware limitations that are likely to disappear in

future systems. Specifically, we expect the next generation of

the Memory Channel to cut latency by more than half, to increase

aggregate bandwidth by more than an order of magnitude, and to

significantly reduce the cost of synchronization. These changes

will improve the performance of TreadMarks, but should help

Cashmere more. Eventually, we also expect some sort of re-

mote read mechanism, though probably not remote cache fills. It

seems unlikely that inexpensive networks will provide write dou-

bling in hardware, since this requires snooping on the memory

bus. The impact of software write doubling on cache footprint,

however, should be greatly reduced on newer Alpha processors

with larger first and second level caches.

Cashmere and TreadMarks differ in two fundamental dimen-

sions: the mechanismused to manage coherenceinformation (di-

rectories v. distributed intervals and timestamps) and the mech-

anism used to collect data updates (write-through v. twins and

diffs). We are currently developing multi-level protocols that take

advantageof hardware coherencewithin each AlphaServer node,

and that combine the benefits of the TreadMarks and Cashmere

protocols. These protocols will reduce the bandwidth require-

ments of write-through and eliminate write doubling overhead

through the use of diffs and twins, while retaining the ability to

merge modifications at a single node and to reduce coherence

information by distributing it at a fine grain. Finally, we are

continuing our research into the relationship between run-time

coherence management and static compiler analysis [9].

References

[1] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu,

R. Rajamony, W. Yu, and W. Zwaenepoel. TreadMarks:

Shared Memory Computing on Networks of Workstations.

Computer, 29(2):18–28, Feb. 1996.

[2] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and

J. Sandberg. Virtual Memory Mapped Network Interface

for the SHRIMP Multicomputer. In Proc. of the 21st Intl.

Symp. on Computer Architecture, pp. 142–153, Apr. 1994.

[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,

C. E. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A

Gigabit-per-Second Local Area Network. In IEEE Micro,

pp. 29–36, Feb. 1995.

[4] W. J. Bolosky,M. L. Scott, R. P. Fitzgerald, R. J. Fowler, and

A. L. Cox. NUMA Policies and Their Relation to Memory

Architecture. In Proc. of the 4th Intl. Conf. on Architec-

tural Support for Programming Languages and Operating

Systems, pp. 212–221, Apr. 1991.

[5] G. Buzzard, D. Jacobson, M. Mackey, S. Marovich, and

J. Wilkes. An Implementation of the Hamlyn Sender-

Managed Interface Architecture. In Proc. of the 2nd

Symp. on Operating Systems Design and Implementation,

Oct. 1996.

[6] J. S. Chase, F. G. Amador, E. D. Lazowska,H. M. Levy, and

R. J. Littlefield. The Amber System: Parallel Programming

on a Network of Multiprocessors. In Proc. of the Twelfth

ACM Symp. on Operating Systems Principles, pp. 147–158,

Dec. 1989.

[7] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S.

Lumetta, T. von Eicken, and K. Yelick. Parallel Program-

ming in Split-C. In Proc. Supercomputing ’93,pp. 262–273,

Nov. 1993.

[8] S. Dwarkadas, A. A. Schaffer, R. W. Cottingham Jr., A. L.

Cox, P. Keleher, and W. Zwaenepoel. Parallelization of

General Linkage Analysis Problems. Human Heredity,

44:127–141, 1994.

12

[9] S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. An

Integrated Compile-Time/Run-Time Software Distributed

Shared Memory System. In Proc. of the 7th Intl. Conf.

on Architectural Support for Programming Languages and

Operating Systems, Oct. 1996.

[10] A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy.

SoftFLASH: Analyzing the Performance of Clustered Dis-

tributed Virtual Shared Memory. In Proc. of the 7th Intl.

Conf. on Architectural Support for Programming Lan-

guages and Operating Systems, Oct. 1996.

[11] M. J. Feeley, J. S. Chase, V. R. Narasayya, and H. M.

Levy. Integrating Coherency and Recovery in Distributed

Systems. In Proc. of the 1st Symp. on Operating Systems

Design and Implementation, Nov. 1994.

[12] R. Gillett. Memory Channel: An Optimized Cluster Inter-

connect. IEEE Micro, 16(2), Feb. 1996.

[13] D. B. Gustavson. The Scalable Coherent Interface and

Related Standards Projects. IEEE Micro, 12(2):10–22,

Feb. 1992.

[14] L. Iftode, C. Dubnicki, E. W. Felten, and K. Li. Improving

Release-Consistent Shared Virtual Memory Using Auto-

matic Update. In Proc. of the 2nd Intl. Symp. on High

Performance Computer Architecture, Feb. 1996.

[15] K. L. Johnson, M. F. Kaashoek, and D. A. Wallach. CRL:

High-Performance All-Software Distributed Shared Mem-

ory. In Proc. of the Fifteenth ACM Symp. on Operating

Systems Principles, Dec. 1995.

[16] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release

Consistency for Software Distributed Shared Memory. In

Proc. of the 19th Intl. Symp. on Computer Architecture,

pp. 13–21, May 1992.

[17] L. I. Kontothanassis and M. L. Scott. High Performance

Software Coherence for Current and Future Architectures.

Journal of Parallel and Distributed Computing, 29(2):179–

195, Nov. 1995.

[18] L. I. Kontothanassis and M. L. Scott. Using Memory-

Mapped Network Interfaces to Improve the Performance of

Distributed Shared Memory. In Proc. of the 2nd Intl. Symp.

on High Performance Computer Architecture, Feb. 1996.

[19] R. P. LaRowe Jr. and C. S. Ellis. Experimental Comparison

of Memory Management Policies for NUMA Multiproces-

sors. ACM Transactions on Computer Systems, 9(4):319–

363, Nov. 1991.

[20] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J.

Hennessy. The Directory-Based Cache Coherence Protocol

for the DASH Multiprocessor. In Proc. of the 17th Intl.

Symp. on Computer Architecture, pp. 148–159, May 1990.

[21] K. Li and P. Hudak. Memory Coherence in Shared Vir-

tual Memory Systems. ACM Transactions on Computer

Systems, 7(4):321–359, Nov. 1989.

[22] O. Lysne, S. Gjessing, and K. Lochsen. Running the SCI

Protocol over HIC Networks. In 2nd Intl. Workshopon SCI-

based Low-cost/High-performanceComputing (SCIzzL-2),

Mar. 1995.

[23] M. Marchetti, L. Kontothanassis, R. Bianchini, and M. L.

Scott. Using Simple Page Placement Policies to Reduce

the Cost of Cache Fills in Coherent Shared-Memory Sys-

tems. In Proc. of the Ninth Intl. Parallel Processing Symp.,

Apr. 1995.

[24] R. S. Nikhil. Cid: A Parallel, “Shared-memory” C for

Distributed-Memory Machines. In Proc. of the 7th An-

nual Workshop on Languages and Compilers for Parallel

Computing, Aug. 1994.

[25] B. Nitzberg and V. Lo. Distributed Shared Memory: A

Survey of Issues and Algorithms. Computer, 24(8):52–60,

Aug. 1991.

[26] K. Petersen and K. Li. Cache Coherence for Shared Mem-

ory Multiprocessors Based on Virtual Memory Support. In

Proc. of the 7th Intl. Parallel Processing Symp., Apr. 1993.

[27] H. S. Sandhu, B. Gamsa, and S. Zhou. The Shared Regions

Approach to Software Cache Coherence on Multiproces-

sors. In Proc. of the 4th ACM Symp. on Principles and

Practice of Parallel Programming, May 1993.

[28] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta:

A Low Overhead, Software-Only Approach for Supporting

Fine-Grain Shared Memory. In Proc. of the 7th Intl. Conf.

on Architectural Support for Programming Languages and

Operating Systems, Oct. 1996.

[29] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J.

R. Larus, and D. A. Wood. Fine-grain Access Control for

Distributed Shared Memory. In Proc. of the 6th Intl. Conf.

on Architectural Support for Programming Languages and

Operating Systems, pp. 297–306, Oct. 1994.

[30] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford

Parallel Applications for Shared-Memory. ACM SIGARCH

Computer Architecture News, 20(1):5–44, Mar. 1992.

[31] A. S. Tanenbaum, M. F. Kaashoek, and H. E. Bal. Paral-

lel Programming Using Shared Objects and Broadcasting.

Computer, 25(8):10–19, Aug. 1992.

[32] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.

Methodological Considerations and Characterization of the

SPLASH-2 Parallel Application Suite. In Proc. of the 22nd

Intl. Symp. on Computer Architecture, June 1995.

[33] D. Yeung, J. Kubiatowitcz, and A. Agarwal. MGS: A

Multigrain Shared Memory System. In Proc. of the 23rd

Intl. Symp. on Computer Architecture, May, 1996.

[34] M. J. Zekauskas, W. A. Sawdon, and B. N. Bershad. Soft-

ware Write Detection for Distributed Shared Memory. In

Proc. of the 1st Symp. on Operating Systems Design and

Implementation, Nov. 1994.

13

