Integrating Adaptive On-Chip Storage Structures for Reduced Dynamic Power*

Steve Dropshi Alper Buyuktosunoglij Rajeev Balasubramonign
David H. Albonesi, Sandhya DwarkadasGreg Semerafo
Grigorios Magklig, and Michael L. Scott

T Department of Computer Science
! Department of Electrical and Computer Engineering
University of Rochester

Abstract the integration of multiple adaptive structures within ghhi

Energy efficiency in microarchitectures has become a performanc_e gengral purpose m|cr0processor._
necessity. Significant dynamic energy savings can be real- ~ To achieve high performance across a wide range of
ized for adaptive storage structures such as caches, issue applications, key structures in the microarchitecture are
queues, and register files by disabling unnecessary storage 9enerally sized for worst-case applications within te¢hno
resources. Prior studies have analyzed individual struc- 09y constraints (area and cycle time). In particular, the
tures and their control. A common theme to these studies caches and the instruction scheduling structures consume a
is exploration of the configuration space and use of sys- considerable portion of the chip’s dynamic energy (20-35%
tem IPC as feedback to guide reconfiguration. However, and55%, respectively, for the Alpha 21264 [21]). Since ap-
when multiple structures adapt in concert, the number of Plications have differing needs, resources are often under
possible configurationsincreases dramatically, and assig Utilized and can be reduced in size in order to save energy
ing causal effects to IPC change becomes problematic. To with minimal impact on performance; though, the particu-
overcome this issue, we introduce designs that are reconfig- lar resources which can be reduced depend on the appli-
ured solely on local behavior. We introduce a novel cache cation. Unfortunately, with multiple adaptive structures
design that permits direct calculation of efficient confgur ~ changes to one may affect the behavior of another, either
tions. For buffer and queue structurdsnited histogram- positively or negatively. One approach to minimizing the
ming permits precise resizing control. When applying these complexity of controlling multiple adaptive structuredas
techniques we show energy savings of up to 70% on the in- provide desng_ns in wh|ch o_nl_y Ioca}l information |s_re_qU|r_ed
dividual structures, and savings averaging 30% overall for for good configuration decisions, i.e., greedy optimizatio
the portion of energy attributed to these structures with an Such components can then be used as the basis for simpli-
average of 2.1% performance degradation. fied meta-control for global optimization.

In this paper, we demonstrate that multiple indepen-
dent adaptive caches and adaptive scheduling logic can use
: local information for effective control. We introduce a new
Introduction adaptive cache structure called @rtounting cachePrior
The philosophy of high performance microprocessor adaptive caches use changes in system metrics to initiate
design has been to push for ever greater performance asa search of the configuration space. Invariably, the sys-
the primary goal. Energy consumption used to be a sec- tem IPC is used as a fail-safe measure of the appropriate-
ondary consideration, but with today’s smaller and much ness of the cache configuration. In contrast, the accounting
faster designs energy has become one of the critical sys- cache design leverages LRU state in set associative caches
tem design parameters. There are two basic approaches toto directly calculateideal configurations for performance
reducing energy. The first approach is static: redesign ba- and/or energy and eliminate search from the control pro-
sic hardware with energy efficient features that are always cess. We demonstrate that three instances of the account-
enabled. A complementary approach is to permit dynamic ing cache, the L1 instruction and data caches and the L2
resource allocation and attempt to match the minimal re- unified cache, operate simultaneously and independently to
source requirements of an application. This paper explores save energy with minimal performance impact.

1

*This work was supported in part by NSF grants EIA-9972881,
EIA-0080124, CCR-9702466, CCR-9701915, CCR-9811929, -CCR
9988361, and CCR-9705594; by DARPA/ITO under AFRL contract
F29601-00-K-0182; by an IBM Faculty Partnership Award; drydex-
ternal research grants from Intel and DEC/Compagq.

For the instruction scheduling logic, we incorporate a
buffer design from [6] and extend a control strategy from
[17] to show thatall buffers involved with scheduling can
save energy using this dynamic design. The buffer design
is space efficient and electrically isolates partitionshaf t

buffer so they can be selectively turned off. The control
strategy estimates buffer resource requirements through
limited histogramming of the occupancy statistics. The in-
tuition is that a full buffer stalls the pipeline, so the harff
should be sized with just enough partitions that the over-
flow rate is within a specified margin. The histogram infor-
mation provides the controller with precise information on
the minimum size that meets this criterion. The controllers
for all structures use a tolerance setting that dictates how
aggressively to tradeoff additional delay for lower energy
We evaluate the potential for reduced energy consumption
with the adaptive caches and instruction scheduling logic
separately and in concert. At the middle tolerance setting,
we show energy savings of up to 70% on individual struc-
tures with an average savings of 34% when all structures
are combined. This energy savings is achieved with an av-
erage performance degradation of 2.1%.

Most related work has analyzed one or two individual
structures and their control. Albonesi [1] described a each
organization —selective cache ways- that provided the
ability to reduce energy consumption by restricting the

number of ways accessed on a cache access. Balasubra

monian et al. [2] expanded this work with a controllable
cache and TLB, where both the number of ways and sets
of the cache could be set in a limited manner through ex-
ploration. Dhodapkar et al. [9] also rely on exploration for
reconfiguring the instruction cache but reduces the search
overhead with a method to identify and restore previously
selected configurations. Powel al. [18] describe the de-
sign of an energy-efficient instruction cache whose access
mode is dynamically reconfigurable. Buyuktosunogtu
al. [6] describe the design and control of an adaptive issue
gueue which uses IPC as feedback to guide reconfiguration
choices. Ghoset al.[17] expand this work to improve the
control algorithm and apply it to the reorder buffer in ad-
dition to the issue queue. We extend the work further to
include the physical register files as adaptive structunds a
incorporate the use of utilization variance rather thamr-ave
ages to control reconfiguration decisions. We discuss the
special control needs for this extension.

The rest of the paper is organized as follows. Section 2
describes the overall architecture, highlighting all tHeyax
tive storage structures that we control. Section 3 desgribe
the control algorithm and hardware additions to the design
of the adaptive instruction and data caches @heount-
ing cachedesign). Section 4 describes the design and con-
trol of the adaptive buffer structures — the register file, is
sue queue, and reorder buffer — uslimgited histogram-
ming Section 5 describes our experimental methodology.
We present our evaluation of the potential benefits of the
adaptive structures in isolation as well as in concert in Sec
tions 6 to 8. Finally, we compare our design to related work
in Section 9 and conclude in Section 10.

2 System overview

Figure 1 shows a schematic of the microarchitecture
used in this study. The architecture is representative of
a typical out-of-order superscalar design. The adaptable

IPREG
Int FUs|

L1
Dcach

FP FUS

L1
Icachej

branch
predict

renamg |
map

ROB

Feerdl]

FPREG]

Figure 1. The Base Microarchitecture: Adaptable
components are shaded

components are the shaded structures. The set of adaptable
caches includes the L1 instruction and data caches and the
L2 unified cache. All three caches are instantiations of an
accounting cache. The set of adaptable storage buffers in-
cludes the re-order buffer (ROB), load/store queue (LSQ),
integer issue queue (11Q), floating point issue queue (FIQ),
the integer physical register file (IPREG), and the floating
point register file (FPREG). The buffers are implemented
as RAM structures that are resized by disabling partitions,
or groups of entries.

3 Theaccounting cache design

The accounting cachés a reconfigurable cache de-
sign with the unique feature that the performance of ev-
ery possible configuration can be directly calculated from
data recorded each interval. This is regardless of the ac-
tual configuration of the cache for the interval. Recording
the required data is inexpensive and done via a handful of
counters. The system designer specifies one configuration
as thebaseconfiguration and the amount of performance
degradation that can be tolerated in exchange for lower en-
ergy consumption. From these constraints, the accounting
cache tracks what the performance of the base cache con-
figuration would have been and reconfigures to the lowest
energy configuration that performs within the specified per-
formance degradation limit. This section presents the ac-
cess protocol to the cache, the additional LRU information
required to do the performance tracking, and the perfor-
mance and energy cost equations.

3.1 Access protocol

The accounting cache design is based on the resizable
Selective Ways Cach@moposed by Albonesi [1]. Resiz-
ing is accomplished by disabling ways in a set-associative
cache, which reduces energy because fewer ways are acti-
vated on aread. Figure 2 shows the data portion of a 4-way
set associative cache with ways 2 and 3 disabled (shaded).
The tag array can be similarly partitioned (not shown).

The access protocol is shown in Figure 2 and is as fol-
lows. The initial access to the cache is firamary access
or the A access. A hit with this acceshi{A) returns the
data. On a miss with thel access, another access called

A - Read from primary (miss) Table 1. Cache Configuration Parameters

B : Read from secondary (miss) Parameter Values

C,: Write data from L2 into primary LRU Ways (prlmary) [11N]

C,: Move primary LRU to secondary Tags {fU”, A-B }
Cs: Discard/writeback secondary LRU Tag/Data Access orddr {parallel, serial

D : Increment miss count

Data from 3.2 LRU operation and implementation
L2 Cache

3.2.1 LRU space requirements
MRU stats

counters

WayO Wayl’ ' Way2 Way3 In general, designers refrain from using true LRU replace-

2 @ MRU 0 ment due to the additional bits to maintain the LRU state.

. mru'iz] R miﬂl Simplified algorithms that perform nearly as well as true
7 2 LRU track only the most recently used wayrtot replace

‘ ‘ ' or use a round robin policy. Both of these policies require

‘ MRU 3

/ Misses only log, (V) bits whereN is the associativity. True LRU,
\ (x) . \ T» i on the other hand, requirésg (V) bits per tag to maintain
@ Increment a full ordering of the sets for a total o¥ log, (V) bits. A
primary secondary @ 4-way set-associative LRU cache requires 8 hits vs only 2
read (miss) read (miss) bits for the other policies, and an 8-way requires 24 ver-
Figure 2. Accounting cache miss on read sus 3 bits. To put the additional resource requirements into

context, in this study we use a 4-way 64KB level-1 data
. . cache with 64 byte lines. In a machine with a 48-bit physi-

the secondary accessr B access, is made to the remain- ca| address, the tag for such a cache is 34 bits and the data
ing ways. A secondary access stalls subsequent accesses 2 pits. LRU state adds 2 additional bits per tag or 5.9% to
to the primary partition. A hit in the secondarlyitB) re- the tag RAM, but only 0.4% additional space when includ-

turns the data but also swaps the block with one from the |ng the data RAM. We accurate|y account for the energy
primary. An access that misses in both the primary and gyerhead due to this additional state.

secondary graduates up to the next level in the cache hier-

and the displaced block s swapped into e secondary. The 322 LRU operation

displaced blockin the secondary is written back ifitisylirt Next-state transitions for true LRU are easily implemented

The cache maintains full LRU information for true LRU re- ysing NV counters olog, () bits each. Assume an 8-way

placement. We discuss the LRU details in Section 3.2. set-associative cache as an example. Starting with the fol-
lowing as the LRU state of the tags for the current cache
access, assume a hit in way 4.

The tag array for the cache can be partitioned identi- Way ID
cally as the cache or the tags can be partitioned indepen- 1 2 3 4 5 6 7 8
dently. For practical considerations, the tags are limited
two configurations: 1) the partitioning is identical to that LRU State before access
of the cache A-B tagg, or 2) all tag ways are accessed 6 1 2 3 4 5 6 7
in the primary groupfll tags). The full tags option re- LRU State after hit on way 4
quires additional tag energy on the primary access (all tag 1 2 3 0 4 5 6 7

arrays are activated) but cache misses are detected without

reading the secondary data cache (which has a high energy ~ Upon a hit, all LRU states with a smaller count, i.e.,
cost). Thus, application phases with lots of cache misses more recently accessed, increment in parallel (ways 1-3).
will benefit from thefull tags configuration while phases The tag that hit has its LRU state set to zero (way 4). If the
with few cache misses will prefer th&-B tagoption. Ad- LRU state is a higher count then it remains the same. The
ditionally, the access to the data may be done serially or in updated LRU state is written back to the LRU RAM. This
parallel to the tags. As one would expect, serially access- update activity occurs for any replacement policy except
ing the tag and data will be of most value in the secondary random, which does not require any state.

cache but, surprisingly, our results show that the this op-
tion sometimes can be of value in the primary cache. Ta-
ble 1 lists the configuration parameters. As an example, the
base configuration of the level 1 data cache in a processor In the following, it simplifies the discussion if we express
is N-way, full tags, andparallel tag and data. The three the LRU order with its dual, theost-recently-useMRU)
parameters are orthogonal to each other, so a 4-way cacheordering. We denote the most recently used way at a par-
would havet x 2 x 2—1 = 15 configurations (with d-way ticular cache index asrug, the next most recently used as
data primary botliull andA-Btag options are identical). mruy, and so on. Thus, the least recently used way in an

3.2.3 Exploiting LRU information

N-way set associative cache is alsou 1 (the subscript be swapped on a hit to the secondary, the energy includes
numbering starts at zero). these writes to the data and tag RAMs. Each write is to
An LRU replacement policy provides considerable in- only one way and has enerd§,,,, = df for the data RAM

formation if we notice that all hits to the most recently used andt¢,,, = t$ for the tag RAM. The remaining equations
set,mrug, would be hits in a direct-mapped cache. Simi- in Table 2 should be self explanatory. Not shown are the
larly, hits to eithemmrug or mru, would hitin a 2-way set equations for the configuration combinatiguesrallel/full
associative cache. In general, a hit to /& most recently and serialA-B as they are easily derived from the above
accessed blockiru,, would be a hit in a cache having at examples.
leastn + 1 ways. Counting how many hits occur for each _)
mru state provides sufficient information to reconstruct the Table 2. Accounting cache cost functions
hit ratio for any partitioning of the cache. The cost is one _General cost functions

: . 1. Totalc , [c] = hitsalc] x Calc]
counter pernru state and one for misses; e.g., a 4-way 2. Totalg [e] = hitsslc] x Cale]
cache requires a total of only 5 counters to record the activ- | 3. Totalofd = Misses X Cyy
ity of the whole cache. For any cache of practical size, the | 4. Totalg|c] = Totalc , [c] + Totalc, [c] + Totalc,,

additional energy due to this small set of counters is about | Delay cost ofparallel tag/data withA-Biags
3 orders of magnitude smaller than a cache read access. We [5a. Delay A hit Dale] = bus? +d%,
account for this (hominal) additional energy in our simula- 5b. Energy Ealc] =d5 +15
tions. 5c. Delay B hit Dplc] = bus? + d% + d%
5d. Energy Eglc] = (d5 +t5) + (d5 +t%)
H +? gwap + tgwap)
3.3 Performance and energy cost equations 5o Delay miss D[= bus? +d% + d2, + dd,
5f. Energy Ey[c] = Eg[c] (see 5d)

For any configuration, we can directly calculate the to-
tal delays in accessing the cache and the energy in the fol-

Delay cost okerialtag/data withfull tags |

lowing manner. Assume a given partitioning havingays 6a Delay ~AorBhit Da/ple = bus? +17,, +df

in the primary andV — ¢ ways in the secondary. Let us de- 6b. Energy Eassld =di + 5y

fine the number of hits to the primary partition/aiss 4 [c], 6c. Delay ~ miss Dule] = ¢, +di,

to the secondary abitss[c|, and misses adfisses (we 6d. Energy Enle] =t + (dSwap + twap)

need no configuration parameter here because a miss will
miss in all configurations). Assume the operation of the
cache is such that every access first tries Ahpartition,))]]
then theB partition on a primary miss, and finally the next 3.4 Accounting and configuration selection
level of the memory hierarchy on a true miss. From the
MRU counts we can directly calculate how maayand B
hits would occur for any configuration given the same ac-
cess pattern. We can use this information in simple cost
functions to directly calculate the delay or energy for the
set of accesses. The cost functions are given in Table 2.
Let us denote the primary, secondary, and miss RA
data access delays @, d%, andd?,, and the correspond-
ing tag access latencies #% andt% (there is no corre-
sponding tag access delay for a miss), using the superscript
d as a mnemonic fodelay We also include a bus delay
variablebus? to account for non-RAM access overhead in
transfers (bus transfer delay). The energies are likewtise | oq,jivalently, LRU) statistics for an interval and then calc
beledd}, dj, dj,, ¢}, andty. The parameterﬁ}u” apd Ia?ingthe dglay an)d energy costs. A hardware timer triggers
t7,y are the delay and energy of the tags in filé config- an interrupt to run a small, fast software cache analysis rou
uration. Note that each individual cache will have its own tine. A PAL-code routine like the Alpha 21264 [8] supports
values for these factors. In Table 2, Equations 5a-f detail does not have to save register state so the overhead is min-
the costs for delay and energy for a cache configured using imal. The analysis routine reads the MRU register values
parallel tag/data and\-Btags. UsingA-Btags meansthat containing how often blocks were accessed with the corre-
a second access to the secondary partition must take placesponding MRU state, and calculates the delay and energy
on a miss in the primary. In contrast, usifuj tags onthe values for all possible cache configurations. For example, i
primary access eliminates the access to the secondary onour MRU counts arenrug = 0, mru; = 0, mrus = 100,
a cache miss. In Equation 5a, the delay on a hitims andmrus = 0, both a 3- and 4-way cache would have the
the bus transfer costais? plus the access time to the data same performance since all theru; accesses would hit,
RAM with the (faster) tag access time hidden behind the butthe controller selects a 3-way configuration because the
data access. The energy is that of the data and tag RAMs energy cost of the accesses is lower. The MRU state coun-
configured withc ways. On a hit in the secondary, the de- ters are cleared by the handler before returning. In our sim-
lay includes the access thand thenB. Since blocks must ulations we use an interval of 100,000 instructions between

Our goal is to improve energy efficiency with minimal
degradation in CPI relative to a specified base system. The
strategy is to minimize energy with the constraint that the
portion of the memory access time attributable to the cache
is within a specified percentage of the delay that the same
v accesses would have in the base system. The base con-
figuration defines the latency to which the dynamic cache
must compare. The performance degradation percentage is
called thetolerance setting For this study, we use toler-
ance values of 1.5%, 6.2%, and 25%, which correspond to
the fractions 1/64, 1/16, and 1/4, respectively.

Configurations are selected by gathering MRU (or

reconfigurations. We estimate a highly tuned handler will

mance and energy impact of pathological behavior to that

be on the order of 100 instructions and have a high degree of the baseline performance, but also permits reconfigura-

of parallelism (high IPC). The reconfiguration is accom-
plished by writing a value to a system register. The energy

tions again when (and if) that erratic behavior ends.
The accounting cache design requires a set associative

and delay of the handler is the cost of reconfiguration. We organization in which all of the ways are accessible. This
do not include the interrupt handler in our simulations. condition is sufficient to simulate how larger cache config-

We call the delay that the base cache configuration urations would have performed on any pattern of accesses.
would have incurred for the intervdl, .. We adddy,. With the LRU (MRU) statistics, reconfiguration decisions
to an accumulating delay countér,,,.. This counter are independent of the system-wide IPC effects. This is
maintains the total delay cost for all prior accesses for a in sharp contrast to exploration-based cache reconfigura-
base cache configuration. A second courigf:,.; ag- tion schemes [1, 2, 9] and is the primary advantage of the
gregates the calculated delays.;..; per interval for the accounting cache design when combined with other dy-
actual cache configurations used. Cache configurations arenamic structures, which can affect the IPC. The account-
selected to maintain the relationship relative to a tolegan ing cache design as presented here requires a cache to be
setting?’ of Dyctyar < Dpase X (147", while minimizing set-associative. However, we believe other dynamic en-
energy usage. The differen@@+71") X Dyuse — Dactuat) ergy saving schemes (e.g., [2, 18]) can incorporate the ba-
is a cache'slelay account valu&?. The account builds sic accounting concept to enhance their efficiency or, at a
savings (credits) that the controller can spend on addition ~Minimum, to detect and prevent pathological CPI degrada-
delay in exchange for lower energy. In addition, a simi- tions arising from mismatches between the cache configu-
lar energy account’¢ is kept as a fail-safe in the event of ~ rations and the application (e.g., possibly due to rapicpgha
pathological behavior (discussed below). changes in the application).

To select the next configuration, we assume the pattern __Finally, the delay calculations are only estimates of the
of accesses in the next interval will be identical to that of €ffects on the processor's CPI. There are multiple reasons
the prior one. From this assumption, we estimate the per- Why: memory accesses account for only a percentage of an
missible delay for the next interval that is within the teler ~ @pplication’s execution time; the memory hierarchy may
ance settingd,eer < dpase X (1+7) + V¢ (thisincludes have slack relative to the other parts of the processor so an
delay credits, or possibly debits, accumulated in prierint ~ increase in delay may not significantly increase CPI; and
vals viaV%). If the quantityV? + dyase x T < 0 parallelism between the caches, particularly between the
then d,.,; < dpes and the controller is forced to level-linstruction and data caches, decouples the effécts

select the fastest possible configuration to make up the delays as well. Selecting cost parameters that assume max-
debit. Otherwise, the configuration with the lowest en- Imum parallelism ensures that the calculated CPI degrada-
ergy is selected whose estimated delay cost is within 10N is an upper bound on the true CPI degradation due to
dpase X (1 + T) + V<. cache reconfigurations. A future direction of study is on
A key feature of the cache accounts is that they per- how to tighten this bound on the CPI effects by accounting

mit the controller to amortize costs or credits across many [OF the above situations more accurately.

intervals. Thus, cache selection can be aggressive and per-

formance glitches due to phase shifts in access patterhswil 4 The adaptive buffer design

be corrected. As we discuss in our results, in the case of

over-performance the extra accumulated margin permits a Buffers throughout the processor store instructions in
more aggressive energy saving configuration to be selected order to decouple timing dependencies between the stages,
periodically, even though the per interval delay for the en- as well as to increase the effective window of available in-
ergy saving configuration is above the per interval toler- structions in order to exploit instruction-level paraeh.
ance. The delay accouht? also helps at phase shifts. The Our microarchitecture (Figure 1) has individual queues for
controller does not need to explicitly detect phases. A sig- the separate types of functional units. Specifically, we
nificant change in the access pattern will manifest itself in modified Simplescalar to split its centralized RUU into a
a different ordering of configurations based on their total set of buffers: a reorder buffer (ROB), one integer issue
delay costs for the new access pattern. The delay accountqueue (11Q), one floating point issue queue (FIQ), and one
ensures that the additional delay incurred during a phase load/store queue (LSQ). In addition, there are the separate
shift is eventually paid for in future configurations. The physical integer register file (IPREG) and the floating point
account permits the controller to atone for guessing wrong physical register file (FPREG). In this study, we assume
at that interval. In the event of pathological, rapid phase all buffers are implemented as RAMs, with associative ad-
shifts when the prior interval is a poor estimate of the next, dressing capabilities in the I1Q, FIQ, and LSQ.

the delay and/or energy accounts for the cache will become To save energy, each buffer's RAM is partitioned by
negative. A negative account forces the controller to de- bit-line segmentation. Bit-line segmentation electtical
fault to the baseline configuration because that configura- isolates regions of the RAM to reduce dynamic energy on
tion guarantees zero difference in performance. Over suc- accesses [6]. Figure 3 shows how bit-line segmentation re-
cessive intervals, credits accrued due to the toleranterfac duces the access energy by reducing the capacitance on the
will eventually repay the debit and make the accounts sol- bit-lines. Only the enabled partitions expend dynamic en-
vent once again. This important feature limits the perfor- ergy [6]. An alternative RAM design based on banking is

partition to be disabled must be freed by moving their con-
RAM Partition tents to differenphysicalregisters that will remain active
(thelogical registers are the same).

The rename logic complicates resizing in comparison
to the issue queues. In the integer register file, for example
when a load is fetched, the rename logic selects a register
from the free list and records the logical to physical map-
ping in the map table. A mapped physical register becomes
free when the following are satisfied:

RAM Partition

Disabled Disabled

RAM Partition

RAM Partition

1. Theinstruction writing the value has been committed.

2. Allin-flight instructions using the value have read it.

Figure 3. Resizable buffer with 2 partitions diabled 3. The phy_sical register has b_een un_mapped by a subse-
quent write to the same logical register.

.) Until all three conditions are satisfied, a physical regis-
used in [17]. The underlying structure of the RAM does not ter cannot be freed. It may be possible that a logical regis-

impact the control. In both designs, the electrically oplim ter js used early in the program and never assigned again by
partitioning was found to be the same: 16 entry partitions the compiler. The physical register mapped to that logical

for the ROB and 8 entry partitions for all other buffers. register can never be freed. The implication to dynamically
resizing the register file is that we cannot guarantee a-parti
4.1 11Q, FIQ, LSQ, and ROB resizing tion of the register file RAM will ever have all its physical

registers unmapped. Because of this issue, simply digablin

When downsizing a buffer we always turn off the parti- partitions as is done in the issue queues will not work. This
tions in the order of highest address to lowest, and resize up condition would seem to greatly diminish the likelihood of
in the reverse order. Restricting the resizing in this manne ever being able to downsize the register files.
simplifies the circuitry [6]. However, before downsizing To turn off a partition in the register file requires the
the 11Q or FIQ, we must wait until existing instructions in following: remove the registers to be disabled from the free
the partitions to be turned off have issued. Furthermore, list; move the contents of active registers to be disabled to
we must restrict instructions from being dispatched into other registers that will remain enabled, and remove the
these partitions. Additional care must be taken in resiz- newly freed registers to be disabled from the free list.
ing the ROB and LSQ because of their circular FIFO-like This additional complexity for resizing the register
structure. The physical implementation uses a head and files necessitates a software handler. To move a logical
tail pointer with wrap-around at the buffer limit. Before register to a new physical register, the software handler is

resizing, we must ensure the head and tail pointers do not sues a move instruction from the logical register back to it-
straddle the partition to be disabled otherwise buffered in self: mov r7, r7 The normal operation of the rename logic

structions could be caught in the disabled partition [17]. will move the contents into a new physical register from
the free list and unmap the physical register in the partitio
4.2 Register rename operation to be disabled. The map table contains the information for

logical to physical register mappings so the software han-

Register renaming [16] performs logical (architec- dler could have direct access to this information. Turning
tural) to physical register mappings, thereby eliminating a partition back on is then just a matter of adding the par-
write-after-read and write-after-write dependences when tition’s registers back onto the free list. Because the RAM
there are sufficient physical registers. In a processorasich is disabled from the top (highest numbered register) down
IBM’s Power4, which can support up to 200 instructions in (lowest), an ID can be set and any register with an address
flight through the pipeline simultaneously [20], register r greater than the ID is considered removed from the free list
naming is critical for exploiting the processor’s supetaca and cannot be selected by the renaming logic.
capabilities. The approach to register renaming proposed
by [16] utilizes the pool of registers more efficiently than ~ 4 3 Reconfiguration control
alternative designs that maintain a separate pool of archi-
tected registers in addition to a register set for renaming. The controller is an extension of the design in [17]. In
In this design, upon instruction commit the architected reg that work, the buffer is sampled at periodic intervals and
ister's contents are updated. A design with a single com- the number of entries are accumulated in a counter. At the
mon pool of registers offers better opportunity to turn off end of the interval, a simple shift of the count provides the
more physical registers. However, since the physical regis average buffer occupancy. The buffer is sized to the num-
ters remain mapped until the logical register is over-wmitt ber of partitions that will hold the average occupancy. An
before buffer resizing can occur, all active registers im th overflow counteensures against a buffer being sized too

small. Every cycle the buffer is full increments the over- Table 3. Architectural parameters

flow counter. When the countreaches a threshold it triggers E?;%Eﬁ‘;fggictor goergg'eosf bimodal and 2-level gshare:
an immediate upsizing of one partition. bimodal/Gshare Level 1/2 entries- ’
Our implementation uses a different emphasis for the 2048, 1024 (hist. 10), 4096 (global);

. . o . Combining pred. entries - 1024;
design. The intuition is that we want to size the buffer such RAS entries - 32; BTB - 4096 2-way

that overflows occur with a frequency below a set threshold |granch mispred. laten¢g0 cycles

during the interval. In a finely partitioned buffer, choasin Fetch, decode, width |4 instructions
the average occupancy size means that half of the time we |Reorder buffer 128 entries
Integer issue 32 entries

would then actually require a size greater than the average. Floating point issue |32 entries
We take the position that the upper tail of the occupancy |physical INT regs 96

distribution is the proper metric. The proper sizing is that |Physical FP regs 9%
which selects a sufficient number of partitions such that the |L0ad entries 32 entries
. s . . Store entries 32 entries
portion of the distribution that would extend beyondthe re- || ciriction TLB 256 (64x 4-way) 8K pages, 30 cycle misk
sized buffer (i.e., the overflows) is less than the threshold |pata TLB 512 (128x 4-way) 8K pages, 30 cycle miss
We histogram the occupancy at the granularity of the parti- |Memory latency 80 cycles
tions, p entries per partition. In particular, for a buffer with ~ [-1 -cache 64 KB, 4-way, 64B line, 2 cycle
four partitions each witly elements, there are three coun- L1 D-cache 64 KB, 4-way, 648 line, 2 cycle
p ’ L2 unified 2 MB 8-way, 128B line, 12 cycle

ters. The first countek, increments when the occupancy
N is greater than or equal i@ the next counteh; incre-
ments whenV > 2p, the third counter increments when 6 Accounting cache results
N > 3p. The counters are associated logically with the
buffer and track the true number of entries occupied and Due to space constraints, we condense the results for
not the actual locations occupied in each partition (iree,t the benchmark suite into Table 5 using arithmetic averages.
histogram is a virtual compaction of the queue). Since we We summarize the energy and delay data in Figure 4. In Ta-
are only concerned if the overflow threshold would have ble 5 the first line lists the thresholds used. The thresholds
been exceeded, the counters saturate at the overflow limit. are 1.5%, 6.2%, and 25%, which approximately correspond
The saturation reduces the number of cycles the counter to 1/64, 1/16, and 1/4 (so the controller can use shift as a
is active. We downsize the buffer to the partition whose fast divide). The results compare the adaptable cache to a
counter has not saturated. The highest numbered histogrambaseline configuration using the maximum number of ways
counter of the active partitions simultaneously acts as the with parallel tag/data access. We also compare against a
overflow counter. We also immediately upsize when the base L2 with serial tag/data access.
overflow threshold is reached. We use the same three tol-
erance settings as in the cache simulations: 1.5% (1/64), i
6.2% (1/16), and 25% (1/4). The overflow threshold is the | O+ nstruction cache
tolerance fraction of the interval period, e.g., 6.2% of 8K The instruction cache data is the first group of data in
cycles. Table 5. The energy saving is 54.3% at 1.5% and 58.6%
at tolerances of 6.2% and 25%. The reason for the large
savings is clear from the breakdown of the average time
5 Evaluation methodology spent in each of the cache configuration parameters. The
most revealing metric is that the average number of ways
)) is no larger than 1.2 (out of 4) across the tolerance levels.
Our evaluation methodology uses Simplescalar [5] Thus, the minimum configuration of a direct-mapped 16
for the Alpha AXP instruction set and the Wattch power KB instruction cache is generally sufficient for the bench-
model [4]. We simulate an out-of-order superscalar pro- marks and the controller correctly configures the cache to
cessor similar to the Alpha 21264 in that there are separate yse minimum energy. An exceptionvsrtexwhich uses
issue queues for the different types of functional units. Ta 2 g ways on average at 1.5% tolerance saving only 25%
ble 3 lists the microarchitectural parameters and Table 4 energy. At the lowest tolerance setting, fhi tags config-
lists the benchmark suite. uration is selected during phases of cache misses to elim-
We model the memory hierarchy in detail to account inate the delay for unnecessary accesses to the secondary
for all actions and side-effects of the configurable cache and keep within tolerance.
operation, including the swapping of cache blocks between We selected a relatively large 64 KB cache that is sim-
primary and secondary partitions. The TLBs are not config- ilar in size to the Alpha 21264 [15]. An drastically smaller
urable in this study. Our timing analysis reveals that $eria cache would have been needed for the benchmarks to stress
accesses have a latency that is approximately 1.6 that of ait. We feel that the data cache results showcase the con-
parallel access. We use this multiplier to set the access tim troller’s abilities appropriately. We report the instrioct
for a cache configured to serially access tag and data, thus,cache energy contribution so its effects can be judged rel-
the access latency of the L1 caches increases to 4 cyclesative to the total energy. The row labelddcount Used
from 2 in serial tag/data mode and the L2 access latency is the portion of the extra cycle account actually used by
increases to 19 from 12 cycles. the controller. Even at the highest tolerance of 25% degra-

Table 4. Benchmarks

Benchmark Suite Datasets Instruction Window | 64KB 4-way DL1 miss rate
em3d Olden 20K nodes, 20 itersy 1000M-1100M 23%
health Olden 4 levels, 1000 iters 80M-140M 18%

mst Olden 2K nodes 500M-600M 2%
compress | SPEC95 INT ref 1900M-2100M 11%
gcc SPEC95 INT ref 1650M-1750M 6%
parser SPEC2K INT ref 2000M-2200M 3%
perlbmk SPEC2K INT ref 2000M-2200M 1%
twolf SPEC2K INT ref 1000M-1200M 5%
vortex SPEC2K INT ref 2000M-2200M 1%
vpr SPEC2K INT ref 2000M-2200M 2%
applu SPEC95 FP ref 200M-400M 3%
art SPEC2K FP ref 300M-500M 22%
swim SPEC2K FP ref 1000M-1200M 8%
waveb SPEC95 FP ref 200M-400M 1%

dation, the controller only needed to withdraw less than

a miss blocks are swapped between the primary and sec-

1/25h of the accounts value. ondary partitions. With such a disparity between energies,
any additional data cache activity swamps any energy sav-
ings from partitioning the tags. The controller correctly
detects this state of affairs and defaults to the base config-
The level-1 data cache has more interesting behavior. uration. However, in this configuration the extra LRU bits
As the tolerance level is increased, the energy savings also of the accounting cache require additional energy not in the
increase from 29.6% up to 45.2% due to adjustments in baseline cache and this results in a small net loss of 1.1%
all three configuration parameters. TAeB tag option is across the benchmarks.
selected over 30% of the time at the 6.2% and 25% tol- A conclusion one might draw is that parallel tag/data
erance settings. Somewhat surprisingly, the serial tég/da access is not an attractive option. This conclusion is not
option is sometimes selected (2.9%) at the aggressive tol- necessarily correct. Table 6 lists the CPI values for each
erance setting. The most energy savings, however, come of the benchmarks for both parallel tag/data access and se-
from reducing the ways from 4 ways to nearly a direct- rial tag/data access for our base systsithout adaptable
mapped cache, 1.3 ways on average at the 6.2% tolerancecaches. The ratio of the serial vs parallel base performance

6.2 Data cache

level. Notice that there are very few hits in the secondary
(B) partition. The controller will always select configura-
tions to keep these accesses to a minimum.

6.3 L2 unified cache (parallel tag/data)

The first set of data for the L2 cache is relative to a high

is shown in the last row. Most applications show little
performance impact. Howevarpmpresandhealthshow
11% and 30%, respectively. Thus, some applications can
run significantly faster if the L2 cache can be optionally
configured for parallel tag/data as well as serial tag/déta.
the additional performance is important then the dynamic
cache can realize energy savings of 49.1% in the L2 for

performance base configuration using parallel tag and data compressat the small 1.5% delay tolerance setting (and
access. We can see that the controller aggressively uses theonly 0.3% actual slowdown). For fair comparison, the se-

A-B andserial configuration options to save energy and is

rial tag/data option offers an 85% energy savings (about

less aggressive at decreasing the number of ways (to 6.1twice) but incurs the 11% slowdown.

out of 8). The reason is that serializing the tag and data

Figure 4 graphs the relative energy savings for the dif-

accesses is, in general, the single most effective means offerent cache levels and also the aggregate relative perfor-
decreasing energy consumption. The large memory accessmance degradation. The first three groups of bars are for

latency of 80 cycles provides a significant amount of credit
to the L2 cache account that it can then trade for serializing
the tags and data. The L2 controller uses over half of its
tolerance limit (16% out of 25%), but this results in only a
3.9% average slowdown. As mentioned previously, a cycle
slowdown in the memory hierarchy usually does not trans-
late to a similar slowdown in the pipeline.

6.4 L2 unified cache (serial tag/data)

In Table 5, configuring for serial tag/data results in a

the individual cache levels. The fourth set is the relative
energy savings for the complete cache hierarchy assuming
an L2 with parallel tag/data access. In the third grouping,
the lighter portionis the relative energy savings exclgdin
the instruction cache (thus, the savings are relative to the
data and L2 base energy). The dark portion is the additional
savings if the instruction cache is included. The rightmost
set of bars is the system performance degradation for each
of the tolerance settings that was reported in Table 5. Se-
lecting the modest tolerance setting of 6.2% results in over
40% energy savings relative to the caches, but incurs less

small net loss of energy relative to the serial tag/data base than a maximum of 2.8% performance degradation across

configuration. The reason is due to the large difference be-
tween the tag energy and that of a data block access. In

this architecture, reading all the tags requires only about
1/4th the energy of reading one data block. Recall that on

all the benchmarks with the average at 1.1%.

The average performance degradations are well below
the tolerance setting. While the conservative design of the
controller is such that this relationship always holdsdfee

Table 6. Base Configuration CPI: Parallel vs Serial L2 Tag/Da ta

em3d | health mst compress| gcc parser | perlbmk
Parallel 1.2270| 1.7912| 0.3170| 0.6074 | 0.6173| 0.6328 | 0.6247
Serial 1.2720 | 2.3252 | 0.3174 0.6742 0.6182 | 0.6731| 0.6372
S/P Ratio | 1.0367 | 1.2981 | 1.0013 1.1100 1.0015 | 1.0637 | 1.0200

twolf vortex vpr applu art swim waveb
Parallel 0.6513| 0.4319| 0.7001| 0.5263 | 0.8426 | 0.6311| 0.3488
Serial 0.7108 | 0.4646 | 0.7143 0.5266 0.8756 | 0.6342 | 0.3495
S/P Ratio | 1.0914 | 1.0757 | 1.0203 1.0006 1.0392 | 1.0049 | 1.0020

Table 5. Energy, delay, and percent of time a
configuration option is selected, averaged across
benchmarks

Averages Across Benchmarks
Threshold 1.5% 6.2% 25.0%
Delay Increase 0.3% 11% 3.9%
Instruction L1 Cache
Energy Savings| 54.3% 58.6 % 58.6 %
Tags full 5.4% 0.1% 0.1%
A-B 94.6 % 99.9 % 99.9 %
Data parallel | 100.0% 100.0% 100.09
serial 0.0% 0.0% 0.0%
Ways Ave 1.2 1.0 1.0
Hits B 0.2% 0.4% 0.4%
Account Used 0.5% 0.9% 0.9%
Data L1 Cache
Energy Savings| 29.6 % 12.1% 45.2 %
Tags full 89.7 % 68.3% 61.8%
A-B 10.3% 31.7% 38.2 %
Data parallel 99.9 % 99.7 % 97.1 %)
serial 0.1% 0.3% 29%
Ways Ave 2.0 1.3 1.2
Hits B 0.7 % 2.0% 2.2%
Account Used 1.3% 4.4 % 6.6 %
Unified L2 Cache (Parallel Tag/Data Base)
Energy Savings] 25.5% 41.1% 63.0 %
Tags full 74.9 % 67.9 % 60.6 %
A-B 25.1% 32.1% 39.4 %
Data parallel 94.7 % 66.9 % 32.9%
serial 53% 33.1% 67.1 %)
Ways Ave 5.5 6.0 6.1
Hits B 1.9% 1.8% 1.0%
Account Used 1.5% 6.0 % 16.0 %
Unified L2 Cache (Serial Tag/Data Base)
Energy Savings] -1.1% -11% -11%
Tags fall 675% 67/.8% 67.8%
A-B 325% 322% 32.2 %
Data parallel 0.0% 0.0% 0.0%
serial 100.0% 100.0% 100.09
Ways Ave 6.7 6.7 6.7
Hits B 0.3% 0.3% 0.3%
Account Used 0.5% 0.5% 0.5%

back to tighten this bound would in improve the energy
savings. We are exploring how to measure the actual delay
costs as they relate to the instruction commit rate. Inferma
tion fromcritical loads[10, 19] may help.

Due to the mismatch between reward and penalty in a

ENERGY PERFORMANCE

100% 20%

90% 18%

L2 Cache Full Cache
80% (parallety H hy
11 Cache (parallel L2)
70% Il

D1 Cache

16%

14%

12%

50% - 10%

40%

30% 6%

Relative Energy Savings

20% 4%

uonepeibag aouewiopad aAN9Y

10% | 2%

15 62 25 15 62 25 15 62 25 15 62 25

Latency Tolerance

Figure 4. Relative cache energy usage averaged
across all benchmarks

save the 2% energy) when serial tag/data is determined to
be sufficient. Aninteresting feature of the accounting each
is that its controller can easily determine the performance
and energy trade offs and notify the meta-controller if, for
instance, certain programmed pre-conditions are met.

7 Dynamic buffer results

Figure 5 shows the relative sizings for each of the
buffers averaged across the integer benchmarks in the top
graph and across the floating point benchmarks in the bot-
tom graph. Each group of bars represents one of the buffers
and the three bars in the group are for each of the tolerance
settings, 1.5%, 6.2%, and 25% from left to right. The dif-
ference in sizings is minimal between tolerances 1.5% and
6.2%. The differences are small in system performance as
well (far right) showing degradations of 0.3% and 0.8%.
When the tolerance setting is pushed to 25% the struc-
tures are shrunk more aggressively and the average delay
increases to 11.9%.

In the floating point benchmarks, again there is nom-
inal difference between the two lowest tolerances of 1.5%
and 6.2%, and the highest threshold trades significant per-
formance (11.1%) to shrink the structures. Overall, these
results track those in [17] which looked at a combined inte-
ger and floating point issue queue, the LSQ, and the ROB.

serial tag/data access cache, the adaptive accounting cach In that study, the authors used a similar range of tolerances

design is most appropriate when a cache offers the paral-
lel tag/data access option. As an extended policy, a meta-
controller could activate the full LRU state and the adapt-
able capabilities of an L2 cache if high performance is re-
quired, but revert back to the simpler replacement poliay (t

and the results showed similar variance in the performance
degradation across the applications.

Both mstandwave5have large performance degrada-
tions at the 25% tolerance level, 41% and 39%, respec-
tively. In exploring this behavior, we discovered that in

Integer Benchmarks PERFORMANCE ENERGY PERFORMANCE
100% 20%

o <‘> preyer B (mst, 41%)
80% 6% 2 90% 18%
0% o €
80% 16%
60% Al Caches Caches []
50% 0% 3 £ 70% Caches Buffers. and and L 114%
20%) 8% 3 Buffers Buffers
30%| 6% & 60% L {129%
H
20% “ 2 50% | | | —10%
10%| 2%
. 40% o | — 8%

WIopad SATEIRY

Relative Size

mepeibaq

Relative Energy Savings

uonepesBaq souewWIONad SANRIRY

nQ FIQ ‘ LsQ ROB IPREGS FPREGS 30% 7<|> L1 6%
Floating Point Benchmarks PERFORMANCE 20% - —1 4%
90% ﬂ» ::: 10% T_!j‘ L 206
(wave5 39%
70% W:g 15 6.2 25 15 6.2 25 15 6.2 25 15 62 25
é o0% — 1% “g Latency Tolerance
£ o | Figure 6. Summary of results
10% 2% § . . . 3
T B T adding the accounting cache, each dynamic structure relies
solely on local information for its resizing control. The
Figure 5. Buffer Relative Sizing and Performance disadvantage of this approach is that performance degrada-

tions due to reconfiguration actions can be additive (e.g.,

, wavej, but the configuration controllers cannot account
both benchmarks about half of the degradation was due fq this possibility. An important result of this exercise t
to adapting the register files and the other half was due jyteqgrate so many dynamic structures is that it highlights
to adapting the queues. The performance degradation ef- the fact that some method of global coordination is neces-
fect.s.of adapting both sets .of structures smyltaneouely ar sary. A global controller will require mechanisms in mi-
additive for these applications. This coupling of the ef- rgarchitecture to quantify these coupled effects between
fects appears to be fairly infrequent but it can occur and we the reconfigurable structures. The ultimate goal should be
specifically includednstandwaveSto highlight this be- 15 control thevariability of the performance degradation
havior. The adaptive cache takes into consideration some \yhen reconfiguring to save energy. Ideally, given a max-
of the inter-cache effects via selecting proper valuesén th i, m performance degradation target the system should
cost functions. Unfortunately, there is no equivalentrinte g energy savings without violating this constraint. Cur-
buffer feedback. For the buffers, the tolerance settingeeff ent reconfiguration techniques (ours included) cannot of-

tively bounds the per buffer effects on performance, butthe fer gych a guarantee. We feel this is an important direction
possibility exists for the delay effects to be additive. $hu o, future research.

the tolerance must be set conservatively. For future work,
a method of assigning accurate performance costs to each

of the buffers is needed so a system wide tolerance setting 9 Related work

can be used. This paper integrates a large number of dynamic struc-
tures that adapt independently to save energy with modest
8 Integrated system results performance impact. The related work can be split into

two groups: dynamic energy efficient caches and dynamic

Figure 6 shows the results of combining all the adapt- instruction scheduling logic. Distinct from dynamic con-
able structures in the system. The energy savings are showntrol are static methods to improve energy efficiency. The
on the left. In all groups, the energy savings are relative static methods, such as subbanking, bit-line segmentation
to the base energy of the components in the group. The and Gray coding, are orthogonal to the dynamic methods
first two groups of bars are the aggregated results for the described here and both can be used together.
cache hierarchy and buffers, respectively. The overal sav In addition to the related work [1, 2] described in Sec-
ings for the caches and buffers are 26%, 34%, and 48% for tion 3, Dhodapkar and Smith [9] extend the work in [2].
the tolerances 1.5%, 6.2%, and 25%, respectively. The per- As in [2], the configuration space is searched and a con-
formance degradation has high variability at the aggressiv figuration is selected based on observing the system IPC.
tolerance setting of 25%. The raw data of the average num- The extension is a method to generate a unique signature
ber of cache ways and percent of buffer size activated is that they associate with the configuration parameters and
shown in Table 7 for all applications. Results for the 1.5% store in a table. If the same working set signature occurs
tolerance setting are omitted to save space. The large per-then the stored configuration can be read and directly ap-
formance degradations at the 25% tolerance level are due plied without another search. Due to space limitations, we
to the additive delays between the reconfigurable buffers. do not compare the accounting cache to the above designs.

To integrate the caches with the buffers we had to elim- However, results not reported here have shown the energy
inate the need for tracking system IPC to guide cache con- savings of the accounting cache to be comparable to those
figuration decisions as is done universally in prior work. By of [2] for similar cache architectures. We consider the pri-

Table 7. Summary results’ raw resizing data swimexhibits pathological behavior that results in signifi-

App [[PerflAve cache way Buffer size (%) cant slowdown on an 8-way cache. Accounting techniques
0 . T !
(%) ”‘1|D+‘1|| L2 ”?J'PR'??Z:SFPRE(?ROB' LSQ could be added to detect this behavior and reconfigure the
T e T e TR TV cache to avoid this pathological case of thrashing.
health || 3.0{[1.0{1.6| 7.3 /99| 51 |25| 14 | 39|76 Energy due to subthreshold leakage currentis expected
mst || 2.7)/1.0/ 1.0 8.0 ||97] 99 |25 12 | 75 87 to become a signficant factor in the near future [3]. Most
Corgfcre& é-g 1-8 ig g-i Sg gg gg ig Z,g 17890 techniques gate the power to turn off portions of the pro-
parser || 3.6|10[11| 6.0 (/92| 85 |25 12 | 64 |80 cessor [13, 14, 22]. With this technique data in storage
perlbbmk|| 2.0[/1.0/1.3| 2.9 ||86| 63 |[25| 12 | 44| 68 _elements is lost. This gﬁecp is not an issue when resiz-
twolf || 2.6(/1.0/1.7| 6.4 ||97| 90 (26| 15 | 64| 79 ing the buffers as done in this study and the unused por-
V‘\’/’;fx 2AITo 32 2L IS) B a5y 12 | 07 93 tion of the buffers can be power gated. For reducing static
applu || 1.6|1.0{ 15| 8.0 (/71| 55 |96| 98 | 82|99 energy in caches, thérowsy cachedesign proposed by
art 1.8(1.0/1.0| 7.3 ||{78| 88 |50| 40 | 76| 90 Flautneret al.[11] significantly reduces the leakage current
SWIm5 (2)-8 }-8 i-g i-g gg gsla gg gg gg gg while maintaining the stored state. The accounting cache
wave H H H H H
e N0 L3 60 8s 056 —48——>1 88 could be built with this circuit technology.
Tolerance setting of 25% ;
em3d || 4.8[L0[1.0] 8.0 [[81] 76 [50] 50 | 75 100 10 Conclusions
health ||15.9|1.0{2.0| 7.5 ||99| 48 |25| 12 | 37| 73 : - .
mst |la09d|10 10| 80 ||4a| 37 |25| 12 | 27| 25 Dynamically resizing on-chip storage structures can
compres§14.6|1.0{ 1.3| 3.7 ||43| 48 [25| 12 | 37| 39 result in energy savings in the processor. This study in-
gec 1%3 }-8 i-g éé gg gg gg ig Z‘g gi tegrates the most extensive set of dynamic structures in one
p‘;er‘lrbsne,ﬁ(=8l10 1ol o2 1371 58 |22 13 | 22 | 26 system, to date. Our goal was to explore the issues that
twolf |[13.6]1.0/1.6| 6.8 |/71| 51 |[25| 12 | 36| 44 arise in the simultaneous control and_operatic_m of these
vortex ||25.7(1.0{ 1.0| 5.9 |[45| 35 |25| 12 | 29| 47 structures. Our approach uses local information at each
a\é%rlu i(llg 1-8 ig S-g Zg gg ;Z gi gg ??1 component in order to allow independent reconfiguration
art Zaliol 10| 74 |laal 85 24| 39 | 72| 89 decisions. This approach explicitly decouples each struc-
swim || 2.7]/1.0/1.0] 8.0 ||42| 41 [83| 98 | 79| 82 ture and lets the controllers make greedy control decisions
waveb [[3941.0/1.0] 24 ||26] 30 [31] 25 | 27| 38 We introduced thaccounting cachéesign as the dy-
AVE [[159]1.0[12] 6.1 [|60] 47 [44] 38 | 50[69 namic cache component. The accounting cache uses full

LRU state to reliably account for energy consumption and
delay attributable to each cache. The design usescan

mary contribution of the accounting cache design to be its countto build performance equity to apply toward aggres-

independence from the system IPC which enables the inte- sive energy configurations and as a mechanism to shut off

gration of the_ dynamic <_:aches with the dY”am'C buff_ers._ reconfiguration when the access behavior is unpredictable.
As mentioned previously, the dynamic RAM designis A tolerancemetric is used to control the amount of per-
from Buyuktosunoglu et al. [6]. The controller design [7] formance degradation (and thereby the size of the account)
shares similar features to the controller of Ponomarev et permissible. The contribution of this design is its ability
al. [17], but [17] adds an important upsizing reflex that to directly calculate the effect of different configuration
quickly increases the buffer when metrics indicate it is too re|ative to some base configuration and to protect against
small. We extend this work by using histogramming to pathological behaviors.
record the occupancy. We feel the histogram is more ro- We also refined and extended prior work in dynamic
bust relative to the average occupancy metric because thejnstryction scheduling buffers to include the physicatreg
histogram reveals the tails of the occupancy distribution. jster files and to take the variance in the utilization of the
This nuance is most significant when the partitioning is at sgryctures into account (rather than relying on averages).
a fine granularity. Folegnani and Gonzalez [12] study re- ysing a tolerance setting to control the aggressiveness of
sizing the issue queue and similarly use the system IPC to gownsizing the buffers for energy efficiency, the six busfer
detect if resizing is needed. adapted independently to the changing needs of the appli-
Powell et al. [18] useselective direct-mappintp re- cations and with minimal slowdown in most applications.
duce energy on accesses to set associative caches. ThéVe show how to disable physical registers via injected
method in [18] accesses the tags in full on the primary ac- MOV instructions that automatically update the logical to
cess, but only reads data from one way. The equivalent physical register mappings.
configuration in our study ifull tags and 1-way for the pri- When using these designs for all levels of the instruc-
mary partition. The difference in their work is that the low tion and data caches, the issue queues, reorder buffer, and
order of the address bits determine which partition acts as register files, we show energy savings of up to 70% on the
the primary partition. Conceptually, this is an extensiont individual structures, and savings averaging 30% overall
our definition of a primary and secondary partitioning. The for the portion of energy attributed to the adaptive struc-
selective direct-mappingache has tables to record which tures. These savings were achieved with an average per-
lines exhibit thrashing behavior and should use the set as- formance degradation of 2.1% (and a maximum perfor-
sociativity to mitigate the problem. The authors reporttha mance degradation of 3.6%) when using a 6.25% toler-

ance metric for our benchmark suite. While our results [13] Heather Hanson,
show that performance degradation is controllable (via the
tolerance settings) and can be minimized, they also re-

veal the sensitivity of the integrated system to the toler-
ance setting and application behavior. Future work will
explore how the current mechanisms perform under multi-

tasking/multithreaded workloads and we are experimenting
with methods to ensure performance degradation target can

be met deterministically in exchange for energy savings.

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

David H. Albonesi. Selective cache ways: On-demand
cache resource allocation. 32nd International Symposium
on Microarchitecture November 1999.

Rajeev Balasubramonian, David H. Albonesi, Alper Buyuk
tosunoglu, and Sandhya Dwarkadas. Memory hierarchy
reconfiguration for energy and performance in general-
purpose processor architectures.38rd International Sym-
posium on Microarchitecture2000.

S. Borkar. Design challenges of technology scalindHBE
Micro, July 1999.

David Brooks, Vivek Tiwari, and Margaret Martonosi.
Wattch: a framework for architectural-level power anaysi
and optimizations. 127th Annual International Symposium
on Computer ArchitectureJune 2000.

Doug Burger and Todd Austin. The simplescalar toolset,
version 2.0. Technical Report TR-97-1342, University of
Wisconsin-Madison, June 1997.

Alper Buyuktosunoglu, David H. Albonesi, Stanley Schus
ter, David Brooks, Pradip Bose, and Peter Cook. A circuit
level implementation of an adaptive issue queue for power-
aware microprocessors. Irith Great Lakes Symposium on
VLS|, March 2001.

Alper Buyuktosunoglu, Stanley Schuster, David Brooks,
Pradip Bose, Peter Cook, and David H. Albonesi. An adap-
tive issue queue for reduced power at high performance. In
Workshop on Power-Aware Computer Systems, in conjunc-
tion with the 9th International Conference on Architectura
Support for Programming Languages and Operating Sys-
tems November 2000.

Compag. Alpha 21264 Microprocessor Hardware Reference
Manual. Technical report, Compag Computer Corporation,
July 1999.

[9] Ashutosh S. Dhodapkar and James E. Smith. Managing

[10]

[11]

[12]

multi-configurable hardware via dynamic working set anal-
ysis. In29th Annual International Symposium on Computer
Architecture 2002.

B. Fisk and I. Bahar. The non-critical buffer: Using tbka-
tency tolerance to improve data cache efficiencyERE In-
ternational Conference on Computer Desi@rctober 1999.

Kristian Flautner, Nam Sung Kim, Steve Martin, David
Blaauw, and Trevor Mudge. Drowsy caches: Simple tech-
niques for reducing leakage power.2éth Annual Interna-
tional Symposium on Computer Architectuvéay 2002.

Daniele Folegnani and Antonio Gonzalez. Energy eiffect
issue logic. In28th International Symposium on Computer
Architecture 2001.

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

M. S. Hrishikesh, Vikas Agarwal,
Stephen W. Keckler, and Doug Burger. Static energy reduc-
tion techniques for microprocessor caches2001 Interna-
tional Conference on Computer Desj@eptember 2001.

Stefanos Kaxiras, Xhigang Hu, and Margaret Martonosi.
Cache decay: Exploiting generational behavior to reduce
cache leakage power. International Symposium on Com-
puter Architecture2001.

R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha
21264 Microprocessor Architecture. 1998 International
Conference on Computer Desjgbctober 1998.

Mayan Moudgill and Keshav Pingali and Stamatis Vassil-
iadis. Register renaming and dynamic speculation: arralter
native approach. 186th Annual International Symposium
on Microarchitecture March 1993.

Dmitry Ponomarev, Gurham Kucuk, and Kanad Ghose.
Reducing power requirements of instruction scheduling
through dynamic allocation of multiple datapath resources
In 34th International Symposium on Microarchitectuite-
cember 2001.

Michael Powell, Amit Agrawal, T. N. Vijaykumar, Babak
Falsafi, and Kaushik Roy. Reducing set-associative cache
energy via selective direct-mapping and way prediction. In
34th Annual International Symposium on Microarchitec-
ture, December 2001.

S. T. Srinivasan and A. R. Lebeck. Load latency toler-
ance in dynamically scheduled processors. Jédnrnal of
Instruction-Level Parallelis;mOctober 1999.

Joel M. Tendler, Steve Dodson, Steve Fields, Hung Ld, an
Balaram Sinharoy. POWER4 System Microarchitecture.
Technical report, IBM Server Group, October 2001.

K. Wilcox and S. Manne. Alpha processors: A history of
power issues and a look to the future. @ool-Chips Tuto-
rial, November 1999.

Se-Hyun Yang, Michael D. Powell, Babak Falsafi, Kaushik
Roy, and T. N. Vijaykumar. An integrated cir-
cuit/architecture approach to reducing leakage in deep-
submicron high performance I-caches. Saventh Interna-
tional Symposium on High-Performance Computer Archi-
tecture January 2001.

