
Hot-and-Cold: Using Criticality in the Design of Energy-Efficient Caches

Rajeev Balasubramonian
�
, Viji Srinivasan

�
, Sandhya Dwarkadas

�
, Alper Buyuktosunoglu

�
�

School of Computing, University of Utah�
IBM T. J. Watson Research Center�

Department of Computer Science, University of Rochester
Email: rajeev@cs.utah.edu

Abstract
As technology scales and processor speeds improve,

power has become a first-order design constraint in all as-
pects of processor design. In this paper, we explore the
use of criticality metrics to reduce dynamic and leakage en-
ergy within data caches. We leverage the ability to predict
whether an access is in the application’s critical path to
partition the accesses into multiple streams. Accesses in
the critical path are serviced by a high-performance (hot)
cache bank. Accesses not in the critical path are serviced
by a lower energy (and lower performance (cold)) cache
bank. The resulting organization is a physically banked
cache with different levels of energy consumption and per-
formance in each bank. Our results demonstrate that such
a classification of instructions and data across two streams
can be achieved with high accuracy. Each additional cy-
cle in the cold cache access time slows performance down
by only 0.8%. However, such a partition can increase con-
tention for cache banks and entail non-negligible hardware
overhead. While prior research has effectively employed
criticality metrics to reduce power in arithmetic units, our
analysis shows that the success of these techniques are lim-
ited when applied to data caches.

Keywords: Low-power microprocessors, data caches,
instruction criticality.

1 Introduction
Technology improvements resulting in increased chip

density have forced power and energy consumption to be
first-order design constraints in all aspects of processor de-
sign. Furthermore, in current processors a large fraction of
chip area is dedicated to cache/memory structures and with
each technology generation this fraction continues to grow.
As a result, caches account for a significant fraction of over-
all chip energy. For example, in the Alpha 21264 [11],
caches account for 16% of energy consumed.

In this work we focus on reducing both dynamic and
leakage energy of L1 data caches by exploiting informa-
tion on instruction criticality. Instructions of a program
have data, control, and resource dependences among them.
Chains of dependent instructions that determine a pro-
gram’s execution time are referred to as the critical paths.
In other words, instructions that can be delayed for one or
more cycles without affecting program completion time are
considered to not be on the critical path. Such instructions,
referred to as non-critical instructions, afford some degree

of latency tolerance. By identifying these instructions con-
sistently and correctly, they are directed to access a stat-
ically designed low energy and lower performance (cold)
cache bank. Critical instructions are directed toward a (hot)
cache bank designed for high performance. The resulting
organization is a physically banked cache with different lev-
els of energy consumption and performance in each bank.

The challenges in such an implementation are two-fold:
(i) determining the bank in which to place a given piece of
data, and (ii) partitioning the instruction stream into a crit-
ical and a non-critical stream. Our analysis of the data and
instruction stream of a range of applications shows that the
criticality of both instructions and data shows high consis-
tency. Based on this analysis, we steer instructions to cache
banks based on the instruction’s program counter, and place
data in these banks based on the percentage of critical in-
structions accessing the data line.

If the cold cache is designed to be highly energy-efficient
(consuming 20% of the dynamic and leakage energy of
the hot cache), we observe L1 data cache energy savings
of 37%. Our results indicate that critical instruction (and
data) prediction is reliable enough that performance de-
grades by only 0.8% for each additional cycle in the cold
cache access time. This allows us to employ power-saving
techniques within the cold cache, that might have dramati-
cally degraded performance if employed in a conventional
cache. However, the re-organization of data across the
hot and cold banks increases contention and this degrades
performance by 2.7% compared to a conventional word-
interleaved cache. Hence, for the hot-and-cold organization
to be effective, the latency cost of employing the power-
saving techniques in the conventional cache has to be pro-
hibitive. While prior work has effectively employed crit-
icality metrics to design low-power arithmetic units [23],
our results show that criticality-directed low power designs
are not highly effective in L1 caches of high-performance
processors.

In Section 2, we elaborate on techniques that have been
proposed to address energy consumption in caches, and mo-
tivate the use of statically designed caches. In Section 3, we
analyze the consistency of a program’s instructions and data
in terms of criticality to determine if their behavior lends it-
self to criticality-based classification. Section 4 describes
our cache implementation. We present its performance and
energy characteristics in Section 5. Finally, we conclude in
Section 6.

1

2 Energy-Delay Trade-offs in SRAM Design
A number of circuit-level and architectural techniques

can be employed to reduce dynamic and leakage energy
in caches. At the circuit level, as process technology im-
proves, careful transistor sizing can be used to reduce over-
all capacitance, and hence dynamic energy. Since dynamic
energy is roughly proportional to the square of ����� , lower-
ing ����� can help reduce dynamic energy. Simultaneous to
the above circuit-level techniques, architectural techniques
such as banking, serial tag and data access, and way pre-
diction [21], help lower dynamic energy by reducing the
number of transistors switched on each access. This comes
at the cost of increased latency and/or complexity. For ex-
ample, delay is roughly inversely proportional to � ��� .

Several techniques have been proposed to reduce leak-
age energy while minimizing performance loss [3, 4, 10,
12, 13, 16, 20, 31]. For example, higher �	� devices help
reduce leakage energy [20]. However, when applied stati-
cally to the entire cache, especially the L1 cache, these tech-
niques increase access latency. Since an L1 cache access
time must typically match processor speed, an increase in
access latency by even a cycle can have a significant im-
pact on performance [12]. Circuit-level techniques that use
dynamic deactivation to switch to a low leakage mode in-
crease manufacturing cost and/or affect latency and energy
consumption of the fast mode (either in steady-state or due
to the transition). Our goal in this paper is to examine ways
by which static low-power designs of caches might be ex-
ploited using architectural techniques to reduce both leak-
age and dynamic energy consumption while minimally af-
fecting performance.

3 Instruction and Data Classification
From the discussion in the previous section, it is clear

that the cost of decreasing energy consumption of L1 caches
is an increase in average access time of the cache. One
way to mitigate this performance loss is to overlap the ex-
tra access time penalty incurred due to the energy saving
techniques with the execution of other instructions in the
program. Such overlapping is only possible if the corre-
sponding load instruction is not on the application critical
path, where the critical path is defined by the longest chain
of dependent instructions whose execution determines ap-
plication completion time. We propose a technique to iden-
tify such non-critical instructions and steer data accessed by
these instructions to a low energy and lower performance
cold bank, while critical loads are still served from a fast,
hot bank.

3.1 Criticality Metrics
Recent work [8, 9, 26, 27, 28] has examined the detec-

tion of instruction (and/or data) criticality. Srinivasan and
Lebeck [27] used a simulator with roll-back capabilities to
accurately classify each instruction as critical or not. More
recent studies have proposed heuristics that approximate the

above detailed classification method to allow feasible im-
plementations. Srinivasan et al. [26] and Fisk and Bahar [9]
determine that load instructions are critical if they incur a
cache miss, or lead to a mispredicted branch, or slow down
the issue rate while waiting for data to arrive. Fields et
al. [8] classify an instruction as critical if it is part of a chain
of successive wake-up events. Tune et al. [28] propose a
number of heuristics that predict whether instructions are
critical or not. For example, their analysis shows that treat-
ing the oldest instructions in the issue queue as critical per-
forms as well as other more complicated metrics that use
data dependence chain information to determine criticality.

Our analysis also confirms that using the position of the
instruction in the issue queue to determine its criticality per-
forms comparably to techniques that use more complicated
metrics. Using this Oldest-
 technique, an instruction is
deemed critical if it is among the oldest
 instructions in
the issue queue at issue time, where
 is a pre-defined
parameter. Since ready instructions that are further down-
stream (not among the oldest
) have a greater degree of la-
tency tolerance, it is fair to mark them as non-critical. Note
that such a heuristic tends to identify instructions along mis-
predicted paths as being non-critical, because mispredicted
instructions are usually not the oldest instructions in the is-
sue queue. The following advantages motivate the use of
Oldest-
 in our design: (i) No hardware table is required
to predict instructions as critical because the position in the
issue queue at the time of issue is sufficient to determine
criticality. (ii) The ratio of critical to non-critical instruc-
tions can be tuned by varying
 .
3.2 Classifying Load Instructions

This subsection attempts to quantify the consistency of
criticality behavior of load instructions with the Oldest-N
metric. Similar results were seen when employing other
complex criticality metrics. In our analysis,
��� allows
the most accurate classification of instructions as critical or
not – in other words, this set of instructions yielded mini-
mal performance impact when slowed by a cycle. Figure 1
shows a histogram of the percentage of loads that show the
same criticality behavior as their last dynamic invocation.

In Figure 1, we observe that for most of the applications,
over 85% of dynamic loads have the same criticality as their
previous invocation. Only gap (80%) and twolf (84%) have
a slightly lower degree of consistency. On average, over
88% of loads show consistent criticality behavior. The high
consistency exhibited by loads motivates the use of hard-
ware predictors to partition accesses into critical and non-
critical streams.
3.3 Classifying Data Blocks

While the results in the previous subsection reveal that
instructions can be statically categorized as critical or non-
critical, the same behavior need not hold true for accessed
data blocks. A single cache line is accessed by a number of
loads and stores, not all of which may have the same crit-
icality behavior. In order to be able to place data in either

2

0

10

20

30

40

50

60

70

80

90

100

bzip crafty eon gap gcc gzip parser twolf vortex vpr AM

Pe
rc

en
ta

ge
 o

f l
oa

ds
 s

ho
w

in
g

th
e

sa
m

e
be

ha
vi

or
 a

s
th

ei
r l

as
t

in
vo

ca
tio

n

Figure 1. Consistency of Load Criticality

0

5

10

15

20

25

30

35

40

45

50

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-
100%

Percentage of critical accesses to a cache block

P
er

ce
nt

ag
e

of
 c

ac
he

 b
lo

ck
s

Figure 2. Percentage of critical accesses to a data
cache block. The figure is a histogram showing
the percentage of data blocks that had a particular
fraction of accesses from critical loads.

the hot or cold cache bank, we have to determine if the ac-
cesses to cache blocks are dominated by either critical or
non-critical loads/stores. Figure 2 shows a histogram of the
distribution of data cache blocks based on the percentage
of accesses to each block that were attributable to critical
loads. This is computed by averaging the histograms for
each individual program. From Figure 2, we observe that
nearly 46% of data cache blocks have 90 to 100% of their
accesses from critical loads. Similarly, 16% of data blocks
have only 0 to 10% of their accesses from critical loads (i.e.,
over 90% of their accesses are due to non-critical memory
operations). These results indicate that data blocks are also
often exclusively critical or non-critical. However, there is a
non-trivial percentage of blocks that are accessed equally by
critical and non-critical loads, and steering such data blocks
to one of the cache banks will impact performance and/or
energy. When using smaller cache line sizes, blocks are
more strongly polarized as being critical or non-critical. Al-
though smaller lines reduce interference from access behav-
iors of other words in a line, there still remain a number of
words that are accessed equally by critical and non-critical
loads/stores.

4 The Hot-and-Cold Banked Cache
Proposed Organization. Motivated by the results in

Section 3, we propose a new organization for the L1 data
cache that is composed of multiple cache banks, with some

(fast)
HOT L1

load PC

PREDICTOR
PLACEMENT

update on

‘‘critical’’?

is lineYes No

update criticality of line
during replacement

Does
PC access
hot bank?

Yes No

BANK PREDICTOR

COLD L1
(slow)

count accesses to line
by "critical" memory

references

L2 CACHE

mis-prediction mis-prediction
update on

Figure 3. The Energy-Aware Hot-and-Cold Banked
Cache

banks being energy-efficient and the rest being designed for
the fastest possible access time. Figure 3 shows a high-level
block diagram of the proposed hot-and-cold L1 data cache.
The L1 data cache is split into two banks – a “hot” bank
and a “cold” bank. The hot bank is slated to contain data
blocks that are marked critical, while the cold bank is slated
to contain data blocks that are marked non-critical.

The hot cache provides the fastest possible access time,
and the cold cache services requests in an energy-efficient
manner while incurring a longer latency. Since the cold
bank is similar to other conventional cache banks, it could
use any proposed architectural energy-saving techniques
like serial tag-data lookup, or way prediction [21] to reduce
energy per access. In addition, the cold cache can be de-
signed with more energy-efficient circuits using transistor
sizing (as discussed in section 2) to reduce overall capaci-
tance, high ��� for reduced leakage, or gated-ground SRAM
cells [3].

Data Placement using Placement Predictor. Every
time a cache block is fetched from the L2 cache, it is placed
into one of the hot or cold banks based on the history of ac-
cesses to that block when it last resided in the L1 cache. For
this purpose, we track the fraction of accesses to each cache
block due to critical loads/stores. As explained in the last
section, we use the Oldest-
 metric to determine whether
a load instruction is critical or not. For each data block in
the L1 cache we maintain an � -bit up/down counter, initial-
ized to ������� to track the number of accesses to that block
due to critical memory access instructions. The counter is
incremented for every critical access to the block and decre-
mented for every non-critical access. A 4-bit counter was
chosen to avoid miscategorization of a cache line as either
critical or non-critical.

3

When a data block is being replaced from the L1 cache,
we mark the corresponding line as “critical” if the counter
is greater than or equal to ������� . Else, it is marked “non-
critical”. To save this information, we could use 1 extra bit
(the “criticality” bit) per line in the L2 cache directory. Sub-
sequently, when the data block is brought back into the L1
cache from L2, it is placed in the hot cache if the criticality
bit of that line in the L2 cache is set to 1; otherwise, it is
placed in the cold cache. The criticality bit of all lines in
L2 are initialized to 1. As the criticality bit in an L2 cache
line stores the most recent classification of the cache block,
the placement of blocks in the hot and cold cache adapts dy-
namically depending on the change in access patterns to a
cache block. Moreover, updates to the criticality bit are not
in the critical path because they are performed only when a
block is replaced from the L1 cache.

In spite of the low overhead for storing this 1 bit in the
L2 cache, it is desirable to eliminate it for the following rea-
sons: (i) The bit has to be communicated to L2 even if the
block being replaced is not dirty. (ii) Despite having a bit
per L2 cache line, the bit is lost if the cache block is evicted
from L2. Hence, we explored the use of a separate structure
(the placement predictor) that stores these bits for a subset
of cache blocks. Every time a block is evicted from L1, the
block address is used to index into this structure and update
the classification of that block using the criticality informa-
tion for the line. The bit is set to 1 if the line is critical, and
to 0 if the line is non-critical. Every time a block is brought
in from L2, the structure is indexed to determine the clas-
sification and place data in either the hot or the cold bank.
We found that a structure of size as small as 4K bits was
enough to accurately classify blocks as being critical and
non-critical. Using a separate structure avoids having the
size of the table grow in proportion to the L2.

Load/Store Steering Using Bank Predictor. The above
mechanism partitions data blocks across two streams. Next,
we have to partition memory operations and steer them to
the appropriate cache bank. For each load/store instruction,
we use a predictor indexed by the instruction’s PC to steer
the access to the bank that contains the data being accessed.
Note that this steering does not take into account the crit-
icality nature of the instruction itself – because a critical
load can access a block that is classified as non-critical and
a non-critical instruction can access a block that is classified
as critical.

We maintain a hardware-based dynamically updated
bank predictor that keeps track of the bank that was last
accessed by a particular instruction. We experimentally
observed that a bank predictor of size 4Kx1 bit was suffi-
cient to steer memory accesses with an average accuracy of
greater than 90%. Moreover, a PC-based predictor to steer
accesses to hot and cold banks allows the steering to be done
as soon as a load/store instruction is decoded. Hence, se-
lecting between banks does not incur any additional cycle
time penalty. The predictor contains a bit for each entry. If

the value of the bit is one, the access is steered to the hot
cache, and if the value is zero, the access is steered to the
cold cache. The counter value is set to one if the data is
found in the hot cache and reset to 0 if it is found in the cold
cache.

During every access, tags for both banks are accessed
simultaneously. This allows us to detect a steering mispre-
diction. For each such misprediction, we incur additional
performance and energy penalty for probing both the hot
and the cold cache array. This need not introduce additional
complexities in the issue logic as the operation is similar to
the load replay operation on a cache miss. However, such
bank mispredicts and the resulting replays can significantly
impact performance and energy inefficiency [17]. The vari-
able latency across different loads can also be handled – at
the time of issue, the bank being accessed (and hence, its
latency) is known, and wake-up operations can accordingly
be scheduled.

Related Work. The hot-and-cold cache has a read band-
width of two with a single read port per bank because in
any given cycle one hot and one cold word can be accessed.
Thus, it behaves like a two-banked cache in which the bank
steering is done based on the criticality nature of cache
blocks. We therefore compare the performance of the hot-
and-cold cache with a word-interleaved two-banked cache.
Rivers et al. [15] show that partitioning the cache in a word-
interleaved manner minimizes bank conflicts because most
applications have an even distribution of accesses to odd
and even words.

Recent work by Abella and Gonzalez [2] examines a split
cache organization with a fast and slow cache. Contrary
to our proposal, their policies for data placement and in-
struction steering are both based on the criticality nature
of the accessing instruction. There is also considerable
performance-centric related work that has looked at cache
partitioning. For example, the MRU [25], Victim [14],
NTS [22], and Assist [18] caches, different forms of buffer-
ing [30], and the Stack Value File [19] study various ways
to partition the cache to improve average cache access la-
tency. The focus of our work is quite different; the main
motivation for the design choices we explored in this paper
is to provide faster access to a subset of cache lines while
saving energy when accessing the rest of the lines.

5 Results
5.1 Methodology

To evaluate our design, we use a simulator based on
Simplescalar-3.0 [5] for the Alpha AXP instruction set. The
register update unit (RUU) is decomposed into integer and
floating point issue queues, physical register files, and re-
order buffer (ROB). The memory hierarchy is modeled in
detail, including word-interleaved access, bus and port con-
tention, and writeback buffers. The important simulation
parameters are summarized in Table 1.

We estimated power for different cache organizations us-
ing CACTI-3.0 [24] at 0.1 � m technology. CACTI uses an

4

Fetch queue size 16
Branch predictor comb. of bimodal and 2-level

Bimodal predictor size 2048
Level 1 predictor 1024 entries, history 10
Level 2 predictor 4096 entries

BTB size 2048 sets, 2-way
Branch mpred penalty at least 12 cycles

Fetch width 4 (across up to two basic blocks)
Dispatch, commit width 4

Issue queue size 20 (int and fp, each)
Register file size 80 (int and fp, each)
Re-order Buffer 80

Integer ALUs/mult-div 4/2
FP ALUs/mult-div 4/2
L1 I and D cache 16KB 2-way, 2 cycles, 32 byte line
L2 unified cache 2MB 8-way, 16 cycles, 64 byte line

TLB 128 entries, 8KB page size
Memory latency 90 cycles for the first chunk

Table 1. Simplescalar Simulation Parameters.

Benchmark Base L1 L2
IPC miss miss

rate rate
bzip 1.42 2.96 5.22

crafty 1.32 4.37 0.16
eon 1.60 0.90 0.04
gap 1.68 0.62 17.12
gcc 1.18 9.98 0.24
gzip 1.37 2.84 1.37

parser 1.20 4.77 4.83
twolf 1.09 9.51 0.11
vortex 1.14 2.71 0.92

vpr 1.02 4.38 10.65

Table 2. Base Statistics for Benchmarks Used.

analytical model to estimate delay and power for tag and
data paths. We obtained an energy per read access of ��� ��� nJ
for a two-banked, 16KB, 2-way associative L1 cache with
a 32 byte line size. Of this, � �!"� nJ was due to bit-lines and
sense amplifiers. For write accesses the cache essentially
behaves like a 1-way cache, and 50% of bit-line and sense
amplifier energy can be eliminated. Hence, energy per write
access is ��� #%$ nJ (� � �&�(')��� +*,��� ��). We also take into
account the energy cost of reading and writing entire cache
lines during writeback and fetch. Note that our evaluations
only show energy consumed within the L1 data cache and
not overall processor energy. The contribution of the data
cache to total processor power can be as little as 5% in a
high-performance processor and as much as 50% in an em-
bedded processor. In future technologies, increased leakage
energy is likely to increase the contribution of the L1D to
total chip power. Given the wide range of possible values,
we restrict ourselves to presenting the savings in data cache
energy only.

We analyzed additional energy expended due to the
hardware counters and predictors used in the hot-and-cold
cache. With CACTI, we derived energy per access of the
tag array for the L1 and L2 cache to be � � �%� nJ and ���.-/�%�
nJ, respectively. Based on this, we derived the energy per
access due to the 4-bit counter used in the L1 tag array (for
tracking critical/non-critical accesses of a cache block) to be
� � ���"0 nJ (which is only an additional 1% energy per access
for the L1 cache). Similarly, we estimated the additional

energy per access to the placement predictor to be � �! pJ,
which is a negligible fraction per L2 access (since the pre-
dictor is updated and accessed only on an L1 miss or evic-
tion). The energy for the bank predictor used for steering
memory accesses to the hot or cold bank is � �! pJ per ac-
cess (same size as the placement predictor), which is again
a negligible fraction of L1 data cache energy per access.

We simulated 10 programs from SPEC2k-Int1 with ref-
erence input datasets. The simulation was fast-forwarded 2
billion instructions, another 1 million instructions were used
to warm up processor state, and the next 500M instructions
were simulated in detail. Table 2 presents the benchmarks
with their base IPC and L1 and L2 miss rates.
5.2 Comparison of Performance

Figure 4 compares performance of the hot-and-cold
cache to the baseline L1 data cache, which is dual banked
and word interleaved. The first bar presents IPC of the base-
line L1 data cache. The second bar shows IPC for the hot-
and-cold cache with data allocation to banks based on crit-
icality, assuming perfect steering (no bank prediction) of
loads/stores to banks. The criticality metric used is Oldest-
N, where
 is fixed at 7.

By using the hot-and-cold organization, allocation of
data across the two banks is different. As a result, overall
IPC is reduced by about 1.8%, which is a result of two fac-
tors: (i) There is an imbalance in the number of accesses to
each bank while using the hot-and-cold cache. Some appli-
cations (bzip, gzip, twolf) have many more critical accesses,
while others (gcc, vortex) have many more non-critical ac-
cesses. This results in excess contention for the limited
cache ports as compared to the word-interleaved banked
cache, in which, accesses to each bank are roughly equal.
(ii) Accesses to a critical or non-critical cache are more
bursty. When an instruction completes and wakes up its
dependents, there is a high probability that the dependents
would either all be critical or all be non-critical. Since an
entire cache line resides in one bank, spatial and temporal
locality also dictate that the same bank would be repeatedly
accessed. We verified this by examining the number of ac-
cesses to each bank in a 10-cycle window. Figure 5 shows
a histogram indicating the percentage of such windows that
encountered a particular ratio of accesses to the two banks
(using an Oldest-7 threshold for the hot-and-cold cache).
For the word-interleaved cache, an average of 36% of all
time windows had roughly the same number of accesses to
each bank. For the hot-and-cold cache, this number was
only 19%, while the number of windows that had exclu-
sively either critical or non-critical accesses was as high as
26%. This shows that reorganizing data in the banks based
on criticality results in an increase in data cache port con-
tention.

While we cannot completely eliminate the bursty na-
ture of critical and non-critical accesses since this is in-

1Perlbmk did not run with our simulator and mcf is too memory bound
for its performance to be affected by changes to the CPU and cache.

5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

bzip crafty eon gap gcc gzip parser twolf vortex vpr HM

IP
Cs

base-2cyc
h/c oldthresh 7; no penalties
h/c oldthresh dyn; no penalties
h/c oldthresh dyn; 2-cyc cold latency
h/c 4-cyc cold latency
h/c 6-cyc cold latency
base-4 cyc
base-6 cyc

Figure 4. Performance of Hot-and-Cold Cache Relative to Baseline Word-Interleaved

0

5

10

15

20

25

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-
100%

Percentage of accesses to the odd or critical bank

Pe
rc

en
ta

ge
 o

f i
nt

er
va

ls

word-interleaved cache
hot/cold cache

Figure 5. Histogram showing the percentage of 10-
cycle intervals that experienced a particular ratio
of accesses to the two banks (using Oldest-7 for
the hot-and-cold cache).

herent to program behavior, we used the following method
to improve the distribution of accesses to the banks. By
varying the parameter
 , we changed the number of crit-
ical accesses and thus, the allocation of blocks to the two
banks. We found that keeping the number of accesses to
each bank roughly equal resulted in the least amount of
port contention. This is achieved at run-time with a sim-
ple mechanism that uses statistics over a past interval to
determine the value of
 for the next interval. We used
10M instruction intervals and discarded statistics from the
first half of an interval. Over the latter half of the inter-
val, we counted the number of accesses to each bank. In
terms of hardware, this requires two counters to keep track
of the number of accesses to the two banks as well as a
comparison triggered every 10M instructions. If the per-
centage of accesses to the hot bank was less than 45%, we
increased the value of
 so as to classify more loads as crit-
ical. Likewise, if the percentage of accesses to the hot bank
was more than 55%, we decreased
 . The statistics from
the first half of each 10M instruction interval are discarded
to allow enough cache block evictions and fetches that the

parameter change is reflected in statistics collected for the
latter half. Striving for a 50% share of critical accesses min-
imizes port contention, improving IPC by 1%. However, we
found that keeping the share of critical accesses to 60% was
better at minimizing IPC loss from a slower cold cache. The
third bar in Figure 4 represents such an organization and is
only marginally better than a fixed value of
1�2� . How-
ever, since it classifies more instructions as critical, it sees
a much lower performance degradation when cold cache la-
tency is increased. Note that this represents a model where
loads and stores are perfectly steered to the bank that caches
the data. Gcc is an example of a program that is highly con-
strained by cache port contention. Using a value of
3�4�
causes a high imbalance in accesses to each bank and de-
grades performance. As a result, the dynamic tuning of

is very important in this case to minimize additional port
contention stalls causes by the hot-and-cold cache organi-
zation.

The fourth bar in the figure shows a model that uses the
bank predictor. An incorrect prediction results in a probe
of both the banks, resulting in a higher latency and greater
port contention. Due to this, overall IPC goes down by an
additional 1%. We found that the mispredict rate was 9.5%
on average, thus confirming our earlier hypothesis about the
easy predictability of the nature of blocks accessed by loads
and stores. Table 3 shows various statistics that help us
explain the changes in performance. The table shows that
the hot-and-cold cache organization has to handle more ac-
cesses and this increase is caused by mispredictions while
steering loads and stores. We also note that the distribu-
tion of accesses to odd and even banks in the base case is
fairly even (except in gcc). By tuning the value of
 , the
distribution of accesses to hot and cold banks is adjusted to
approximately be in the ratio 60:40. The notable exception
is vortex, where most instructions issue from the last issue
queue entry and are classified as non-critical. Because of

6

Benchmark Base case bank 1:bank 2 Stalls due to Hot-and-cold Hot:Cold Stalls due to Steering
Total accesses Accesses port contention Total accesses Accesses port contention mispredictions

bzip 191M 60:40 41.6M 198M 62:38 103.6M 7.1M
crafty 194M 58:42 59.1M 216M 59:41 127.1M 21.1M
eon 232M 56:44 76.8M 263M 59:41 231.3M 33.0M
gap 183M 57:43 51.6M 213M 60:40 106.0M 30.2M
gcc 345M 76:24 1754M 354M 53:47 1894M 8.7M
gzip 177M 62:38 80.0M 185M 58:42 117.8M 7.9M

parser 175M 62:38 62.6M 187M 59:41 106.1M 12.3M
twolf 173M 58:42 74.1M 194M 62:38 94.4M 24.6M
vortex 218M 63:37 176.4M 241M 36:64 267.7M 24.3M

vpr 210M 51:49 59.1M 238M 58:42 134.5M 29.8M

Table 3. Data access statistics for the hot-and-cold using a dynamic Oldest-N threshold and for the base word-
interleaved cache

the increased number of accesses to the hot-and-cold cache
and the inherent bursty nature of these accesses (Fig 5), we
see that the number of stall cycles due to port contention
is much higher. On average, the hot-and-cold cache has
twice as many stall cycles as the word-interleaved base case
(In gcc, the program is already highly constrained by port
contention, so the increase caused by the hot-and-cold re-
organization does not result in a doubling of the number of
stall cycles.).

Finally, the fifth and sixth bars show the effect of in-
creasing the cold cache latency to four and six cycles, re-
spectively. The seventh and eighth bars show IPCs for a
word-interleaved cache where all accesses take four and six
cycles, respectively. In spite of slowing down as many as
45% of all memory operations, increasing cache latency
from 2 to 4 cycles only results in a 1.6% IPC loss. Uni-
formly increasing the latency of every access to 4 cycles in
the base case results in an IPC penalty of 5.7%. Thus, the
use of the criticality metric helps restrict the IPC penalty of
a slower cache access time. However, owing to the penalty
from increased port contention and mis-steers, the hot-and-
cold cache with the 4-cycle cold cache latency does only
marginally better than the 4-cycle word-interleaved cache.
The value of the proposed organization is seen when the
energy-saving techniques threaten to slow the cache to a
latency of six cycles. The hot-and-cold organization with
the 6-cycle cold cache latency outperforms the 6-cycle base
case by an overall 5.7%, demonstrating its ability to tolerate
the additional latency.

As we demonstrated in Figure 2, there are a number
of blocks that are not easily classifiable as critical or non-
critical. This causes some amount of inefficiency in the sys-
tem – when critical loads access non-critical blocks, perfor-
mance is lost, and when non-critical operations access crit-
ical blocks, they unnecessarily consume additional energy.
We noticed that 26% of all memory operations were of this
kind. This inefficiency cannot be microarchitecturally elim-
inated as it is an artifact of the program that the same data
is accessed by different kinds of loads and stores.

Finally, it could be argued that a word-interleaved cache
like the base case with half the total capacity could match
the energy consumption of the hot-and-cold cache if the
base capacity is not fully utilized. We make the assumption

(which we verified for our base case design parameters) that
the capacity of the base case is chosen to work well across
most programs and that halving its capacity would severely
impact a number of programs, rendering such an organiza-
tion unattractive.
5.3 Comparison of Energy
5.3.1 Energy-Delay Trade-Offs
Our proposal does not make any assumption on the par-
ticular energy-saving techniques that can be employed for
the cold bank. Since the cold bank is like any other con-
ventional cache bank, it could use any of the already pro-
posed architecture or circuit level power-saving techniques.
Hence, our results are parameterized across multiple access
time and energy consumption characteristics.

In order to provide a more detailed understanding of
energy-delay trade-offs possible through circuit-level tun-
ing, we performed circuit simulations using a typical
SRAM cross-section from the predecoder to the wordline
driver in 0.13 � CMOS technology. The predecoder con-
sists of 3-to-8 NORs and the decoder is an � -input NAND,
where � is the number of 3-to-8 predecode blocks. Finally,
the wordline drivers consist of inverters that drive the load,
which includes all associated wires and SRAM cells. We
used a formal static tuning tool, EinsTuner [6], to vary total
device width. EinsTuner [29, 6] is built on top of a static
transistor-level timing tool (EinsTLT) that combines a fast
event-driven simulator (SPECS) with a timing tool (Ein-
stimer). The SPECS simulator provides timing information
such as delay and slew along with first derivatives with re-
spect to transistor width. EinsTuner uses this information
to formulate the optimization problem as a linear combina-
tion of slack and area. This formulation is then solved by
a non-linear optimization package LANCELOT [7], which
treats all device widths as free parameters and solves for
minimum delay. Finally, energy values are obtained using
AS/X circuit simulations [1] for a given switching activity.

Figure 6 shows normalized energy-delay trade-offs for
an SRAM cross-section. The primary y-axis shows delay
(norm.delay) corresponding to a given energy consumption.
The secondary y-axis shows the normalized sum of transis-
tor widths (norm.sumw). For this experiment, we used pa-
rameters such as beta constraint (i.e. PMOS/NMOS width
ratio), internal slew rate, primary output slew rate, and input

7

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

no
rm

al
iz

ed
 d

el
ay

normalized energy
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

no
rm

al
iz

ed
 d

el
ay

normalized energy
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

no
rm

al
iz

ed
 d

el
ay

normalized energy
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

no
rm

al
iz

ed
 d

el
ay

normalized energy
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

no
rm

al
iz

ed
 d

el
ay

normalized energy

norm. delay

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

no
rm

al
iz

ed
 d

el
ay

normalized energy

norm. delay

no
rm

al
iz

ed
 s

um
W

1

1.5

2

2.5

3

3.5

4

4.5

5

norm. sumw

Figure 6. Energy-Delay Curve for SRAM Cross-
section. The dotted line plots the normalized sum
of transistor widths against the normalized energy
consumption. The solid line plots the normalized
delay against the normalized energy consumption.

576
Normalized Leakage Energy Normalized Delay

low 8.5 0.88
nominal 1 1

high 0.23 1.34

Table 4. Leakage Energy-Delay Trade-offs for Dif-
ferent � �

capacitance/stage constraints from real designs. The initial
data point for this experiment is obtained by minimizing de-
lay without area constraints, and the other points show min-
imum delay with specific area constraints. From Figure 6,
we observe that by increasing minimum delay by 60%, we
can achieve up to 48% reduction in energy.

Table 4 shows normalized leakage energy-delay trade-
offs for the same SRAM cross-section using transistor
widths that correspond to minimum delay. We observe
that decreasing ��� increases leakage energy dramatically
(8 times), while increasing ��� decreases leakage energy by
77% at the expense of 34% increase in delay.
5.3.2 Dynamic and Leakage Energy Savings
As discussed in Section 2, many techniques can be em-
ployed to reduce cache energy, including transistor sizing,
lowered � ��� , banking, serial tag and data access, higher �	� ,
etc. Since any of the above techniques can be applied to the
cold bank, we present results for energy savings assuming
the cold bank consumes either 0.2 or 0.6 times the dynamic
and leakage energy consumed by the hot bank. Results for
using just one of the circuit-level techniques — transistor
sizing from Figure 6 — would lie in between (correspond-
ing to roughly 0.5 time the dynamic energy consumed by
the hot bank, with roughly twice the access latency in cy-
cles). When designing with a higher ��� for the cold bank,
the 77% reduction in leakage energy shown in Table 4 cor-
responds roughly to 0.2 times the leakage consumed within
the hot bank with roughly a 1 cycle increase in delay for our
cache organization. The use of multiple techniques could
potentially bring more aggressive energy savings at a poten-
tially higher access penalty, justifying our choice of range

0

100

200

300

400

500

600

700

800

900

bz
ip

-b
as

e

bz
ip

-0
.6

bz
ip

-0
.2

cr
af

ty
-b

as
e

cr
af

ty
-0

.6

cr
af

ty
-0

.2

eo
n-

ba
se

eo
n-

0.
6

eo
n-

0.
2

ga
p-

ba
se

ga
p-

0.
6

ga
p-

0.
2

gc
c-

ba
se

gc
c-

0.
6

gc
c-

0.
2

gz
ip

-b
as

e

gz
ip

-0
.6

gz
ip

-0
.2

pa
rs

er
-b

as
e

pa
rs

er
-0

.6

pa
rs

er
-0

.2

tw
ol

f-b
as

e

tw
ol

f-0
.6

tw
ol

f-0
.2

vo
rte

x-
ba

se

vo
rt

ex
-0

.6

vo
rt

ex
-0

.2

vp
r-

ba
se

vp
r-

0.
6

vp
r-

0.
2

A
M

-b
as

e

A
M

-0
.6

A
M

-0
.2

L1
 e

ne
rg

y
(p

J/
in

st
r)

non-crit-bank energy

crit-bank energy

Figure 7. L1 data cache energy (both leakage
and dynamic). The first bar represents a word-
interleaved base case. The second and third
bars represent a hot-and-cold cache organization,
where the dynamic and leakage energy within the
cold bank are 0.6 and 0.2 times the energy within
the hot bank, respectively. For the hot-and-cold
cache, the black and grey portions of the bars rep-
resent the energy consumed within the hot and
cold banks, respectively.

in terms of energy savings (40% to 80% of the base case)
and access penalty (1.5 to 3 times the base case).

Figure 7 shows potential energy savings from the pro-
posed organization. For each program, we show L1 data
cache energy for three organizations - (i) word-interleaved
base case, (ii) hot-and-cold organization, where the hot
bank has characteristics identical to a bank of the base case,
and the cold bank consumes 0.6 times the dynamic and leak-
age energy consumed by the hot bank, (iii) hot-and-cold or-
ganization, where the hot bank is the same and the cold bank
consumes 0.2 times the energy consumed by the hot bank.
For the hot-and-cold cache, the figure also shows the con-
tribution to total energy from the two banks. Since 45% of
all accesses are steered to the cold bank, that number serves
as an approximate upper bound to the potential energy sav-
ings.

By having a highly energy-efficient cold bank (like that
represented by the third bar in the figure), the energy con-
sumption in the data cache reduces by an average of 37%.
There is little effect on L2 energy consumption since the
miss rates of the two caches are comparable. Leakage en-
ergy consumed is a function of total execution time (which
is slightly longer for the hot-and-cold cache). We observed
that the contribution to total energy savings came equally
from dynamic and leakage components.

Note that energy savings can be further increased by im-
proving steering prediction accuracy. Our results take into
account the additional energy overhead of a steering mis-
prediction – about 10% of all loads and stores access both
banks. Also note that the distribution of accesses across dif-
ferent banks is almost the same in all programs, resulting in
very little variation in energy trends across the benchmark
set.

8

6 Conclusion
We have presented and evaluated the design of a banked

cache, where each bank can be fixed at design time to be
either hot or cold, i.e., high energy and low latency, or low
energy and high latency, respectively. The performance im-
pact of accessing the cold cache can be minimized effec-
tively by separating load and store instruction streams into
a critical and non-critical stream. Our results demonstrate
that performance impact is reasonably insensitive to the la-
tency of the cold bank, allowing aggressive power reduction
techniques. This is made possible by the consistent classi-
fication of instructions and data as critical and non-critical
streams. Each additional cycle in the cold cache latency im-
pacts performance by about 0.8%. Energy savings are pro-
portional to the fraction of accesses to the cold cache, with
L1 energy reduction being an average of 37% (compared to
a word-interleaved base case) for an energy-efficient cold
bank.

However, allocation of data blocks in the hot and cold
banks increases contention and introduces bank steering
mispredicts. This results in an IPC degradation of 2.7%,
compared to a word-interleaved conventional cache, that
severely limits the effectiveness of this approach. To al-
leviate these problems, bank prediction would have to be
improved or base cases with low contention would have
to be considered. Such problems were not encountered in
the design of criticality-based arithmetic units with differ-
ent power/performance characteristics [23]. The hot-and-
cold cache becomes more effective when the cost of em-
ploying any power-saving technique becomes prohibitive.
For example, a hot-and-cold organization with a 2-cycle hot
latency and a 6-cycle cold latency outperforms a 6-cycle
word-interleaved base case by 5.7%.

We are working with circuit designers in order to help
define the energy consumption ratio between hot and cold
cache banks. Our initial analysis reveals that simple tech-
niques like transistor sizing and high � � can dramatically
reduce dynamic and leakage energy consumption, validat-
ing the choice of parameters in our evaluation. We also plan
to evaluate the use of asymmetric sizes (and organizations)
for hot and cold banks.

References

[1] AS/X User’s Guide, IBM Corporation, New York.
1996.

[2] J. Abella and A. Gonzalez. Power Efficient Data
Cache Designs. In Proceedings of ICCD-21, Oct
2003.

[3] A. Agarwal, H. Li, and K. Roy. DRG-cache: A data
retention gated-ground cache for low power. In Pro-
ceedings of the 39th Conference on Design Automa-
tion, June 2002.

[4] N. Azizi, F. Najm, and A. Moshovos. Low Leakage
Asymmetric-Cell SRAM. In Proceedings of ISLPED,
Aug 2002.

[5] D. Burger and T. Austin. The Simplescalar Toolset,
Version 2.0. Technical Report TR-97-1342, University
of Wisconsin-Madison, June 1997.

[6] A. R. Conn, I. M. Elfadel, W. W. Molzen, P. R.
O’Brien, P. N. Strenski, C. Visweswariah, and C. B.
Whan. Gradient-based optimization of custom circuits
using a static-timing formulation. In Proceedings of
Design Automation Conference, pages 452–459, June
1999.

[7] A. R. Conn, N. I. M. Gould, and P. L. Toint.
LANCELOT: A Fortran Package for Large-Scale Non-
Linear Optimization (Release A). Springer Verlag,
1992.

[8] B. Fields, S. Rubin, and R. Bodik. Focusing Processor
Policies via Critical-Path Prediction. In Proceedings
of ISCA-28, July 2001.

[9] B. Fisk and I. Bahar. The Non-Critical Buffer: Using
Load Latency Tolerance to Improve Data Cache Effi-
ciency. IEEE International Conference on Computer
Design, October 1999.

[10] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and
T. Mudge. Drowsy Caches: Simple Techniques for
Reducing Leakage Power. 29th Annual International
Symposium on Computer Architecture, May 2002.

[11] M. Gowan, L. Biro, and D.Jackson. Power Considera-
tions in the Design of the alpha 21264 Microprocessor.
In 35th Design Authomation Conference, pages 726–
731, June 1998.

[12] H. Hanson, M. S. Hrishikesh, V. Agarwal, S. W. Keck-
ler, and D. Burger. Static Energy Reduction Tech-
niques for Microprocessor Caches. 2001 International
Conference on Computer Design, September 2001.

[13] S. Heo, K. Barr, M. Hampton, and K. Asanovic. Dy-
namic Fine-Grain Leakage Reduction Using Leakage-
Biased Bitlines. 29th Annual International Sympo-
sium of Computer Architecture, May 2002.

[14] N. P. Jouppi. Improving Direct-Mapped Cache Perfor-
mance by the Addition of a Small Fully-Associative
Cache and Prefetch Buffers. In Proceedings of the
17th International Symposium on Computer Architec-
ture (ISCA-17), pages 364–373, May 1990.

[15] J.Rivers, G. S. Tyson, E. Davidson, and T. Austin. On
High-Bandwidth Data Cache Design for Multi-Issue
Processors. In Proceedings of the 30th International
Symposium on Microarchitecture, Dec. 1997.

9

[16] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay:
Exploiting Generational Behavior to Reduce Cache
Leakage Power. 28th Annual International Sympo-
sium on Computer Architecture, June 2001.

[17] S. Kim, N. Vijaykrishnan, M. Irwin, and L. John. On
Load Latency in Low-Power Caches. In Proceedings
of ISLPED, Aug 2003.

[18] G. Kurpanek, K. Chan, J. Zheng, E. DeLano, and
W. Bryg. Pa7200: A pa-risc processor with integrated
high performance mp bus interface. COMPCON Di-
gest of Papers, pages 375–382, 1994.

[19] H. Lee, M. Smelyanskiy, C. Newburn, and G. S.
Tyson. Stack Value File: Custom Microarchitecture
for the Stack. In Proceedings of the 7th International
Symposium on High Performance Computer Architec-
ture, pages 5–14, Jan. 2001.

[20] K. Nii, H. Makino, Y. Tujihashi, C. Morishima,
Y. Hayakawa, H. Nunogami, T. Arakawa, and
H. Hamano. A low power sram using auto-backgate-
controlled MT-CMOS. In International Symposium
on Low-Power Electronics and Design, 1998.

[21] M. Powell, A. Agrawal, T. N. Vijaykumar, B. Fal-
safi, and K. Roy. Reducing set-associative cache en-
ergy via selective direct-mapping and way prediction .
34th Annual International Symposium on Microarchi-
tecture, December 2001.

[22] J. A. Rivers and E. S. Davidson. Reducing Conflicts in
Direct-Mapped Caches with a Temporality-Based De-
sign. In Proceedings of the 1996 International Con-
ference on Parallel Processing, pages 151–162, Aug.
1996.

[23] J. Seng, E. Tune, D. Tullsen, and G. Cai. Reducing
Processor Power with Critical Path Prediction. In Pro-
ceedings of MICRO-34, Dec 2001.

[24] P. Shivakumar and N. P. Jouppi. CACTI 3.0: An Inte-
grated Cache Timing, Power, and Area Model. Tech-
nical Report TN-2001/2, Compaq Western Research
Laboratory, August 2001.

[25] K. So and R. Rechtschaffen. Cache operations by mru
change. IBM Technical Report, RC-11613, 1985.

[26] S. T. Srinivasan, R. D. Ju, A. R. Lebeck, and C. Wilk-
erson. Locality vs. criticality. In Proceedings of the
28th Annual International Symposium on Computer
Architecture, June 2001.

[27] S. T. Srinivasan and A. R. Lebeck. Load Latency Tol-
erance in Dynamically Scheduled Processors. Journal
of Instruction-Level Parallelism, 1, Oct 1999.

[28] E. Tune, D. Liang, D. Tullsen, and B. Calder. Dy-
namic Prediction of Critical Path Instructions. In Pro-
ceedings of HPCA-7, Jan 2001.

[29] C. Visweswariah and A. R. Conn. Formulation of
static circuit optimization with reduced size, degen-
eracy and redundancy by timing graph manipulation.
In IEEE International Conference on Computer-Aided
Design, pages 244–251, November 1999.

[30] K. Wilson, K. Olukotun, and M. Rosenblum. Increas-
ing Cache Port Efficiency for Dynamic Superscalar
Microprocessors. In Proceedings of the 23rd ISCA,
May 1996.

[31] S.-H. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N.
Vijaykumar. An Integrated Circuit/Architecture Ap-
proach to Reducing Leakage in Deep-Submicron High
Performance I-Caches. Seventh International Sym-
posium on High-Performance Computer Architecture,
January 2001.

10

