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Abstract

To reach the next level of performance and energy effi-
ciency, optimizations are increasingly applied in a dynamic
and adaptive manner. Current adaptive systems are typ-
ically reactive and optimize hardware or software in re-
sponse to detecting a shift in program behavior. We argue
that program behavior variability requires adaptive systems
to be predictive rather than reactive. In order to be effec-
tive, systems need to adapt according to future rather than
most recent past behavior.

In this paper we explore the potential of incorporating
prediction into adaptive systems. We study the time-varying
behavior of programs using metrics derived from hardware
counters on two different micro-architectures. Our evalua-
tion shows that programs do indeed exhibit significant be-
havior variation even at a granularity of millions of instruc-
tions. In addition, while the actual behavior across met-
rics may be different, periodicity in the behavior is shared
across metrics. We exploit these characteristics in the de-
sign of on-line statistical and table-based predictors. We
introduce a new class of predictors, cross-metric predictors,
that use one metric to predict another, thus making possible
an efficient coupling of multiple predictors. We evaluate
these predictors on the SPECcpu2000 benchmark suite and
show that table-based predictors outperform statistical pre-
dictors by as much as 69% on benchmarks with high vari-
ability.

1. Introduction

Workload characterization plays an important role in the
design of efficient hardware and software systems. By
understanding workload characteristics, modern architec-
tures, both hardware and software, can allocate and tailor
resources to best suit the needs of the application. Con-
sequently, there have been numerous studies that evaluated
the performance of workloads and attempted to characterize
them along dimensions of interest, such as common opera-

tions for instruction set design, instruction-level parallelism
for micro-architecture design, and cache behavior for mem-
ory system evaluation and compiler optimizations. Most of
these studies have focused on the characterization of the ag-
gregate behavior of entire applications.

More recently, there has been a focus on dynamic
optimization and reconfiguration during program execu-
tion both in hardware and in software. Several micro-
architectural designs [3, 5, 6, 8, 11, 13, 15, 18, 21, 31] have
been proposed that allow the rapid low-cost adaptation of
processor components to match hardware complexity and
speed with an application’s requirements. There have also
been several approaches to dynamically adapt the software,
such as application code, data placement, or runtime re-
source allocation. One such optimization is to adapt dy-
namic memory allocation to more efficiently meet the ap-
plication’s memory access pattern requirements. Operat-
ing systems may employ the use of variable memory page
sizes [27, 30] to adapt to the memory access patterns of the
application. Another example is memory management in
Java Virtual Machines (JVM), where the garbage collector’s
activities are adapted to the application’s behavior [7, 23].
Just-In-Time compilers, such as the ones found in JVMs
[1, 2], and dynamic optimization frameworks [4, 19] target
adaptation of the executing code itself in order to exploit
dynamic program characteristics.

Currently, both hardware and software adaptation tech-
niques typically operate in a reactive manner. An adaptive
change is triggeredafter a variation in program behavior
has been observed. A reactive algorithm uses immediate
past behavior as representative of future behavior for on-
the-fly adaptation. Reactive adaptation works well as long
as programs execute in a sequence of more or less stable
phases with relatively few transitions. However, if a pro-
gram exhibits significant variability in its behavior, a reac-
tive approach suffers by continuously lagging behind. Re-
sults in [6] demonstrate that a reactive system may need to
increase the sampling interval so that the aggregate behavior
captured remains stable for a sufficient amount of time, thus
missing opportunities for more fine-grained adaptation. Al-



ternatively, profiling has been used to predict performance
for future executions of the program [15, 18]. There have
also been studies that attempt to characterize and classify
program behavior into phases, where phases are defined as
regions of a program with relatively stable behavior [8, 26].
The goal in these papers is the dynamic identification of
phases in order to tune resources to meet the application
needs.

In this paper, we explore the predictability of program
behavior across various dimensions. We first characterize
the time-varying behavior of programs with respect to sev-
eral metrics – instruction mix, branch prediction accuracy,
data cache miss rates, and instructions per cycle (IPC). We
demonstrate that programs indeed exhibit significant varia-
tions in their behavior and these variations persist even at
coarse granularity, when aggregating over millions of in-
structions. We also illustrate the presence of strong fre-
quency components in the analyzed metrics indicating high
rates of repeatability in program behavior. The source of
periodicity is the looping structure in the program, which
manifests itself across all metrics. Thus, while the behavior
of different metrics for an application may not be correlated,
the periodicity is typically shared: the behavior repeats at
the same rate across all metrics.

Based on these observations, we explore the perfor-
mance of several on-line behavior predictors. Periodicity
in program behavior motivates the use of table-based pre-
dictors that use behavior in past intervals as an index into
the table to predict behavior in the next interval. We also
consider statistical models that use interpolation with vary-
ing levels of sophistication to predict the behavior in the
next interval. In addition, the fact that periodicity of behav-
ior tends to be shared across metrics motivates the use of
cross-metricpredictors that track the behavior of one met-
ric to predict the behavior of others. Cross-metric predictors
are interesting because they allow the efficient coupling of
multiple predictors using a single source metric. We evalu-
ate these predictors on the entire SPECcpu2000 benchmark
suite and show that table-based predictors outperform sta-
tistical predictors by as much as 69%, especially on bench-
marks with high variability. One of the statistical predictors
considered is a simple last value predictor, which models
the behavior of a reactive system. The performance advan-
tages of table-based predictors over last value prediction
suggests that adaptive optimization needs to bepredictive
rather than reactive.

We conducted our experiments on two different micro-
architectures — the IBM Power3 [22] and Power4 [28]. We
have built the on-line predictors entirely in software using
the hardware performance monitors (PMAPI) available on
the AIX operating system. Our predictors sample the per-
formance monitors at a granularity of 10 ms. 10 ms co-
incides with the operating system’s context switch interval

allowing the efficient incorporation of the predictors into
the kernel. To investigate the pollution potential of context
switching activity, we analyze the sensitivity of our predic-
tors to multiprogramming effects.

While a similar analysis can be applied at finer granu-
larities and/or in hardware, a software solution allows the
immediate use of the predictors in resource allocation on
existing hardware. For example, we are currently investigat-
ing the use of the on-line predictors to schedule processes
on the two cores of an IBM Power4. The scheduling ob-
jective is to optimize the utilization of the shared L2 cache
based on predicted memory behavior. Another advantage
of a software prediction infrastructure is its flexibility.The
software predictors can be easily adjusted to provide predic-
tion at varying levels of granularity, thereby serving a larger
class of applications.

We first discuss related work in Section 2. In Section 3,
we provide a detailed analysis of the behavior of the SPEC-
cpu2000 [12] benchmarks. In Section 4, we describe and
evaluate our on-line behavior predictors and include a sen-
sitivity analysis. Finally, we summarize our findings and
discuss potential applications of the predictors in Section 5.

2. Related Work

Prior work can be categorized into methods that define
and use metrics to dynamically identify phases for adap-
tive optimization [5, 6, 8, 13, 26], and into techniques that
identify appropriate simulation points for the desired work-
loads [10, 16, 17, 24, 25].

Balasubramonianet al. [5, 6] use interval-based explo-
ration mechanisms in order to dynamically reconfigure the
underlying micro-architecture to meet the need of an appli-
cation. They identify a change in program behavior based
on instruction mix and/or memory behavior variations us-
ing an adjustable-length sampling interval [6], and an ad-
justable behavior difference threshold to trigger an explo-
ration [5]. Dhodapkar and Smith [8] extend the algorithm
in [5] to use instruction working set signatures to character-
ize application intervals. They use a table-based mechanism
to store configurations from previous executions of intervals
with the same signature, thereby reducing exploration over-
head. All of the above work is reactive in that it assumes
that future behavior will be similar to that just seen.

On the software side, phase changes have been exploited
in dynamic optimization systems, such as Dynamo [4].
Dynamo detects hot code fragments, optimizes them, and
stores them in a code cache. Phase shifts are detected as
changes in the program’s fragment working set by tracking
the fragment creation rate.

Eeckhoutet al. [10] identify program-input pairs with
similar behavior in order to reduce the evaluation space for
a design point. They use several whole program character-



istics as input to a principal component analysis (PCA) tool
in order to determine a reduced set of orthogonal character-
istics. The reduced set is passed to a hierarchical clustering
analysis to determine which of the program-input pairs have
similar behavior. Sherwoodet al. [24, 25] use clustering at
a finer grain to classify regions of program execution into
phases, and use basic block vectors as a unique signature to
characterize the phases. Algorithms in [5, 13] use subrou-
tines to identify program phases and propose a hardware-
based call stack to identify major program subroutines. As
our analysis will show, a simpler characterization derived
from existing hardware counters is sufficient for the pur-
pose of on-line program behavior prediction. We avoid the
need for dedicated hardware to capture basic blocks by us-
ing existing processor hardware counters to capture current
execution behavior. This gives us the ability to use our pre-
dictions for both hardware and software optimizations.

Voldmanet al. [29] provided an early study on the pe-
riodicity and other dynamic characteristics of cache miss
behavior in complex workloads. Sherwoodet al. [24] also
showed that the periodicity has a direct relationship to the
code being executed. They also explore the use of a run
length encoded Markov model to predict the next phase
in [26]. Rather than attempting to predict the nextphase,
we directly predict the nextvaluefor the metric of interest.
As we will show in Sections 3 and 4, this helps us take into
account the variation in behavior of each individual metric
yielding high prediction accuracy.

3. Program Behavior Characterization

In this section, we characterize program behavior and its
variability to set the stage for understanding and develop-
ing on-line predictors. Our infrastructure is based on ac-
tual program execution, allowing analysis of the entire run
of the program. We use the Dynamic Probe Class Library
(DPCL [9]) to insert a timer-based interrupt into the pro-
gram to periodically collect hardware performance counter
samples. The hardware counters are read using PMAPI
(Performance Monitoring Application Programming Inter-
face [20]), a low-level API provided as a kernel extension
to AIX. The granularity at which the counters are read is 10
milliseconds (ms).

We present data on two machines with different micro-
architectures — the IBM Power3 and the IBM Power4.
They represent processors from different generations, pro-
viding program characterization across design points as
well as different interval granularities. A 10 ms interval
captures the aggregate behavior of many more instructions
on Power4 than on Power3.

The Power3-based machine is a 200 MHz 64-bit out-of-
order superscalar PowerPC architecture. It has a fetch and
execute width of up to 8 instructions, a dispatch and com-

pletion width of up to 4 instructions, and up to 32 in-flight
instructions. The memory hierarchy consists of a 32 KB
on-chip L1 instruction cache, 64 KB on-chip L1 data cache,
and a 16 MB L2 cache. Both instruction and data L1 caches
are 128-way set associative with 128 byte lines.

The Power4-based machine is a Regatta, with a 1.3 GHz
64-bit out-of-order superscalar PowerPC architecture. Each
chip consists of 2 processor cores, with a shared L2 cache.
For our experiments, we use only a single core to run the
applications. Each core has a fetch and execute width of up
to 8 instructions, a dispatch and completion width of up to 5
instructions, and up to 200 in-flight instructions. The mem-
ory hierarchy consists of three levels of cache — a direct-
mapped, 128 byte line, 64 KB L1 instruction cache and a 2-
way, 128 byte line, 32 KB L1 data cache per core, a shared
8-way, 128 byte line, 1.5 MB L2 cache, and an off-chip 8-
way, 512 byte line, 32 MB L3 cache.

We analyze the behavior of the entire SPECcpu2000 [12]
benchmark suite (integer and floating point) using theref
data sets. Table 1 lists the programs, along with the aver-
age and standard deviation of their instructions per cycle
(IPC) on both Power3 and Power4. We begin by examin-
ing the time-varying behavior of several metrics that can be
derived from hardware counters — IPC, L1 D-cache misses
per instruction, branches per instruction, and branch mis-
predict rate (mispredicts per branch). Figure 1 plots their
values over time for the compression programbzip2on the
Power3 architecture. The left column shows the time se-
ries over the entire execution (54,639 samples). The plots
show two distinct macro phases that repeat across all met-
rics. These macro phases represent a sequence of compress
and decompress operations on the input files at two differ-
ent blocking levels. The right column in Figure 1 zooms
into a specific interval of 10 secs (1000 samples) from the
first macro phase.

The first observation that can be made from the plots
is that the behavior of programs varies significantly with
respect to each metric. For example, the average IPC in
bzip2 is 1.18 but the instantaneous IPC ranges from 0.2 to
3.4. Whilebzip2shows the same variation in the zoomed in
plots, there are phases of relatively stable behavior between
variations.

Figure 2(a) shows the behavior ofart, a neural networks
program used for image recognition. The figure demon-
strates less of a visually identifiable pattern at a large time
scale. In addition,art shows dramatically different behav-
ior from bzip2at a small time scale. Figure 2(b) zooms into
a one second interval. The behavior varies widely with a
0.21 average difference in IPC values from one sample to
the next. This is the highest observed difference across all
programs in our benchmark suite and is even higher than
the standard deviation of the IPC (0.146).

Standard deviation has been used to characterize work-



SPECint Power3 Power4 SPECfp Power3 Power4
Avg IPC Std IPC Avg IPC Std IPC Avg IPC Std IPC Avg IPC Std IPC

perlbmk 1.11 0.28 0.86 0.15 sixtrack 1.54 0.06 0.97 0.05
twolf 0.94 0.06 0.63 0.02 lucas 0.58 0.09 0.54 0.18
gap 1.35 0.26 0.83 0.19 swim 0.43 0.42 0.26 0.24
crafty 1.39 0.04 0.98 0.03 mesa 1.14 0.08 0.69 0.03
eon 1.20 0.05 0.76 0.03 apsi 0.85 0.70 0.62 0.43
mcf 0.34 0.23 0.22 0.13 applu 0.95 0.29 0.53 0.15
bzip2 1.18 0.56 1.10 0.44 wupwise 1.53 0.20 1.12 0.26
vpr 0.65 0.15 0.48 0.11 fma3d 0.99 0.35 0.69 0.23
parser 1.09 0.17 0.82 0.14 ammp 0.73 0.16 0.49 0.16
gcc 1.28 0.49 0.95 0.31 mgrid 1.74 0.36 1.21 0.23
vortex 1.58 0.31 1.30 0.17 facerec 1.03 0.41 0.81 0.11
gzip 1.13 0.26 0.83 0.12 galgel 0.80 0.51 0.68 0.26

equake 1.30 0.35 0.73 0.08
art 0.45 0.15 0.25 0.03

Overall mean IPC Power3: 1.05 Power4: 0.74

Table 1. Average and standard deviation of IPCs for the SPECc pu2000 benchmarks on Power3 and Power4.

loads [14]. However, standard deviation is insensitive to the
time of variation and thus does not reveal much about the
rate of variability. We obtain a better measure of variability
by considering the average absolute distance between adja-
cent points (mean deltas) in the time series. Figure 3 shows
the mean deltas in IPC values between adjacent time inter-
vals for each of the programs and for both the Power3 and
the Power41. While we present the deltas only for IPC, sim-
ilar behavior variability is seen across all metrics. Figure 3
shows the SPECint benchmarks followed by the SPECfp
benchmarks, each in order of increasing IPC delta measured
on the Power3. The figure illustrates the significant differ-
ences that exist in the variability of IPC behavior ranging
from fairly flat behavior inperlbmkto widely varying be-
havior inequakeandart. Note that Power3 and Power4 im-
pose different orderings with respect to the mean IPC delta.
art, which shows the highest mean delta on the Power3, has
a much lower mean delta on the Power4. Conversely,bzip2
shows a larger mean delta on the Power4. This behavior is
primarily a result of averaging over a much larger number
of instructions on the Power4 (For example, the execution
time of bzip2 is roughly 550 and 85 seconds, respectively,
on the Power3 and Power4, for the same number of total
instructions completed.). The change toward a coarse gran-
ularity causes a slight smoothing of the noisy behavior for
art (i.e., lower delta), while the relatively stable behavior of
bzip2on the Power3 transforms to more variable behavior
on the Power4 as the program moves more quickly through
regions of execution (i.e., higher delta).

Returning to the plots in Figure 1, our second obser-
vation is that program behavior is highly periodic. There

1In this paper, we use the arithmetic mean since we focus on theaccu-
racy of performance prediction rather than on absolute performance

is a clear, repeating pattern of behavior with a period of
roughly 3 seconds. To analyze the periodicity of the pro-
gram behavior, we applied Fourier analysis to compute the
periodograms of the metrics across the entire execution of
the program. Figure 4 shows the periodograms for the IPC
time series inbzip2(left) and inart (right). Given the 10 ms
sampling rate for the hardware counters, the range of fre-
quency discernible is 0 to 50 cycles/sec (the Nyquist rate).
For bzip2 we plot only the periodogram from 0 to 5 cy-
cles/sec since the rest of the periodogram is flat. The relative
heights of the peaks in the periodogram represent the rela-
tive strength (power) of the corresponding frequency across
the entire execution of the program. Note that this power is
also a function of the fraction of the entire execution time
for which the particular periodicity behavior was seen.

The period of three seconds observable in thebzip2plots
in Figure 1(b) corresponds to the isolated peak inbzip2’s
periodogram at 0.33 cycles/second. Similar periodic behav-
ior, but at different frequencies, can be observed in each of
the other macro phases inbzip2. In fact, the top four peaks
in the frequency spectrum (after accounting for harmonics)
can be attributed to each of the macro phases. Compared
to bzip2, art has a very different periodogram. As shown
in Figure 4, there is a cluster of peaks at much higher fre-
quencies corresponding to the much shorter period depicted
in Figure 2. We computed the periodograms for all bench-
marks and found significant frequency peaks, although at
varying frequencies, across the benchmarks.

While we can expect to find periodic behavior from the
looping structure of programs, the fact that periodicity is
still visually obvious at a granularity of millions of instruc-
tions is less intuitive. The period inbzip2of 3 seconds cor-
responds to several millions of instructions, and manifests
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Figure 1. IPC, L1D cache miss rate, branch frequency, and bra nch mispredict rate for bzip2 (a) over the entire
execution and (b) zoomed into a 10 second interval (30–40 sec s).

itself with equal strength across all metrics.

This leads us to our third observation: the periodicity of
metric behavior is shared across all metrics. Going back
to Figure 1(b), we can clearly see the same 3 second pe-
riod in each plot. However, the behavior within a period
is widely different. During intervals where the behavior is
almost flat in one metric (e.g., L1 D-cache misses) there
are significant variations in others (e.g., branch mispredict
rate). Thus, what makes the various plots look alike in Fig-
ure 1(a) is not the similarity in the metric behavior itself but
the similarity in the underlying periodicity of the behavior.

To investigate this observation further, we compared the
periodograms for the different metrics for each program.
Subjectively, the periodograms for the same program across
metrics look alike. In order to provide a more objective

measure of their similarity, we matched the top 10 peak fre-
quencies for each metric periodogram with all the peak fre-
quencies in the IPC periodogram and vice versa. This way
we obtain the percentage of successful matches for each
program indicating how strongly the periodicity is related
across metrics. While the relative amplitudes of the peaks
(strength of the period) varied across metrics, the match
across all metrics was on average 86%. Forart andbzip2,
in particular, they were 96% and 93%, respectively. The
high matching rate indicates that the periodicity of behavior
is shared across various metrics.

While we have presented detailed results on the Power3,
the Power4 runs show similar trends in behavior, with some
differences due to the fact that the sampling interval repre-
sents a much larger number of instructions.
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In summary, our characterization found that program be-
havior has significant variability even at a coarse granularity
(millions of instructions). We showed that program behav-
ior tends to be periodic and that the periodicity of program
behavior is shared across metrics. The high variability in the
behavior for some programs implies that the problem of be-
havior prediction is non-trivial. Periodic behavior indicates
that it should be possible to build effective predictors based
on history. Finally, the similarity of periodicity across met-
rics suggests that a predictor may use the histories of one
metric to predict the other metrics.

4. Program Behavior Prediction

In this section, we consider the design of several on-line
predictors of program behavior. The predictors sample the
program’s behavior along various performance metrics and

make predictions about the metric values for the next sam-
pling interval. As in the previous section, we use a fixed
sampling interval of 10 ms.

4.1. Simple Statistical Predictors

The most basic predictor we consider is aLast Value pre-
dictor. A Last Value predictor assumes that the program
executes in a stable phase and that the current behavior will
repeat. The prediction for the next interval is simply the
last measured value. Last Value predictors provide an inter-
esting baseline in that they reflect the behavior of reactive
adaptive optimization systems. Thus, improvements over
Last Value predictors provide an indication of the potential
of incorporating prediction into adaptive optimization sys-
tems.

More sophisticated predictors use histories of metric val-
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Figure 4. Periodogram for bzip2 (left) and art (right).

ues to smooth out noise and isolated peaks. For example,
anAverage(N)predictor chooses the average over the lastN
values and aMode(N)predictor chooses the most frequently
occurring value among the lastN values. An exponentially
weighted moving average (EWMA) predictor places more
emphasis on the most recent data. An EWMA prediction
for the(n+ 1)th value is computed as:

(1� �)x

n

+ � x

n�1

,
wherex

n

is then-th metric value,x
n�1

is the EWMA over
the firstn � 1 values, and� � 1 is the filter constant that
determines the relative weight of older values compared to
more recent ones.

4.2. Table-Based History Predictors

We showed that programs exhibit varying degrees of pe-
riodicity, indicating that behavior patterns repeat over time.
Table-based history predictorsare designed to exploit this
repeatability. A table-based predictor uses an encoding of
past behavior history as an index into a prediction table. The
prediction stored in the table is a value that was observed to
immediately follow the behavior history in the past.

When exposed to a new workload, the predictors go
through an initial learning phase to populate the prediction
table with history patterns. To provide predictions during
the learning phase, a fall-back prediction scheme, such as
Last Value, may be used. The predictors adapt to changes
in learned behavior by updating the table entries. However,
care must be taken to avoid updating the table with spurious
values from isolated noise peaks. We use a voting mecha-
nism similar to the one used in [26]. In addition to the pre-
diction value, each table entry stores the last actual value
that was observed to follow the history. After the result of
a prediction is known we have three values: the prediction
and the last actual value stored in the table and the new ac-
tual value. The table is updated by setting the prediction
value to the most frequent among the three values.

Table-based predictors vary in the encoding and length
of the history used to index into the table. We consider two
types of history encodings: fixed-size and run-length en-
coded history. A fixed-size history predictor (History(N))

uses the history of the pastN values. Run-length encoded
history predictors (Run-length(N)) use a history that is com-
posed of the lastN values, where each value is followed
by the number of contiguous occurrences. Run-length pre-
dictors yield more efficient history encodings for programs
with successive intervals of stable behavior. The reverse is
true when considering highly variable programs, which are
more efficiently captured using a History(N) predictor. A
Run-length(1) predictor can be viewed as a hybrid between
a Last Value predictor and a History(N) predictor.

The performance of a history predictor is highly sensitive
to both the history length and the precision at which metric
values are included in the history. The precision of history
values determines the amount of aliasing in the prediction
table. If the precision is too coarse, the predictor is insen-
sitive to fine-grained behavior variations and will make the
same predictions for behavior patterns that may vary sig-
nificantly at finer granularities. Conversely, a predictor that
is overly sensitive (too fine a precision) loses the ability to
recognize repeating patterns in the presence of slight noise.
Thus, choosing the appropriate history precision involves
both an assessment of the amount of noise and of the de-
sired level of prediction accuracy.

A similar trade-off applies to the history size parameter.
For perfectly periodic behavior the ideal history size is the
length of the period. Smaller history sizes may lead to less
accurate prediction and larger history sizes require much
longer learning periods. Realistic data will not be perfectly
periodic and will include some amount of noise, such that a
single behavior pattern may have many noise-induced his-
tory variations, each requiring a separate table entry. Larger
history sizes not only require more table space, but also lead
to many more entries being created, thus reducing the uti-
lization of the table. We experimented with the various pa-
rameters and report the results in the next section.

4.3. Cross-Metric Predictors

We can exploit the fact that periodicity tends to be shared
across metrics by using the history of one metric to predict
another. We call a predictor that predicts values along one



metric (the target metric) using the history of a different
metric (the source metric) across-metric predictor. A pre-
dictor with the same source and target metrics is called a
same-metricpredictor. An example of a cross-metric pre-
dictor is a predictor for IPC that uses the cache miss rate as
the source metric.

The appeal of cross-metric predictors is the ability to ef-
ficiently combine multiple predictors. We can build a multi-
predictor that uses the same history index to produce pre-
dictions along multiple metrics. To expand a cross-metric
predictor into a multi-predictor merely requires additional
prediction fields each table entry.

Care must be taken when choosing the source metric for
a given target prediction metric because not all metrics are
equally effective as a source predictor. Ideally, the source
and target metrics should have similar variability. Choos-
ing a flat source metric (e.g., L2 cache misses on a small
SPECint program) to predict a highly variable one (e.g.,
IPC) is likely to result in poor prediction quality. On the
other hand, a source metric that is much more variable than
the target may require a longer than necessary learning in-
terval.

We also consider a cross-metric predictor that uses the
instruction mix (I-mix) as a microarchitecturally indepen-
dent source metric. I-mix combines branch frequency and
load/store frequency histories to capture the major changes
in control and data instruction frequency during program
execution. To produce anI-mix(M/N) index we concatenate
M values from the branch frequency history with N values
from the load/store instruction history. An I-mix predic-
tor is particularly attractive when the predictions are used
for optimizations that affect performance or power related
behavior since the history used to index into the table is un-
affected.

4.4. Experimental Parameters

We present results for the following five predictors:
– Last Value
– EWMA filter (�=0.2)
– Run-length(1) encoded table-based predictor
– History(4) predictor
– Cross-metric I-mix(2/2) predictor
We selected the above predictors and their parameters

because they demonstrated the best performance among
predictors in their class. We do not show data forAverage
or Modepredictors since the EWMA predictor performed
consistently better. After experimenting with histories of
various sizes, we found that a history of size 4 provided
sufficient pattern sensitivity while still tolerating noise. We
encode IPC, L1 D-cache misses, and branch mispredict rate
values in the histories at a precision of .01 (i.e., up to two
digits after the decimal point). We experimentally verified

that this precision provides the best trade-off between sen-
sitivity to noise and prediction accuracy. Since a combined
history using multiple sources provides more history vari-
ability than a single-source history, we found that shorter
histories for the I-mix predictors were more effective at
striking a balance among noise tolerance, learning period,
and prediction accuracy.

4.5 Evaluation

We evaluate the predictors by measuring the mean ab-
solute prediction error, that is, the mean absolute distance
between the predicted and the actual value. Whether a cer-
tain mean error is considered high or low depends entirely
on the application that uses the predictor. For an application
that uses the predictor to trigger mostly short-lived adapta-
tions, a low absolute error is important. On the other hand,
an application that performs more long-lasting adaptations
may be satisfied with a much looser prediction accuracy.
To evaluate the predictors independent of an application we
use the mean absolute prediction error primarily as a rela-
tive measure and give no further meaning to it other than
re-stating it as a percentage of the mean value of the metric
being predicted.

IBM Power3 IPC Prediction Accuracy: We first con-
sider IPC as the target prediction metric on a Power3. Fig-
ure 5 shows the mean absolute prediction error for the five
predictors. The mean IPC value across all benchmarks is
1.05. Thus, an absolute prediction error of 0.05 corresponds
to 5% of the mean IPC. In order to expose the challenge in
the prediction problem, we show the SPECint benchmarks
followed by the SPECfp benchmarks, each in order of in-
creasing mean IPC deltas. The mean deltas are shown again
below each program name.

As expected, when considering programs with low vari-
ability, such asperlbmkthrougheon in SPECint, andsix-
track throughammpin SPECfp, all predictors perform very
well with only negligible performance differences. How-
ever, when considering programs with larger variability,
significant differences in prediction performance emerge.
Formcfandgzipin SPECint and forfacerec, galgel, equake,
andart in SPECfp, the table-based history predictors, His-
tory(4) and I-mix(2/2), clearly outperform the other predic-
tors. They have a significantly lower mean error than the
simple statistical predictors. The prediction error is reduced
by up to 69% compared to last value predictors. The Run-
length(1) table-based predictor, while beating the simpler
statistical predictors, gains only a fraction of the benefits of
fixed-size history predictors. Run-length encoding becomes
less effective when there is high variability since there islit-
tle stability in behavior values. A remarkable result of Fig-
ure 5 is that using the cross-metric I-mix history predictor
is nearly as effective as using a same-metric IPC predictor.
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Figure 5. Mean absolute error for predicting IPC on a Power3. A mean error of .05 corresponds to 5% of the
mean IPC across all benchmarks. IPC deltas are shown below ea ch program name.

The benchmarkart shows an absolute prediction error
that is higher than that of most other programs even for the
table-based predictors. Figure 2(b) shows that the periodic-
ity is close to the sampling rate. Thus, any statistical varia-
tion may result in an incorrect prediction. Prediction accu-
racy may improve by sampling at a finer granularity but we
were limited to 10 ms by our infrastructure. It remains to
be seen if matching the sampling rate to the periodicity in
the application affects the accuracy of the table-based pre-
dictors.

IBM Power3 Prediction Accuracy for Other Metrics:
We evaluate the predictors for predicting other metrics: L1
D-cache misses per instruction and branch mispredict rate.
The branch mispredict rate results are similar to the IPC
results. Therefore, we only discuss the L1 D-cache miss
prediction results. Figure 6 shows the mean absolute pre-
diction error for L1 D-cache misses per instruction. We
again show the performance of Last Value and EWMA pre-
dictors and include two same-metric table-based predictors:
a Run-length(1) predictor and a History(4) predictor. We
replaced the cross-metric I-mix predictor with a different
cross-metric predictor: an IPC-based History(4) predictor.

The programs that have the highest L1 D-cache miss
rate variability are different from the ones with the high-
est IPC variability: mcf, parser, gcc, gzip, facerec, and
art are the ones with the highest deltas. While the table-
based L1 D-cache History(4) predictor follows the previous
trend of outperforming the other predictors inmcf, gzip, fac-
erec, andart, it actually performs worse ingcc, and slightly
worse in a few others. We inspected the time-varying L1
D-cache miss behavior plots for these programs and found
that they are considerably more noisy and irregular than for
IPC. Noise makes the periodic patterns in the metric much
harder to capture. Noise is also the primary reason why the

cross-metric IPC History(4) predictor lags behind the per-
formance of its same-metric counterpart (L1 D-cache His-
tory(4)) in several programs. In spite of these noise effects,
the results of L1 D-cache miss rate prediction follow pre-
vious trends when considering the mean across all bench-
marks.

IBM Power4 IPC Prediction Accuracy: We collected
results for IPC prediction on a Power4 in order to deter-
mine whether the relative accuracy of the different predic-
tors holds across microarchitectures and across different
sampling intervals. Results for cache misses per instruc-
tion and branch mispredict rates are similar to the Power3
data and are not shown.

As pointed out in Section 3, the time varying behavior,
while generally flatter than on the Power3, still shows sig-
nificant variability on the Power4. Also, the relative degree
of IPC variability across the benchmarks is not the same
as for the Power3. Figure 7 shows the prediction error ob-
tained for predicting IPC. The predictors in Figure 7 follow
the same trend as for the Power3: the table-based predictors
tend to outperform the others when IPC variability is high,
most notably formgrid andequake, the programs with the
highest variability.

Effect of Finite Table Sizes: The results presented
above are based on prediction tables implemented as hash
tables of unlimited size. To determine the loss of predic-
tion accuracy when limiting the table size, we repeated the
IPC prediction experiment from Figure 5 and compared the
mean prediction error across the entire benchmark suite for
the predictors with unlimited table size to the mean predic-
tion error when using various table size limits. Limiting the
table to 4000 and 1000 direct-mapped entries increases the
mean IPC prediction error by 10% and 25%, respectively.
The range of possible values in IPC tends to be larger com-
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Figure 6. Mean absolute error for predicting L1 D-cache miss es per instruction on an IBM Power3. The mean
L1 D-cache misses per instruction across all benchmarks is 0 .04 so that a mean error of 0.005 corresponds to
12.5% of mean. The variability of L1 D-cache misses is shown n ext to each benchmark name.

                           
0

0.025

0.05

0.075

0.1

0.125

0.15

  p
er

lb
m

k
(0

.0
02

)

   
 tw

ol
f

(0
.0

25
)

   
   

ga
p

(0
.0

17
)

   
cr

af
ty

(0
.0

17
)

   
   

eo
n

(0
.0

06
)

   
   

m
cf

(0
.0

14
)

   
 b

zi
p2

(0
.0

91
)

   
   

vp
r

(0
.0

37
)

   
pa

rs
er

(0
.0

65
)

   
   

gc
c

(0
.0

69
)

   
vo

rt
ex

(0
.0

25
)

   
  g

zi
p

(0
.0

42
)

 s
ix

tr
ac

k
(0

.0
02

)

   
 lu

ca
s

(0
.0

16
)

   
  s

w
im

(0
.0

23
)

   
  m

es
a

(0
.0

07
)

   
  a

ps
i

(0
.0

32
)

   
 a

pp
lu

(0
.0

30
)

  w
up

w
is

e
(0

.0
24

)

   
 fm

a3
d

(0
.0

41
)

   
  a

m
m

p
(0

.0
36

)

   
 m

gr
id

(0
.1

40
)

  f
ac

er
ec

(0
.0

72
)

   
ga

lg
el

(0
.0

33
)

   
eq

ua
ke

(0
.1

31
)

   
   

ar
t

(0
.0

21
)

M
ea

n

M
ea

n 
er

ro
r 

(P
ow

er
4)

Last Value
EWMA
IPC Runlen
IPC History(4)

Figure 7. Mean absolute error for predicting IPC on an IBM Pow er4. An absolute mean error of .025 corresponds
to 3% of the IPC mean across all benchmarks. IPC deltas are sho wn below each program name.

pared to the value range in L1 D-cache misses or branch
mispredict rate. Correspondingly, the number of distinct
histories in L1 D-cache miss and branch mispredict rate is
much smaller resulting in less table size pressure. For L1
D-cache miss prediction, limiting the table to 1000 entries
increases the mean prediction error by less than 15%. For
predicting the branch mispredict rate, the table can be lim-
ited to only 512 entries with less than 2% increase in predic-
tion error. Generally, as the table size is reduced further,the
history predictors gradually deteriorate to the performance
of a Last Value predictor.

In summary, the experiments highlight a number of im-
portant results:

– Program behavior variability along various perfor-

mance metrics is highly predictable to within a few percent
of the mean metric value.

– In programs with non-trivial variability, table-based
fixed history predictors outperform any of the other predic-
tors, while providing similar prediction accuracy for pro-
grams with relatively flat metric behavior. For IPC predic-
tion on a Power3, the per application mean error is within
10% of mean IPC, compared to 20% for the Last Value pre-
dictor. On Power4, the per application error is within 9% of
the mean IPC compared to 14% for the Last Value predictor.

– Cross-metric table-based predictors are nearly as effec-
tive as their same-metric counterparts, making it possibleto
predict multiple metrics through a single predictor.

– Microarchitecture-independent metrics built using ex-



isting hardware counters work well as a source metric,
while providing stable behavior in the table even when the
predicted target metric changes due to dynamic optimiza-
tions.

4.6. Sensitivity to Measurement Noise

All the predictors discussed are built entirely in software
although a hardware implementation is feasible. Using a
software infrastructure enables us to collect realistic behav-
ior measurements of complete runs of the application. How-
ever, unlike in a simulation environment, actual measure-
ments are necessarily exposed to a certain amount of sam-
pling noise. In order to assess the degree of noise in our
execution environment, we conducted two experiments.

In our first experiment, we investigated the pollution ef-
fects of context switching in a multiprogrammed environ-
ment. The performance monitor interface (PMAPI) virtual-
izes the hardware counters and provides per process coun-
ters. We expect that context switching, which occurs at
exactly our sampling interval (10 ms), causes initial per-
turbation at the beginning of each sampling interval. To
determine the effect of multiprogramming, we forced high
context switching activity by running two programs simul-
taneously with equal priorities. We examined the IPC His-
tory(4) predictor on the Power3 and selected two of the
most difficult to predict programs:art andequake. We ran
art and equakesimultaneously and compared the predic-
tion results to the original undisturbed runs. Multiprogram-
ming perturbed execution behavior as expected, causing an
increase in the number of samples by 8% (art) and 10%
(equake). We also observed changes in the mean IPC and
its standard deviation by up to 9%. When comparing the
prediction results from the multiprogramming runs to the
original results from Figure 5, we noticed a slight increase
in the mean error: .03 inart and .02 inequake, which cor-
respond to 6% ofart’s and 1.5% ofequake’s average IPC
value, respectively. Thus, while multiprogramming does
cause disturbances in the sampled metric data, the loss in
prediction accuracy is small.

The second experiment examined the effect of system
daemons on the collected performance monitor data. Al-
though we specify each sampling interval to be of equal
length, the activity of system daemons causes variations in
the number of cycles that are captured in each sampling in-
terval. Variation in cycle count across samples makes it im-
possible to compare data collected from different runs at a
sample-by-sample granularity. Since we convert the mea-
sured counter values into rates, we do not expect variations
in cycle count to disturb the data within one run. To ver-
ify this assumption, we investigated cycle count variationin
more detail. The mean cycle count per sample across all ap-
plications on the Power3 is 1.35 million cycles with a large

standard deviation of 50%. We filtered out any sample with
a cycle count that differed from the mean by more than 15%.
We then compared the prediction results of the filtered data
with the original data and found a difference in mean er-
ror of less than 0.5%, indicating that even significant cycle
count variation does not cause noticeable pollution of the
sampled metric data.

5. Conclusions and Future Work

We have presented a characterization of program behav-
ior and its predictability on two different processor gen-
erations and micro-architecture design points. Our analy-
sis demonstrates significant behavior variation across met-
rics, as well as periodicity even at a granularity of millions
of instructions. We exploit these observations in the de-
sign of on-line behavior predictors, and use them to ex-
plain the relative performance of simple statistical as well
as table-based predictors. Our evaluation shows that table-
based predictors can cope with behavior variability much
better than the simple statistical predictors. When using the
table-based predictors the per application prediction error is
within 10% and 9% of the mean IPC across all benchmarks
in the SPECcpu2000 suite on Power3 and Power4, respec-
tively. The performance advantages of table-based predic-
tors over a simple Last Value predictor point to the potential
of incorporating prediction into adaptive optimization sys-
tems.

We also demonstrate that different metrics show similar
periodic behavior. Based on this result we introduced the
use of cross-metric predictors that use behavior historiesof
one metric to predict others, making it possible to efficiently
couple multiple predictions into a single predictor. Finally,
we explored the use of a cross-metric predictor that uses an
estimation of the program’s instruction mix to make pre-
dictions. The use of such an architecture-independent met-
ric for prediction provides a stable reference even when the
underlying micro-architecture or operating environment is
reconfigured.

We are currently investigating the use of the on-line pre-
dictors for resource-aware scheduling. One application is
to optimize the kernel-level scheduling of processes on the
two cores of an IBM Power4. The scheduling objective is
to optimize the utilization of the shared L2 cache. We can
use the L1 miss rates to predict L2 cache traffic and capac-
ity requirements. Traffic predictions can be used to avoid
scheduling processes with high traffic in the same interval.

Other applications of the predictor that we plan to in-
vestigate include the dynamic management of configurable
hardware for both performance and power efficiency, and
dynamic voltage and frequency scaling of a multiple clock
domain processor for power efficiency.
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